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1 Introduction

The modern computer and telecommunication industry relies heavily on the use and devel-

opment of semiconductor devices. The first semiconductor device (a germanium transistor)

has been built in 1947 by Bardeen, Brattain and Shockley, who have been awarded the

Nobel prize in 1956. In the following decades, a lot of different devices for special appli-

cations have been invented; for instance, semiconductor lasers, solar cells, light-emitting

diodes (LED), metal-oxide semiconductor (MOS) transistors, quantum dots, to name only

a few.

A very important fact of the success of the semiconductor technology is that the device

length is much smaller than that of previous electronic devices (like tube transistors).

The first transistor of Bardeen, Brattain and Shockley had a characteristic length (the

emitter-collector length) of 20 µm, compared to the size of a few centimeters of a tube

transistor. The first Intel processor 4004, built in 1971, consisted of 2250 transistors, each

of them with a characteristic length of 10 µm. This length has been reduced to 90 nm

for the transistors in the Pentium 4 processor (put on the market in June 2004). Modern

quantum-based devices (like tunneling diodes) have structures of only a few nanometer

length. Clearly, on such scales, the physical phenomena have to be described by equations

from quantum mechanics.

Usually, a semiconductor device can be considered as a device which needs an input (an

electronic signal or light) and produces an output (light or an electronic signal). The device

is connected to the electric circuit by contacts at which a voltage (potential difference)

is applied. We are mainly interested in devices which produce an electronic signal, for

instance the current of electrons through the device, generated by the applied bias. In

this situation, the input parameter is the applied voltage and the output parameter is the

electron current through one contact. The relation between these two physical quantities

is called current-voltage characterestic. It is a curve in the two-dimensional current-voltage

space and does neither need to be a monotone mapping nor a function (but a relation).

The main objective of these lecture notes is to derive mathematical models which

describe the electron flow through a semiconductor device due to the application of a

voltage. Depending on the device structure, the main transport phenomena may be very

different, caused by diffusion, drift, scattering, or quantum mechanical effects. Moreover,

usually a large number of electrons is flowing through a device such that a particle-like

description using fluid-dynamical or kinetic equations seems to be appropriate. On the

other hand, electrons in a semiconductor crystal are quantum mechanical objects such

that a wave-like description using the Schrödinger equation is necessary. For this reason,

we have to devise different mathematical models which are able to describe the important

physical phenomena for a particular situation or for a particular device. Moreover, since in
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some cases we are not interested in all the available physical information, we need simpler

models which help to reduce the computation cost in the numerical simulations.

This leads to a hierarchy of semiconductor models. Roughly speaking, we distin-

guish three classes of semiconductor models: quantum models, kinetic models, and fluid-

dynamical (macroscopic) models. In order to give some flavor of these models, we explain

these three view points, quantum, kinetic, and fluid-dynamical, in the following in a sim-

plified framework.

The fluiddynamical view. Consider an ensemble of electrons in a spatial domain Ω ⊂
R3 under the influence of an electric field. We wish to find equations which describe the

evolution of the number NΩ(t) of electrons and the electric field. For this, we first introduce

the electron density n(x, t) at time t by

NΩ(t) =

∫

Ω

n(x, t) dx.

Another important physical quantity is the electron current density J(x, t). We assume

that it is given as the sum of the drift current, qµknE, and the diffusion current, qDn∇n,

J = qDn∇n + qµnnE, (1.1)

where q is the elementary charge, µn the mobility and Dn the diffusivity of the electrons.

Physically, it is reasonable to assume that the temporal change of the electron number is

equal to the (normal component of the) current flow through the semiconductor boundary

dNω

dt
=

1

q

∫

∂ω

J · ν ds,

where ω ⊂ Ω and ν is the exterior unit normal to ∂ω. The divergence theorem implies

∫

ω

∂n

∂t
dx =

dNω

dt
=

1

q

∫

ω

divJ dx for all ω ⊂ Ω.

Therefore,
∂n

∂t
− 1

q
divJ = 0 in Ω. (1.2)

This equation expresses the conservation of mass.

It remains to find an equation for the electrostatic potential. We start with the Maxwell

equations

curl E = 0, divD = % in R3, (1.3)

valid for vanishing magnetic fields. Here, D is the displacement vector and % the total space

charge. The first equation provides the existence of a potential V such that E = −∇V .
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The function V is called the electrostatic potential. We assume that the displacement

vector D and the electric field E are related by

D = εsE,

where εs is the semiconductor permittivity. Generally, εs is a matrix and depends on

the spatial variable. In an isotropic homogeneous semiconductor, εs is a scalar. The total

space charge % is given by

% = −qn + qC(x),

where C(x) is the concentration of the fixed charged background ions in the semiconduc-

tor crystal and will be subject of later investigation (see Section 2.4). Thus, the second

equation in (1.3) gives

εs∆V = div(−εs∇V ) = −divD = q(n − C(x)), (1.4)

if εs is a constant scalar (the semiconductor permittivity). This equation is called the

Poisson equation.

We have motivated that the electron density n(x, t) and the electrostatic potential

V (x, t) are solutions of (1.1), (1.2), and (1.4). This set of equations,

∂n

∂t
− div(Dn∇n − µnn∇V ) = 0, εs∆V = q(n − C(x)), x ∈ R

3, t > 0,

is called the drift-diffusion model and is one of the most important semiconductor models.

The kinetic view. Consider a single electron in the semiconductor and interpret it as

a particle at position x(t) with velocity v(t). These functions are a solution of Newton’s

equations
dx

dt
= v, m

dv

dt
= F, t > 0, (1.5)

x(0) = x0, v(0) = v0,

where m is the electron mass and F a force given by F = −qE. The state of the electron

is given by a distribution function f(x, v, t), i.e. a probability density in the (x, v)-phase

space. More precisely, ∫

B

f(x, v, t) dx dv

is the probability at time t to find the electron in the phase space set B. It is reasonable

to assume that f(x, v, t) does not change along the trajectory (x(t), v(t)) of the electron,

f(x(t), v(t), t) = f(x0, v0, 0) for all t > 0.
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This implies that

0 =
d

dt
f(x(t), v(t), t) =

∂f

∂t
+ ∇xf · dx

dt
+ ∇vf · dv

dt
,

and, by (1.5),
∂f

∂t
+ v · ∇xf − q

m
E · ∇vf = 0 in R3. (1.6)

This equation is called the Liouville equation.

Macroscopic quantities, like the electron density n(x, t) and the electron current den-

sity, are defined in terms of the distribution function by

n(x, t) =

∫

R3

f(x, v, t) dv,

J(x, t) = −q

∫

R3

f(x, v, t)v dv.

The macroscopic particle velocity u(x, t) is then given by

u(x, t) =

∫
f(x, v, t)v dv∫
f(x, v, t) dv

= − J(x, t)

qn(x, t)
. (1.7)

We notice that equation (1.2) can be easily derived from the Liouville equation. Indeed,

integrating (1.6) over v ∈ R3 yields, by the divergence theorem,

0 =

∫

R3

(
∂f

∂t
+ divx(vf) − q

m
divv(Ef)

)
dv

=
∂

∂t

∫

R3

f dv + divx

∫

R3

vf dv

=
∂n

∂t
− 1

q
divxJ.

The quantum view. We consider now a single electron interpreted as a wave. Then

it is described by the complex-valued wave function ψ(x, t) which is a solution of the

Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∆ψ − qV (x)ψ, t > 0, ψ(x, 0) = ψ0(x), x ∈ R

3. (1.8)

Here, i is the complex unit with i2 = −1, ~ = h/2π the reduced Planck constant, and V (x)

the (time-independent) electrostatic potential. The measurable, macroscopic quantities

n(x, t) and J(x, t) are defined by

n(x, t) = |ψ(x, t)|2, J(x, t) = −~q

m
Im (ψ∇ψ), (1.9)
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where Im (z) denotes the imaginary part of a complex number z and z its conjugate

number.

Usually, the Schrödinger equation (1.8) is solved by the ansatz

ψ(x, t) = w(t)u(x).

Inserting this expression into (1.8) and dividing by ψ gives

i~
wt

w
= − ~2

2m

∆u

u
− qV (x).

The left-hand side only depends on t, the right-hand side only on x. Therefore, both sides

must be constant. We call this constant E (since physically, it has the unit of an energy).

The solution of

i~
dw

dt
= Ew

is given by w(t) = exp(−iEt/~) (neglecting the integration constant which is put into

u(x)). The function u(x) solves

− ~2

2m
∆u − qV (x)u = Eu in R3. (1.10)

This is the stationary Schrödinger equation for a single electron with energy E. Mathe-

matically, (1.10) is an eigenvalue problem and solutions to (1.8) are eigenfunctions with

eigenvalues E. Then, the solution to (1.8) is given by

ψ(x, t) = e−iEt/~u(x),

which oscillates in time with a frequency ω = E/~.

The above models are all stated or motivated in a very simplified situation. For a more

precise description, the following questions have to be answered:

• How can the above models be derived (and not only motivated) from basic princi-

ples?

• How can the motion of many electrons be modeled?

• What is the influence of the semiconductor crystal on the motion of the electrons?

• How can collisions of the electrons with the crystal atoms or with other particles

can be taken into account?

• Do there exist relations between the above models?

These questions will be answered (at least partially) in the following chapters.
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2 Basic Semiconductor Physics

In this chapter we present a short summary of the physics and main properties of semi-

conductors. Only those subjects relevant to the subsequent chapters are included here. We

refer to [1, 3, 40, 61] for introductory textbooks of solid-state and semiconductor physics

and to [11, 37, 45, 50, 65] for more advanced expositions.

2.1 Semiconductor crystals

What is a semiconductor? Historically, the term “semiconductor” has been used to de-

note solid materials whose conductivity is much larger than that for insulators but much

smaller than that for metals, measured at room temperature. A modern and more pre-

cise definition is that a semiconductor is a solid with an energy gap larger than zero and

smaller than about 4eV (electron volt). Metals have no energy gap, whereas it is usually

larger than 4eV in insulators. In order to understand the notion “energy gap”, we have

to introduce to the crystal structure of solids.

A solid is made of an infinite three-dimensional array of atoms arranged according to

a lattice

L = {n1~a1 + n2~a2 + n3~a3 : n1, n2, n3 ∈ Z} ⊂ R
3,

where ~a1,~a2,~a3 are the basis vectors of L, called primitive vectors of the lattice (see

Figure 2.1). The set L is also called a Bravais lattice. The lattice atoms generate a periodic

electrostatic potential VL,

VL(x + y) = VL(x) for all x ∈ R
3, y ∈ L,

which is the superposition of the Coulomb potentials

Vj(x) = − 1

4π

q2

|x − xj|

of the crystal atoms located at x = xj (see Figure 2.2). The state of an electron moving in

this periodic potential is described by an eigenfunction ψ(x) of the stationary Schrödinger

equation (1.10):

− ~2

2m
∆ψ − qVL(x)ψ = Eψ in R

3, (2.1)

where ψ : R3 → C is the (stationary) wave function, and as in Chapter 1, ~ = h/2π is

the reduced Planck constant, m the electron mass (at rest), q the elementary charge, and

E the energy (or the eigenvalue corresponding to ψ). We illustrate this equation and its

solutions by two examples.
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~a1

~a2

Figure 2.1: Illustration of a two-dimensional lattice L.

0 x

Vj−1(x)

VL(x)

Vj+1(x)

xj−1 xj xj+1 xj+2

atom atomatomatom

Figure 2.2: Potentials Vj(x) of a single atom at x = xj and net potential VL(x) of a

one-dimensional crystal lattice.

Example 2.1 (Motion of a free electron)

Consider a free electron moving in a one-dimensional vacuum, i.e. VL(x) = 0 for all x ∈ R.

Then the eigenfunctions of

− ~2

2m
ψ′′ = Eψ in R (2.2)

are given by

ψk(x) = Aeik·x + Be−ik·x, x ∈ R,

where k2 = 2mE/~2, and the eigenvalues are

E = E(k) =
~2k2

2m
, k ∈ R.

To be precise, k is complex but the purely imaginary part iγ (γ ∈ R) leads to solutions

of the type exp(±ikx) = exp(∓γx) for x ∈ R. The integral
∫

R

|ψ(x)|2 dx
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is the particle mass (or particle number) and should be finite. However,

∫

R

|exp(∓γx)|2 dx

is never finite. Therefore, only k ∈ R gives physically reasonable solutions.

We have found that the eigenvalue problem (2.2) has infinitely many solutions parametrized

by k ∈ R and corresponding to different energies E(k). The functions exp(±ikx) are called

plane waves. Thus, the eigenstates of a free particle are plane waves. ¤

Example 2.2 (Infinite square-well potential)

The infinite square-well potential is a one-dimensional structure of length L with a van-

ishing potential inside the well and with an infinite potential at its boundaries. As the

potential is confining an electron to the inner region, we have to solve the Schrödinger

equation (2.1) in the interval (0, L) with boundary conditions

ψ(0) = ψ(L) = 0

and potential VL(x) = 0 for x ∈ (0, L) (see Figure 2.3). The eigenfunctions to (2.1) are as

in Example 2.1

ψ(x) = Aeik·x + Be−ik·x

with k2 = 2mE/~2 and k ∈ R. The constants A and B are determined by the boundary

conditions:

0 = ψ(0) = A + B, 0 = ψ(L) = AeikL + Be−ikL.

Inserting the first equation in the second one gives

0 = A(eikL − e−ikL) =
A

2i
sin kL.

Disregarding the trivial solution A = 0 (and hence ψ ≡ 0), the parameter k should be

such that sin kL = 0, i.e., kL is a multiple of π. Thus

k =
nπ

L
, n ∈ N0.

The eigenfunctions become

ψk(x) = Ã sin kx, x ∈ [0, L],

where Ã = A/2i, with eigenvalues

E(k) =
~2k2

2m
.
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Figure 2.3: Infinite square-well potential.

The integration constant Ã ∈ R can be determined by assuming that
∫ L

0

|ψk(x)|2 dx = 1

holds. A simple computation shows that Ã =
√

2L. The system only allows discrete energy

states. In particular, the parameter k can only take discrete values. ¤

Since the lattice potential VL is periodic, one might hope that the whole-space Schrö-

dinger problem (2.1) can be reduced to an eigenvalue problem on a cell of the lattice.

Bloch’s theorem states that this is indeed possible. Before we can formulare the result,

we need some definitions.

Definition 2.3 [49, p. 12f.]

(1) The reciprocal lattice (or dual lattice) L∗ of L is defined by

L∗ = {n1~a
∗
1 + n2~a

∗
2 + n3~a

∗
3 : n1, n2, n3 ∈ Z},

where the primitive vectors ~a∗
1,~a

∗
2,~a

∗
3 ∈ R3 are uniquely given by the relation

~am · ~a∗
n = 2πδmn, m, n = 1, 2, 3. (2.3)

(2) The connected set D ⊂ R3 is called primitive cell of L (or L∗) if the volume of D

equals the volume of the parallelepiped spanned by the basis vectors of L (or L∗),

vol D = ~a1 · (~a2 × ~a3) (or vol D = ~a∗
1 · (~a∗

2 × ~a∗
3)),

and if the whole space R3 is covered by the union of translates of D by the primitive

vectors (see Figure 2.4).

(3) The (first) Brillouin zone B ⊂ R3 is the primitive cell of the reciprocal lattice L∗

which consists of all points being closer to the origin than to any other point of L∗

(see Figure 2.4):

B = {k ∈ R
3 : |k| ≤ min

`
|k + `|, ` ∈ L∗, ` 6= 0}.
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2

B

q

6

Figure 2.4: The primitive vectors of a two-dimensional lattice L and its reciprocal lattice

L∗ and the Brillouin zone B.

We give some explanations of the above definition. What is the meaning of the reci-

procal lattice? The reciprocal lattice vectors and the direct lattice vectors can be seen as

conjugate variables, like time and frequency are conjugate variables in signal analysis. In

fact, let x ∈ L and k ∈ L∗ be given such that

x =
3∑

m=1

αm~am and k =
3∑

n=1

βn~a
∗
n,

where αm, βn ∈ Z. Then, by (2.3),

eik·x = exp

(
i

3∑

m,n=1

αmβn · 2πδmn

)
= exp

(
2πi

3∑

m=1

αmβn

)
= 1. (2.4)

As x has the dimension of length, k has the dimension of inverse length and therefore,

k is called a wave vector. (More precisely, k is called a pseudo-wave vector; see below).

Physically, the reciprocal lattice appears in X-ray diffraction experiments on crystals. It

can be shown that the peaks of intensity of the reflected X-ray are obtained when the

change in momentum 4k of the X-ray wave is an element of the reciprocal lattice [11, p.

404]. This allows to determine the structure of the crystal lattice.

How can the Brillouin zone of the reciprocal latice be constructed? Mathematically,

the primitive vectors ~a∗
n of the Brillouin zone are given as the inverse of the matrix

A whose columns are the vectors ~am. More precisely, let ~an = (a1n, a2n, a3n)>,~a∗
m =

(a∗
1m, a∗

2m, a∗
3m)> ∈ R3 and A∗ = (~a∗

1,~a
∗
2,~a

∗
3), A = (~a1,~a2,~a3) ∈ R3×3. Then (2.3) implies
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that

(A>A∗)mn =
3∑

j=1

ajma∗
jn = ~am · ~an = 2πδmn

and thus A>A∗ = 2πI, where I is the unit matrix of R3×3. Hence

A∗ = 2π(A>)−1 = 2π(A−1)>. (2.5)

Graphically, the Brillouin zone can be constructed as follows. Draw arrows from a lattice

point to its nearest neighbors and cut them in half. Then the planes through these mid

points are perpendicular to the arrows from the surface of the (bounded) Brillouin zone.

In two space dimensions, the Brillouin zone is a hexagon or a square (see Figure 2.4). In

three space dimensions, the zone is a polyhedron (a “capped” octahedron).

Lemma 2.4 The volumes of a primitive cell D and its Brillouin zone B are related to

vol B =
(2π)3

vol D
.

Proof: With the above notations,

vol D = ~a1 · (~a2 × ~a3) = det(~a1,~a2,~a3) = det A,

vol B = det(~a∗
1,~a

∗
2,~a

∗
3) = det A∗

and hence, by (2.5),

vol B = det[2π(A−1)>] = (2π)3 det(A−1) =
(2π)3

det A
=

(2π)3

vol D
. ¤

Now we can formulate the Bloch theorem.

Theorem 2.5 (Bloch)

Let VL be a periodic potential, i.e., VL(x + y) = VL(x) for all x ∈ R3 and y ∈ L (the

Bravais lattice). Then the eigenfunctions of

− ~2

2m
∆ψ − qVL(x)ψ = Eψ in R3 (2.6)

can be written as

ψ(x) = eik·xu(x) (2.7)

for some k ∈ B (the Brillouin zone) and some function u(x) satisfying u(x) = u(x + y)

for all x ∈ R3, y ∈ L.

This theorem asserts that any eigenfunction of the Schrödinger equation is the product

of a plane wave eik·x and a function having the periodicity of the lattice L. Before we

can give a formal proof of this result, we need some preparations. In the following we

do neither specify the underlying (Hilbert) space nor the domain of definition of the

considered operators in order to simplify the presentation.
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Definition 2.6 Let T be an operator, defined on some Hilbert space X with scalar product

(·, ·).

(1) The adjoint operator T ∗ is formally defined by

(Tx, y) = (x, T ∗y) for all x, y ∈ X.

(2) The operator T is called normal if T ∗T = TT ∗.

Example 2.7 (1) Define the translation operator Ta for some a ∈ R3 by

(Taψ)(x) = ψ(x + a), x ∈ R
3, (2.8)

for ψ ∈ L2(R3; C), where the scalar product is given by

(ψ, χ) =

∫

R3

ψ(x)χ(x) dx.

We claim that Ta is normal. From

(ψ, Taχ) =

∫

R3

ψ(x)χ(x + a) dx =

∫

R3

ψ(y − a)χ(y) dy = (T−aψ, χ)

follows that T ∗
a = T−a. Furthermore,

T−aTaψ = ψ = TaT−aψ,

and thus, (Ta)
−1 = T−a = T ∗

a . This implies that T ∗
a Ta = I = TaT

∗
a , where I is the

identity operator. Hence Ta is normal. (In fact, we have even shown that Ta is unitary,

i.e. T ∗
a = (Ta)

−1.)

Next we claim that the eigenvalues of Ta are given by λ = eiθ for θ ∈ R. To see this,

let Taψ = λψ and set ‖ψ‖2 = (ψ, ψ). Then

|λ|2 · ‖ψ‖2 = ‖λψ‖2 = ‖Taψ‖2 =

∫

R3

|ψ(x + a)|2 dx =

∫

R3

|ψ(x)|2 dx = ‖ψ‖2,

and thus, |λ| = 1 or λ = eiθ with θ ∈ R.

(2) We state without proof that the Hamilton operator H, defined by

Hψ = − ~2

2m
∆ψ − qVL(x)ψ (2.9)

for appropriate ψ, is also normal. (In fact, H is self-adjoint, i.e. H∗ = H.) ¤

Theorem 2.8 (Spectral theorem for normal operators)

Let T be a normal operator on the Hilbert space X. Then there exists a orthonormal basis

of eigenvectors of T .
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Theorem 2.9 Let S and T be two normal operators on the Hilbert space X such that

ST = TS. Then there exists an (orthonormal) basis of X whose elements are eigenvectors

for both S and T .

In Example 2.7 and Theorems 2.8 and 2.9 we have simplified the situation. To be

precise, the Hamilton operator is defined for all ψ in a dense subset of the underlying

Hilbert space and the operators in Theorems 2.8 and 2.9 have to be compact (i.e., if the

sequence (xn) is bounded then (Txn) and (Sxn) contain convergent subsequences).

We are now able to turn to the (formal) proof of Bloch’s theorem.

Proof of Theorem 2.5: By Example 2.7, the translation operator (2.8) and the Hamilton

operator (2.9) are normal. Moreover, since for all a ∈ L,

(TaHψ)(x) = Ta

(
− ~2

2m
∆ψ − qVLψ

)
(x) = − ~2

2m
∆ψ(x + a) − qVL(x + a)ψ(x + a)

= − ~2

2m
∆ψ(x + a) − qVL(x)ψ(x + a) = H(ψ(x + a))

= (HTaψ)(x),

by Theorem 2.9, there exists a basis of eigenfunctions for both Ta and H. By Exam-

ple 2.7 (1), for given primitive vector ~aj ∈ L, there exists θj ∈ R such that

T−~aj
ψ = eiθjψ, (2.10)

and ψ is also an eigenfunction of H. We set

k = − 1

2π

3∑

j=1

θj~a
∗
j ,

where ~a∗
j ∈ L∗. Then (2.4) implies that

k · ~aj = −θj. (2.11)

We define u(x) = e−ik·xψ(x), x ∈ R3. We have to show that u(x+y) = u(x) for all x ∈ R3

and y ∈ L. Since every y ∈ L is a linear combination of the ~aj, it is sufficient to prove the

periodicity for y = ~aj. We obtain, using (2.10) and (2.11),

u(x) = e−ik·xψ(x) = e−ik·x(T−~aj
ψ)(x + ~aj) = e−ik·xeiθjψ(x + ~aj)

= e−ik·xeiθjeik(x+~aj)u(x + ~aj) = ei(θj+k·~aj)u(x + ~aj) = u(x + ~aj).

It remains to show that k can be restricted to the Brillouin zone. Let k ∈ R3 and

decompose k = kB +`, where kB ∈ B and ` ∈ L∗ is a point in the reciprocal lattice closest

to k (see Figure 2.5). Then

ψ(x) = eik·xu(x) = eikB ·xφ(x), (2.12)
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where φ(x) = ei`·xu(x) satisfies, in view of (2.4),

φ(x + y) = ei`·x ei`·yu(x + y) = ei`·xu(x) = φ(x)

for all x ∈ R3 and y ∈ L. Now, the representation (2.12) is of the form as stated in the

theorem. ¤

k`

B

kB

~a∗
1

~a∗
2

Figure 2.5: Illustration of k = kB +` with kB ∈ B and ` ∈ L∗ for the proof of Theorem 2.5.

Inserting the decomposition (2.7) into the Schrödinger equation (2.6) shows that u(x)

satisfies the eigenvalue problem

− ~2

2m
(∆u + 2ik · ∇u) +

(
~2

2m
|k|2 − qVL(x)

)
u = Eu in D, (2.13)

with periodicity conditions

u(x + y) = u(x), x ∈ R
3, y ∈ L, (2.14)

since

Eu = e−ik·xEψ = e−ik·x

[
− ~2

2m
∆

(
eik·xu

)
− qVL(x)eik·xu

]

= − ~2

2m

(
∆u + 2ik · ∇u − |k|2u

)
− qVL(x)u.

For each k ∈ B, there exists a sequence of eigenfunctions u = un,k and eigenvalues

E = En(k) of (2.13)–(2.14). (This follows from the self-adjointness of the operator defined

by the left-hand side of (2.13); see [56] for details). In particular, the functions (un,k)n∈N

form an orthonormal basis of the underlying Hilbert space (see Theorem 2.8). Then we

can introduce the so-called Bloch functions

ψn,k(x) = eik·xun,k(x).
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They satisfy the Schrödinger equation in the primitive cell D of L,

− ~2

2m
∆ψn,k − qVL(x)ψn,k = En(k)ψn,k in D (2.15)

with pseudo-periodic boundary conditions

ψn,k(x + y) = eik·yψn,k(x), x, x + y ∈ ∂D. (2.16)

In some sense, the functions ψn,k are plane waves which are modulated by a periodic

function uk,n taking into account the influence of the atom lattice. This also explains why

k is termed pseudo-wave vector. In fact, k appears in distorted plane waves and is thus

not a real wave vector.

The function k 7→ En(k) is called dispersion relation or the n-th enery band. It shows

how the energy of the n-th band depends on the (pseudo-)wave vector k. The union of

ranges of En over n ∈ N is not necessarily the whole real line R, i.e., there may exist

energies E∗ for which there is no n ∈ N and no k ∈ B such that En(k) = E∗. The

connected components of the set of energies with this non-existence property are called

energy gaps. We illustrate this property by the following example.

Example 2.10 (Kronig-Penney model)

The Kronig-Penney model is a simple model representing a one-dimensional single-crystal

lattice (see also [50, Sec. 3.1.2] or [11, Sec. 8.2]). The potential of the lattice atoms is

modeled by the function

VL(x) =

{
−V0 if − b < x ≤ 0

0 if 0 < x ≤ a,

and VL is extended to R with period a + b:

VL(x) = VL(x + a + b) for x ∈ R,

where a, b > 0, V0 < 0 (see Figure 2.6). The lattice atoms are supposed to be at the

positions a/2 + n(a + b), n ∈ Z.

In order to solve the Schrödinger equation (2.6) we make the Bloch decomposition

ψ(x) = eikxu(x),

where u(x) is a (a + b)-periodic solution of (see (2.13))

−u′′ − 2iku′ + k2u =
2m

~2
(E + qVL)u in R. (2.17)

We proceed as in [50, Sec. 3.1.2]. First we solve (2.17) in the interval (0, a). Then VL(x) = 0,

x ∈ (0, a), and the ansatz u(x) = eiγx (x ∈ R) leads to

(γ2 + 2kγ + k2 − α2)eiγx = 0,
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−V0

a a + b 2a + b x

Figure 2.6: The periodic square-well potential VL(x) of the Kronig-Penney model.

where

α =

√
2mE

~2
.

The solutions of the above quadratic equation are given by γ1/2 = −k ± α and therefore,

u1(x) = Aei(α−k)x + Be−i(α+k)x, x ∈ (0, a).

In the interval (−b, 0) we make again the ansatz u(x) = eiγx yielding

(γ2 + 2kγ + k2 − β2)eiγx = 0,

where

β =

√
2m(E − qV0)

~2
.

The solutions are γ1/2 = −k ± β, and thus

u2(x) = Cei(β−k)x + De−i(β+k)x, x ∈ (−b, 0).

We notice that β is purely imaginary if E < qV0, i.e., the electrons are bound within the

crystal, and β is real if E > qV0.

The constants A,B,C,D are determined from the interface conditions. We assume

that u is continuously differentiable and periodic on R:

u1(0) = u2(0), u′
1(0) = u′

2(0),

u1(a) = u2(−b), u′
1(a) = u′

2(−b).

We obtain the following four equations:

A + B − C − D = 0,

(α − k)A − (α + k)B − (β − k)C + (β + k)D = 0,

Aei(α−k)a − Be−i(α+k)a − Ce−i(β−k)b − Dei(β+k)b = 0,

(α − k)Aei(α−k)a − (α + k)Be−i(α+k)a − (β − k)Ce−i(β−k)b + (β + k)Dei(β+k)b = 0
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for the unknowns A,B,C,D. This is a homogeneous linear system which has non-trivial

solutions only if the determinant of the coefficient matrix vanishes. A very lenghty calcu-

lation shows that this condition is equivalent to

−α2 + β2

2αβ
sin(αa) sin(βb) + cos(αa) cos(βb) = cos(k(a + b)). (2.18)

This equation relates the wave vector k to the energy E through the parameters α and β.

There are values of E for which there does not exist any k satisfying (2.18). In order

to see this we assume that E < qV0 such that β is purely imaginary and set β = iγ. Since

sin(ix) = i sinh(x) and cos(ix) = cosh(x), (2.18) becomes

γ2 − α2

2αγ
sin(αa) sinh(γb) + cos(αa) cosh(γb) = cos(k(a + b)). (2.19)

Using

lim
α→0

sin(αa)

α
= a,

we obtain for E = 0 (which implies α = 0):

γa

2
sinh(γb) + cosh(γb) = cos(k(a + b)).

Since sinh(γb) > 0 and cosh(γb) > 1, the left-hand side is strictly larger than one and thus,

this equation cannot have a solution. By continuity, there is no solution in a neighborhood

of E = 0.

We can compute the intervals for which no solution exists more easily by simplifying

(2.19). For this, we let the potential barrier width b → 0 and the barrier height V0 → ∞
such that the product bV0 → δ ∈ R. Then

γb =

√
2m(qV0 − E)b2

~2
→ 0, cosh(γb) → 1

and
(γ2 − α2)b

2α

sinh(γb)

γb
=

m(qV0 − 2E)b

~2

sinh(γb)

γb
→ mqδ

~2
.

Thus, (2.19) becomes in the limit

f(αa) := Q
sin(αa)

αa
+ cos(αa) = cos(ka), (2.20)

where Q = mqδa/~2. Figure 2.7 shows the function f(αa). In regions, where |f(αa)| ≤ 1,

there exist one or two solutions k of (2.20); in regions with |f(αa)| > 1, no solution k exists.

Every connected subset of [0,∞)\R(E), where R(E) = {E0 ≥ 0 : ∃ k ∈ R : E(k) = E0},
is an energy gap. ¤
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Figure 2.8: Schematic band structure with energy gap Eg.

The energy gap separates two energy bands. The nearest energy band below the energy

gap (if it is unique) is called valence band, the nearest energy band above the energy gap

is termed conduction band (see Figure 2.8).

Now we are able to state the definition of a semiconductor: it is solid with an energy

gap whose value is positive and smaller than about 4eV. In Table 2.1 the values of the

energy gaps for some commun semiconductor materials are collected.

Notice that the band structure of real crystals in three space dimensions is much

more complicated than the one-dimensional situation of the Kronig-Penny model. Indeed,

electrons traveling in different directions encounter different potential patterns, generated

by the lattice atoms, and therefore the E(k) diagram is strictly speaking a function of

the three-dimensional wave vector k. In physics textbooks, usually a projection of the full

E(k) diagram is shown. For instance, Figure 2.9 shows the band structures of silicon and

gallium arsenide. In place of the positive and negative k axes of the one-dimensional case,
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Material Symbol Energy gap in eV

Silicon Si 1.12

Germanium Ge 0.67

Gallium arsenide GaAl 1.42

Aluminium gallium arsenide Al0.3Ga0.7As 1.80

Gallium phosphide GaP 2.20

Table 2.1: Energy gaps of selected semiconductors (from [3, Table 28.1] and [45, Fig.

1.14]).

two different crystal directions are shown, namely the k = (0, 0, 1)> direction along the

+k axis (also called the ∆ line) and the k = (1, 1, 1)> direction along the −k axis (also

called the Λ line). The point k = (0, 0, 0) is termed Γ point. The points at the boundary

of the Brillouin zone in the Λ and ∆ directions are called L and X points, respectively

(see Figure 2.10).

Conduction

Valence

band

band

Eg
Eg

L LΛ ΛΓ Γ∆ ∆X X

E
n
er

gy

E
n
er

gy

Figure 2.9: Schematic band structure of silicon (left) and gallium arsenide (right) (see [50,

Fig. 3.23] or [65, Fig. 37 and 3.8]).

2.2 The semi-classical picture

The transport of electrons in semiconductors is based on the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∆ψ − q(V (x) + VL(x))ψ,
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Figure 2.10: Projection of a simplified Brillouin zone on the (k1, k3) plane and illustration

of the Γ, L, and X points and the ∆ and Λ directories.

where VL(x) is the (periodic) potential due to the atoms of the crystal lattice and V (x)

is a (non-periodc) potential that is built-in or applied to the semiconductor. The solution

of this equation is extremely difficult such that approximate models need to be used.

One possibility is the semi-classical treatment which describes the carrier dynamics in the

potential V (x) by Newton’s laws without explicitly treating the crystal potential VL(x).

The influcence of VL(x) is indirectly taken into account by the use of the energy band

structure in the description of the velocity and the mass of the carrier ensemble. Therefore,

we will first motivate two formulas for the mean electron velocity and the effective mass

as functions of the energy bands:

• The mean velocity (or group velocity of the wave packet) in the n-th band is given

by

vn(k) =
1

~
∇kEn(k). (2.21)

• The effective mass tensor m∗ is defined by

(m∗)−1 =
1

~

d2En

dk2
. (2.22)

First, we motivate (2.21) by following [11, Sec. 8.1]. We omit the index n in the

following and define the group velocity by

v(k) =

(∫

D

|ψk|2 dx

)−1 ∫

D

v̂k|ψk|2 dx, (2.23)
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where D is a primitive cell of the lattice and v̂k is the particle velocity,

v̂k = − Jk

qnk

=
~

m

Im (ψk∇ψk)

|ψk|2
. (2.24)

The first equality follows from (1.7) and the second one from (1.9). The wave functions

ψk(x) are solutions of (2.15),

− ~2

2m
∆ψk − qVL(x)ψk = E(k)ψk in D, (2.25)

and can be decomposed by the Bloch theorem (see (2.7)),

ψk(x) = eik·xuk(x). (2.26)

Differentiating (2.25) with respect to k and using (2.26) gives

(∇kE)ψk = − ~2

2m
∆x(∇kψ) − (qVL + E)∇kψk

= − ~2

2m
∆x

(
eik·x∇kuk + ixψk

)
− (qVL + E)

(
eik·x∇kuk + ixψk

)

= − ~2

2m

(
∆x(e

ik·x∇kuk) + 2i∇xψk + ix∆xψk

)
− (qVL + E)

(
eik·x∇kuk + ixψk

)

=

(
− ~2

2m
∆x − (qVL + E)

) (
eik·x∇kuk

)
− i~2

m
∇xψk

+ix

(
− ~2

2m
∆x − (qVL + E)

)
ψk.

Observing that the last term vanishes in view of (2.25), multiplication of the resulting

equation with ψk and integration over D yields

∇kE

∫

D

|ψk|2 dx +
i~2

m

∫

D

(∇xψk)ψk dx

=

∫

D

ψk

(
− ~2

2m
∆x − (qVL + E)

)(
eik·x∇kuk

)
dx

=

∫

D

eik·x∇kuk

(
− ~2

2m
∆x − (qVL + E)

)
ψk dx

= 0,

where we have used integration by parts and again (2.25). The boundary integral in the

integration-by-parts formula vanishes since uk is periodic on ∂D. Thus

∇kE = −i~2

m

∫
D

ψk∇xψk dx∫
D
|ψk|2 dx

.
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Taking the real part of both sides of this equation gives

∇kE =
~2

m

Im
∫

D
ψk∇xψk dx∫

D
|ψk|2 dx

= ~v(k),

employing (2.23) and (2.24). This shows (2.21).

The expression (2.21) has some consequences. The change of energy with respect to

time equals the product of a force F and the velocity vn:

∂tEn(k) = Fvn(k) = ~
−1F∇kEn(k).

Since, by the chain rule, ∂tEn(k) = ∇kEn(k)∂tk, we conclude that

F = ∂t(~k). (2.27)

Newton’s law states that the force equals the time derivative of the momentum p. This

motivates the definition of the crystal momentum

p = ~k. (2.28)

It should not be confused with the momentum operator pQ = −i~∇x of quantum me-

chanics.

Another consequence of (2.21) is formula (2.22). Indeed, differentiating (2.21) leads to

∂tvn =
1

~

d2En

dk2
∂tk =

1

~2

d2En

dk2
F,

using (2.27). The momentum p equals the product of velocity and (effective) mass, p =

m∗vn. Then, by Newton’s law F = ∂tp = m∗∂tvn, and we infer that

(m∗)−1 =
1

~2

d2En

dk2
.

This equation is considered as a definition of the effective mass m∗. The right-hand side

of this definition is the Hessian matrix, so the symbol (m∗)−1 is also a (3 × 3) matrix.

The effective mass has the advantage that under some conditions, the behavior of the

electrons in a crystal can be described as a free electron gas, for which E(k) = ~2|k|2/2m
holds (see Example 2.1). In order to see this, we evaluate the Hessian of En near a local

minimum (of the conduction band), i.e. ∇kEn(k0) = 0. Then d2En(k0)/dk2 is a symmetric,

positive matrix which can be diagonalized and the diagonal matrix has positive entries.

We assume that the coordinates are chosen such that d2En(k0)/dk2 is already diagonal,

1

~2

d2En

dk2
(k0) =




1/m∗
1 0 0

0 1/m∗
2 0

0 0 1/m∗
3


 .
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Assume that the energy values are shifted in such a way that En(k0) = 0. (This is possible

by fixing a reference point for the energy.) Let us assume that already En(0) = 0, otherwise

define Ẽn(k) = En(k + k0). If the function k 7→ En(k) is smooth, Taylor’s formula then

implies

En(k) = En(0) + ∇kEn(0) · k +
1

2
k>

(
d2En

dk2
(0)

)
k + O(|k|3)

=
~2

2

(
k2

1

m∗
1

+
k2

2

m∗
2

+
k2

3

m∗
3

)
+ O(|k|3),

where k = (k1, k2, k3)
>. If the effective masses are equal in all directions, i.e. m∗ = m∗

1 =

m∗
2 = m∗

3, we can write, neglecting higher-order terms

En(k) =
~2

2m∗
|k|2. (2.29)

This relation is valid for wave vectors k sufficiently close to a local band minimum (of the

conduction band). The scalar m∗ is called here the isotropic effective mass. Comparing

this expression with the dispersion relation of a free electron gas,

E(k) =
~2

2m
|k|2,

we infer that the energy of an electron near a band minimum equals the energy of a free

electron in a vacuum where the (rest) electron mass m is replaced by the effective mass

m∗.

The expression (2.29) is referred to as the parabolic band approximation and usually,

the range of wave vectors is extended to the whole space, k ∈ R3. This simple model

is appropriate for low applied fields for which the carriers are close to the conduction

band minimum. For high applied fields, however, the higher-order terms in the above

Taylor expansion cannot be ignored. In order to account for non-parabolic effects, often

the non-parabolic band approximation in the sense of Kane is used (see [61, Sec. 2.1] or

[50, (1.40)]):

En(1 + αEn) =
~2

2m∗
|k|2, (2.30)

where m∗ is determined from (2.22) at the conduction band minimum at k = 0,

α =
1

Eg

(
1 − m∗

m

)2

,

and Eg is the band gap. In Table 2.2 some values for α are shown. Formula (2.30) can be

obtained from approximate solutions to (2.13) derived by the so-called k · p theory (see

below).
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Material Si Ge GaAs

α in (eV)−1 0.5 0.65 0.64

Table 2.2: Values of the non-parabolicity parameter α for some semiconductors (from [45,

Table 1.1].

When we consider the effective mass definition (2.22) near a maximum (of the valence

band), we find that the Hessian of En is negative definite. This would lead to a negative

effective mass. However, in the derivation of the mean velocity and consequently of the

effective mass, we have used in (2.24) that the charge of the electron is negative. Employing

a positive charge leads again to a positive effective mass. The corresponding particles are

called holes (or defect electrons). Physically, a hole is a vacant orbital in an otherwise

filled valence band. Thus, the current flow in a semiconductor crystal comes from two

sources: the flow of electrons in the conduction band and the flow of holes in the valence

band. It is a convention to consider the motion of the valence band vacancies rather than

the electrons moving from one vacant orbital to the next (see Figure 2.11).

t = 0 :

crystal atom

±

electron

^
R

orbital

À

º

vacancy

t > 0 :
vacancy

^

º

electron

Figure 2.11: Motion of a valence band electron to a neighboring vacant orbital or, equiv-

alently, of a hole in the inverse direction.

Close to the bottom k = 0 of the conduction band in an isotropic semiconductor, we

obtain

En(k) = Ec +
~2

2m∗
e

|k|2, (2.31)

whereas near the top k = 0 of the valence band we have

En(k) = Ev −
~2

2m∗
h

|k|2, (2.32)

where Ec is the energy at the conduction band minimum, Ev the energy at the valence

band maximum, m∗
e the effective electron mass, and m∗

h the effective hole mass. Clearly,

the energy gap Eg is given by Eg = Ec−Ev (see Figure 2.12). Some values for the effective

masses of commun semiconductors can be found in Table 2.3.
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Figure 2.12: Schematic conduction and valence bands near the extrema at k = 0.

Material m∗
e/me m∗

h/mh

Si 0.98 0.16

Ge 1.64 0.04

GaAs 0.067 0.082

Table 2.3: Relative effective electron and hole masses for some semiconductor material

(from [32, Sec. 2.3.1]). The electron and hole masses at rest are denoted by me and mh,

respectively.

Now we come back to the semi-classical picture. In this picture, the motion of an

electron in the n-th band is approximately described by a point particle moving with

velocity vn(k). Denoting by (x(t), vn(k, t)) the trajectory of an electron in the position-

velocity phase space, we can write, by Newton’s law,

∂tx = vn =
1

~
∇kEn, ∂t(~k) = F,

where F represents a driving force, for instance, F = −q∇xVL. Notice that band transi-

tions are excluded since the band index n is fixed in the equations. In this picture, the

wave packet of an electron is treated as a particle. However, by Heisenberg’s uncertainty

principle, the position and the momentum cannot have both sharp values. It is assumed

that the uncertainty in the momentum is so small that the energy of the electron is sharply

defined and that the uncertainty of the position is small compared to the distance over

which the potential varies significantly.

27



If a non-periodic (external) potential is superimposed to the lattice potential VL, the

situation is much more complicated. Indeed, the Schrödinger equation (2.6) cannot be

decomposed into the decoupled Schrödinger equation (2.15) and the energy bands are

now coupled. However, it is usually assumed that the non-periodic potential is so weak

that the coupling of the bands can be neglected, and then the above analysis remains

approximately valid. In particular, we can use the semi-classical equations

∂tx = vn =
1

~
∇kEn, ∂t(~k) = −q∇xV (x, t). (2.33)

This semi-classical treatment will be used in the following chapters.

2.3 The k · p method

In the previous section we have seen that the mean velocity and the effective mass of the

electrons in a semiconductor can be computed in the semi-classical picture from the energy

band structure; see formulas (2.21) and (2.22). How can the band structure be computed?

In this section we describe the k ·p method which allows to derive an approximation of the

energy En(k) close to the bottom of the conduction band or close to the top of the valance

band. The main assumption of this method is that the energy at k = 0 is known. Then

En(k) close to the Γ-point k = 0 can be computed using time-independent perturbation

theory. We proceed in the following as in [11, Sec. 8.7] and [65, Sec. 4.1].

The starting point is the Schrödinger equation (2.13) for the functions un,k of the

Bloch function ψn,k = eik·xun,k (see Section 2.1), here written in the form

(H0 + εH1)un,k = En(k)un,k, (2.34)

where

H0 = − ~2

2m
∆ − qVL(x)

is the single-electron Hamiltonian and

εH1 = −i~2

m
k · ∇ +

~2

2m
|k|2

is considered to be a perturbation of H0. Defining the quantum momentum operator

pQ = −i~∇, we can formally write

εH1 =
~

m
k · pQ +

~2

2m
|k|2,

which explains the name of the k · p method.
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We assume that ε = |k| is small compared to one. Notice that for k = 0, the operator

H0 + εH1 reduces to the single-electron Hamiltonian. Furthermore, we suppose that the

solutions of the eigenvalue problem

H0u
(0)
n = E(0)

n u(0)
n in D, (2.35)

where D is the primitive cell, together with periodic boundary conditions are known. Since

the operator H0 is real, also the eigenfunctions u
(0)
n are real. We will show the following

result.

Theorem 2.11 Let the solutions (u
(0)
n ) to (2.35) form a non-degenerate orthonormal

basis of L2(D, C) (i.e., all eigenspaces are one-dimensional). Then, up to second order in

ε,

En(k) = E(0)
n +

~2

2
k>(m∗)−1k (k → 0), (2.36)

where the matrix (m∗)−1 consists of the elements 1/m∗
j` with

m

m∗
j`

= δj` −
2~2

m

∑

q 6=n

PqnjPnq`

E
(0)
q − E

(0)
n

(2.37)

and

Pqnj =

(
u(0)

q ,
∂u

(0)
n

∂xj

)
=

∫

D

u(0)
q

∂u
(0)
n

∂xj

dx.

Notice that the one-dimensionality of the eigenspaces implies that E
(0)
q 6= E

(0)
n for all

q 6= n and so, (2.37) is defined. The symbol (·, ·) denotes the scalar product on L2(D; C).

Proof: We apply a perturbation method to (2.34) (see [11, Sec. 4.1] or [65, app. C.1.1]).

For this, we develop

un,k = u(0)
n + εu(1)

n + ε2u(2)
n + · · · , En(k) = E(0)

n + εE(1)
n + ε2E(2)

n + · · · .

Inserting these expressions into (2.34) and equating terms with the same order of ε leads

to

ε0 : H0u
(0)
n = E(0)

n u(0)
n , (2.38)

ε1 : H0u
(1)
n + H1u

(0)
n = E(0)

n u(1)
n + E(1)

n u(0)
n , (2.39)

ε2 : H0u
(2)
n + H1u

(1)
n = E(0)

n u(2)
n + E(1)

n u(1)
n + E(2)

n u(0)
n . (2.40)

The zeroth-order equation (2.38) clearly is the same as (2.35). In order to derive the

first-order correction, we multiply (2.39) by u
(0)
q and integrate over D. Then, observing

that

(u(0)
q , u(0)

n ) = δqn,
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we obtain

(u(0)
q , H0u

(1)
n ) + (u(0)

q , H1u
(0)
n ) = E(0)

n (u(0)
q , u(1)

n ) + E(1)
n δqn.

Integrating by parts twice (or employing the self-adjointness of H0) it follows

(u(0)
q , H0u

(1)
n ) = (H0u

(0)
q , u(1)

n ) = E(0)
q (u(0)

q , u(1)
n ),

and therefore,

(E(0)
q − E(0)

n )(u(0)
q , u(1)

n ) + (u(0)
q , H1u

(0)
n ) = E(1)

n δqn.

For q = n this gives an expression for E
(1)
n only depending on (u

(0)
n )n:

E(1)
n = (u(0)

n , H1u
(0)
n ). (2.41)

For q 6= n we have

(u(0)
q , u(1)

n ) =
(u

(0)
q , H1u

(0)
n )

E
(0)
q − E

(0)
n

. (2.42)

This is possible since the non-degeneracy assumption implies E
(0)
q 6= E

(0)
n for all q 6= n.

The sequence (u
(0)
n ) is an orthonormal basis, so we can develop u

(1)
n in this basis:

u(1)
n =

∑

q

(u(0)
q , u(1)

n )u(0)
q . (2.43)

In this sum we need an expression for the term q = n, (u
(0)
n , u

(1)
n ). In fact, this term is not

determinable from the above calculation and can be chosen freely. We make the choice

(u
(0)
n , u

(1)
n ) = 0. In view of (2.42), (2.43) becomes

u(1)
n =

∑

q 6=n

(u
(0)
q , H1u

(0)
n )

E
(0)
q − E

(0)
n

u(0)
q .

Thus, up to first order, the eigenfunctions are given by

u(0)
n + εu(1)

n = u(0)
n +

∑

q 6=n

(u
(0)
q , εH1u

(0)
n )

E
(0)
q − E

(0)
n

u(0)
q

and the eigenvalues are

E(0)
n + εE(1)

n = E(0)
n + (u(0)

n , εH1u
(0)
n ).

Notice that these corrections only depend on the unperturbed eigenfunctions u
(0)
n which

are assumed to be known.

In order to derive the second-order correction, we multiply (2.40) by u
(0)
q and integrate

over D:

(u(0)
q , H0u

(2)
n ) + (u(0)

q , H1u
(1)
n ) = E(0)

n (u(0)
q , u(2)

n ) + E(1)
n (u(0)

q , u(1)
n ) + E(2)

n δqn.
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As above, the first term on the left-hand side equals

(u(0)
q , H0u

(2)
n ) = E(0)

q (u(0)
q , u(2)

n ),

such that

(E(0)
q − E(0)

n )(u(0)
q , u(2)

n ) + (u(0)
q , H1u

(1)
n ) = E(1)

n (u(0)
q , u(1)

n ) + E(2)
n δqn.

Using (2.41) and (2.43), the case q = n yields

E(2)
n = (u(0)

n , H1u
(1)
n ) − E(1)

n · (u(0)
n , u(1)

n )

=
∑

q

(u(0)
q , u(1)

n ) · (u(0)
n , H1u

(0)
q ) − (u(0)

n , H1u
(0)
n ) · (u(0)

n , u(1)
n )

=
∑

q 6=n

(u(0)
n , H1u

(0)
q ) · (u(0)

q , u(1)
n )

=
∑

q 6=n

(u(0)
n , H1u

(0)
q )

(u
(0)
q , H1u

(0)
n )

E
(0)
q − E

(0)
n

.

In the last equation we employed (2.42). Thus, the second-order correction to the eigen-

values is

E(0)
n + εE(1)

n + ε2E(2)
n = E(0)

n + (u(0)
n , εH1u

(0)
n ) +

∑

q 6=n

(u
(0)
n , εH1u

(0)
q )(u

(0)
q , εH1u

(0)
n )

E
(0)
q − E

(0)
n

.

It remains to compute the scalar products. We write

(u(0)
n , εH1u

(0)
q ) = −i~2

m
k · (u(0)

n ,∇u(0)
q ) +

~2

2m
|k|2(u(0)

n , u(0)
q )

= −i~2

m
k · Pnq +

~2

2m
|k|2δnq,

where

Pnq =

∫

D

u(0)
n ∇u(0)

q dx =

∫

D

u(0)
n ∇u(0)

q dx,

since u
(0)
n is real. The periodicity of u

(0)
n on D gives

Pnn =
1

2

∫

D

div[(u(0)
n )2] dx = 0,

and therefore,

(u(0)
n , εH1u

(0)
q ) =





~2

2m
|k|2 : n = q

−i~2

m
k · Pnq : n 6= q.
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This shows that En(k) is, up to second order in ε,

En(k) = E(0)
n + εE(1)

n + ε2E(2)
n

= E(0)
n +

~2

2m
|k|2 − ~4

m2

∑

q 6=n

(k · Pnq)(k · Pqn)

E
(0)
q − E

(0)
n

(2.44)

= E(0)
n +

~2

2m
|k|2 − ~4

m2

∑

q 6=n

∑

j,`

kjk`
PnqjPqn`

E
(0)
q − E

(0)
n

= E(0)
n +

~2

2

∑

j,`

kjk`

m∗
j`

which proves the theorem. ¤

Equation (2.44) shows that the first-order correction of the energy yields simply the

free-electron mass. The second-order correction is needed to obtain an effective mass

which is different from the free-electron mass. This is the reason why we computed the

corrections up to second-order.

Theorem 2.11 can be applied to the bottom of the conduction band of most semi-

conductors since the eigenstates are non-degenerate (the energy bands do not cross; see

Figure 2.9). However, the top of the valence band in all semiconductors is degenerate (the

valence bands cross; see Figure 2.9) and hence, the above result does not hold. Mathe-

matically, we have in such a situation several eigenfunctions with the same eigenvalue, for

instance for n 6= q,

H0u
(0)
n = E(0)

n u(0)
n , H0u

(0)
q = E(0)

q u(0)
q but E(0)

n = E(0)
q .

Then, the expression (2.37) is not defined. It is still possible to derive a formula similar

to (2.36) in the degenerate case by applying degenerate perturbation theory. The idea is

to find a linear combination

ũ(0)
n =

A∑

α=1

cαu(0)
n,α

of the eigenfunctions u
(0)
n,α with the same energy E

(0)
n such that the nominator in the

first-order correction

u(1)
n =

∑

q 6=n

(u
(0)
q , H1u

(0)
n )

E
(0)
q − E

(0)
n

u(0)
q

vanishes if E
(0)
q = E

(0)
n . The problem is to find coefficients cα such that (ũ

(0)
q , H1ũ

(0)
n ) = 0

[11, Sec. 4.2]. It can be shown that the energies En(k) are, up to second order, the

eigenvalues of the matrix Hnk ∈ RA×A with elements [65, Sec. 4.1.4]

(Hnk)µν = E(0)
n δµν −

i~2

m

∑

j

kP̃ µν
nnj +

~2

2

∑

j,`

kjk`

(m∗)µν
j`

,
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P̃ j`
nqµ is defined similarly as in Theorem 2.11 and

m

(m∗)µν
j`

= δj`δµν −
2~2

m

∑

q 6=n

A∑

α=1

P̃ µα
nqjP̃

αν
qn`

E
(0)
q − E

(0)
n

. (2.45)

As a final remark we notice that analogous results as above can be derived for holes

in the valence band. In this case, the energy En(k) can be approximately written as

En(k) = Ec
n(0) − ~2

2
k>(m∗

h)
−1k,

where Ec
n(0) is the top energy of the valence band and m∗

h is the effective mass tensor for

the holes, similarly defined as above. In this case, P̃ µν
nnj = 0 for all j, such that the linear

term in k in (2.45) vanishes.

2.4 Semiconductor statistics

In this section we will answer the question how many electrons and holes are in a semi-

conductor which is in thermal equilibrium (i.e. no current flow)? With the mean number

of electrons in a quantum state of energy E, f(E), the answer is

N = 2
∑

n

∑

k∈B

f(En(k)), (2.46)

where the factor 2 takes into account the two possible states of the spin of an electron

and B is the Brillouin zone. This leads to two questions:

• How can the sum over many k can be computed practically?

• How does the function f depend on the energy?

To answer the first question, we make the following observation. Consider a chain of

N +1 atoms with distance d. Then the length of the chain is L = Nd. The Bloch function

ψk(x) = eik·xuk(x) (see Section 2.1) satisfies at the chain boundaries

ψk(0) = ψk(L)

and uk(x) is periodic, in particular, uk(0) = uk(L). Then

uk(0) = ψk(0) = ψk(L) = eikLuk(L) = eikLuk(0)

which implies that

kL = 2πj, j = 0, . . . , N − 1.
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The index j runs from 0 to N − 1 since the one-dimensional Brillouin zone equals here

k ∈ B = [0, 2π/d) (see Lemma 2.4). Thus, the wave vector k can take one of the discrete

values

kj =
2πj

L
=

2πj

Nd
j = 0, . . . , N − 1.

Typically, L = 1µm = 10−6m and d = 10−10m, so N = 104. Therefore, one can consider

k to be continuous. The sum
N−1∑

j=0

g(kj)

for some function g then transforms to the integral

N−1∑

j=0

g(kj) =
N−1∑

j=0

g

(
2πj

Nd

)
≈

∫ N

0

g

(
2πj

Nd

)
dj =

L

2π

∫ 2π/d

0

g(k) dk.

In d space dimensions, the factor L/2π becomes (L/2π)d. In the continuum limit N → ∞
and d → 0 such that Nd is finite we can extend the integration to Rd and write

vol(Ω)

(2π)d

∫

Rd

g(k) dk instead of
∑

k∈B

g(k), (2.47)

where vol(Ω) is the volume of the semiconductor. The advantage of the integral formula-

tion is that integrals can be more easily computed than sums.

The answer to the second question is contained in the following lemma.

Lemma 2.12 The mean number of electrons in a quantum state of energy E is given by

the Fermi-Dirac distribution function

f(E) =
1

1 + e(E−qµ)/kBT
, (2.48)

where kB is the Boltzmann constant, T the (electron) temperature and µ the chemical

potential.

The two parameters T and µ can be considered here as given by the corresponding

quantum state. A deeper understanding is possible by means of thermodynamics, but

we refer to [11, Ch. 5] for details since the significance of T and µ will become more

transparent in subsequent chapters (see also Remark 2.13).

For the formal proof of Lemma 2.12 we notice that electrons are fermions, i.e. particles

with half-integral spin, satisfying the following properties:

• Electrons cannot be distinguised from each other.

• The Pauli exclusion principle holds, i.e., each quantum state can be occupied by not

more than two electrons with opposite spins.
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Proof of Lemma 2.12: We proceed as in [11, p. 293 ff.]. We arrange M electrons into N

bands each of which has gn quantum states, n = 1, . . . , N . Suppose that mn electrons

are occupying quantum states in the n-th band, where mn ≤ gn. Notice that, by the

Pauli exclusion principle, each electron is occupying exactly one quantum state. The

number of different arrangements in the n-th band Qn equals the number of all possible

configurations,

gn(gn − 1) · . . . · (gn − mn + 1),

divided by the number of all possible permutations of the mn electrons (since they are

indistinguishable),

mn!,

hence

Qn =
gn(gn − 1) · . . . · (gn − mn + 1)

mn!
=

gn!

(gn − mn)!mn!
.

The total number of configurations reads in the limit N → ∞

Q(m1,m2, . . .) =
∞∏

n=1

Qn =
∞∏

n=1

gn!

(gn − mn)!mn!
.

In order to manipulate this function, it is convenient to consider

ln Q(m1,m2, . . .) =
∞∑

n=1

[ln gn! − ln(gn − mn)! − ln mn!].

Using the Stirling formula

n! ∼ nn

en
or ln n! ∼ n ln n − n (n → ∞),

we obtain approximately

ln Q(m1,m2, . . .) =
∞∑

n=1

[ln gn! − (gn − mn) ln(gn − mn) − mn ln mn + gn].

This function is in some sense related to the thermodynamic entropy (see [11, p. 268]).

The most probable configuration of (m1,m2, . . .) is that one which maximizes ln Q, under

the constraints that the particle number and the energy are conserved:

max
mj

ln Q(m1,m2, . . .) such that
∞∑

n=1

mn = M,

∞∑

n=1

Enmn = E.

We solve this constrained extremal problem with Lagrange multipliers, i.e., we extremize

F (λ1, λ2; m1,m2, . . .) = ln Q + λ1

(
∞∑

n=1

mn − M

)
+ λ2

(
∞∑

n=1

Enmn − E

)
.
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A necessary condition is

0 =
∂F

∂mj

= ln(gj − mj) + 1 − (ln mj + 1) + λ1 + λ2Ej = ln

(
gj

mj

− 1

)
+ λ1 + λ2Ej.

Solving for mj/gj yields
mj

gj

=
1

1 + e−λ1−λ2Ej
.

Defining the temperature T and the chemical potential by

λ1 =
qµ

kBT
and λ2 = − 1

kBT
,

we obtain
mj

gj

=
1

1 + e(Ej−qµ)/kBT
= f(Ej).

Since the left-hand side is the mean number of electrons in a quantum state of energy Ej,

the lemma is shown. ¤

Remark 2.13 The properties of the Fermi-Dirac distribution can be understood as fol-

lows (see also [11, p. 298 f.]). At zero temperature, this function becomes

f(E) =

{
1 for E < qµ

0 for E > qµ
and f(qµ) =

1

2

(see Figure 2.13). This means that all states which have an energy smaller than the

chemical potential are occupied, and all states with an energy larger than qµ are empty.

Physically, this behavior comes from the Pauli principle according to which two electrons

do not occupy the same quantum state. Consequently, at zero temperature, the states

with lowest energy are filled first. The energy of the state filled by the last particle is

equal to the chemical potential. For non-zero temperature, there is a positive probability

that some energy states above qµ will be occupied, i.e., some particles jump to higher

energy levels due to thermal exertation.

We notice that the chemical potential qµ (more precisely, the product of elementary

charge and chemical potential) in semiconductors is referred to as the Fermi level or Fermi

potential and is usually denoted by EF .

For energies much larger than the Fermi energy EF = qµ in the sense of E−EF À kBT ,

we can approximate the Fermi-Dirac distribution by the Maxwell-Boltzmann distribution

F (E) = e−(E−EF )/kBT

since 1/(1+ex) ∼ e−x for x À 1 (Figure 2.13). Semiconductors whose electron distribution

can be described by this distribution are called non-degenerate. Materials in which the

Fermi-Dirac distribution has to be used are termed degenerate. ¤
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1

1
2

0

T > 0

T = 0

EF = qµ E

Maxwell-
Boltzmann
approximation

Fermi-Dirac
distribution

Figure 2.13: The Fermi-Dirac distribution at zero and non-zero temperature and the

Maxwell-Boltzmann approximation.

Now we wish to determine the density of states, i.e. the number of quantum states

(n, k) with energy E in the semiconductor Ω:

g(E) =
2

vol(Ω)

∑

n

∑

k∈B

δ(E − En(k)), (2.49)

where again the factor 2 comes from the two spin states of an electron and δ(z) = 1 if

z = 0 and δ(z) = 0 if z 6= 0. We show:

Lemma 2.14 The density of states in the continuum limit in Rd (d ≥ 1) reads as

g(E) =
2

(2π)d

∑

n

∫

Rd

δ(E − En(k)) dk, (2.50)

where δ is the delta distribution (see below). In the case d > 1 we can also write

g(E) =
2

(2π)d

∑

n

∫

E−1
n (E)

dFd−1

|∇kEn(k)| ,

where dFd−1 is the element of the surface E−1
n (E).

Before we can give a heuristic proof of this lemma, we need some preparations. First,

we explain the delta distribution. Heuristically, δ is defined by

δ(z) :=

{
∞ : z = 0

0 : z 6= 0
and

∫

R

δ(z) dz = 1. (2.51)

Clearly, there is no function satisfying these conditions. However, in the theory of distri-

butions it is possible to give a sense to (2.51). More precisely, δ is defined as a functional,

〈δ, φ〉 = φ(0) for appropriate φ : R → R.
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Usually, the bracket is written as
∫

R

δ(z)φ(z) dz = φ(0), (2.52)

which is motivated by (2.51). We refer to [22] for details about distributions.

The second tool needed for the proof of Lemma 2.14 is the coarea formula (see, e.g., [30,

46]).

Theorem 2.15 (Coarea formula)

Let f : B ⊂ Rd → R (d > 1) be continuous and E : B → R be continuously differentiable

with ∇kE(k) 6= 0 for all k ∈ B. Then
∫

B

f(k) dk =

∫

R

∫

E−1(ε)

f(k)
dFd−1(k)

|∇kE(k)| dε,

where dFd−1(k) is the (d − 1)-dimensional hypersurface element.

Proof: In the following we motivate the coarea formula for the case d = 3. The idea

of the proof is to make a transformation of the k- to the ε-variable. Let (u, v) be a

parametrization of the surface E−1(ε) = {k : E(k) = ε} ⊂ R3 (see Figure 2.14). Then

k = k(u, v, E) and ε = E(k(u, v, ε)). Taking partial derivatives gives

0 =
∂ε

∂u
= ∇kE(k) · ∂k

∂u
,

0 =
∂ε

∂v
= ∇kE(k) · ∂k

∂v
,

1 =
∂ε

∂ε
= ∇kE(k) · ∂k

∂ε
.

The first two equations imply that ∇kE ⊥ ∂k/∂u and ∇kE ⊥ ∂k/∂v and

∇kE(k) ‖
(

∂k

∂u
× ∂k

∂v

)
. (2.53)

The third equation shows that |∂k/∂ε| = 1/|∇kE| and ∇kE ‖ ∂k/∂ε. Then we infer from

(2.53)
∂k

∂ε
‖

(
∂k

∂u
× ∂k

∂v

)
. (2.54)

We conclude from the transformation theorem and (2.54) that

dk =

∣∣∣∣det
dk

d(u, v, ε)

∣∣∣∣ d(u, v) dε =

∣∣∣∣det

(
∂k

∂u
,
∂k

∂v
,
∂k

∂ε

)∣∣∣∣ d(u, v)dε

=

∣∣∣∣
∂k

∂ε
·
(

∂k

∂u
× ∂k

∂v

)∣∣∣∣ d(u, v)dε =

∣∣∣∣
∂k

∂ε

∣∣∣∣ ·
∣∣∣∣
∂k

∂u
× ∂k

∂v

∣∣∣∣ d(u, v)dε

=
1

|∇kE|dFdε
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and hence, ∫

B

f(k) dk =

∫

R

∫

{E(k)=ε}

f(k)

|∇kE|dFd−1dε,

which motivates the theorem. ¤

{E(k) = ε}

∂k

∂ε
∂k

∂u

∂k

∂v

Figure 2.14: Illustration for the motivation of Theorem 2.15.

Proof of Lemma 2.14: In the continuum limit, the substitution (2.47) in the definition

(2.49) of g(E) immediately gives the first equality in (2.50). The second one follows from

the definition (2.52) of the δ distribution and the coarea formula since for E > 0,
∫

Rd

δ(E − En(k)) dk =

∫

R

(∫

{En(k)=ε}

dFd−1

|∇kEn|

)
δ(E − En(k)) dε

=

∫

R

∫

{En(k)=ε}

dFd−1

|∇kEn|
δ(E − ε) dε

=

∫

{En(k)=E}

dFd−1

|∇kEn|
. ¤

The above lemmas allow us to determine the particle densities.

Lemma 2.16 The electron and hole densities are given by

n =

∫

R

gc(E)f(E) dE, p =

∫

R

gv(E)(1 − f(E)) dE

where gc(E), gv(E) are the densities of states of the conduction or valence band, respec-

tively,

gc(E) =
2

(2π)d

∫

Rd

δ(E − Ec(k)) dk, gv(E) =
2

(2π)d

∫

Rd

δ(E − Ev(k)) dk,

and f(E) is the Fermi-Dirac distribution function (2.48).
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Proof: The electron density is defined as the number of electrons N per volume vol(Ω).

Thus, by (2.46), (2.47) and (2.52), for a special band Ec(k) and B = Rd,

n =
N

vol(Ω)
=

2

vol(Ω)

∑

k∈B

f(Ec(k)) =
2

(2π)d

∫

Rd

f(Ec(k)) dk

=
2

(2π)d

∫

Rd

∫

R

δ(E − Ec(k))f(E) dE dk =

∫

R

gc(E)f(E)dE.

In the last step we have used (2.50). The formula for p follows similarly, taking into

account that the mean number of holes in a quantum state of energy E equals the mean

number of empty states of energy E, 1 − f(E). ¤

In the parabolic band approximation, (2.31) and (2.32), the particle densities can be

computed more explicitely. For this, we first compute the density of states.

Lemma 2.17 In the parabolic band approximation En(k) = E0 + (~2/2m∗)|k|2 we obtain

for E ≥ E0:

g(E) =
m∗

π~2

√
2m∗(E − E0)

π~
for three-dimensional carriers,

g(E) =
m∗

π~2
for two-dimensional carriers,

g(E) =
m∗

π~2

~√
2m∗(E − E0)

for one-dimensional carriers.

For E < E0, we have g(E) = 0 in all three cases.

It is possible in modern quantum devices to confine carriers in one (or two) dimensions,

i.e., the carriers are confined in the x-y-plane (or in the x-direction) and are free to move

in the z-direction (or in the y-z-plane). Such structures can be constructed with so-

called semiconductor heterostructures and are called quantum wires or quantum wells,

respectively (see [45, Sec. 1.5.2]).

Proof: We start from the first equality in (2.50), use spherical coordinates (%, θ, φ) in the

three-dimensional case and substitute z = ~2%2/2m∗:

g(E) =
2

(2π)3

∫

R3

δ

(
E − E0 −

~2

2m∗
|k|2

)
dk

=
1

4π3

∫ 2π

0

∫ π

0

∫ ∞

0

δ

(
E − E0 −

~2

2m∗
%2

)
%2 sin θ d% dθ dφ

=
4π

4π3

m∗

~2

√
2m∗

~

∫ ∞

0

δ(E − E0 − z)
√

z dz.
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Introducing the Heaviside function H by H(x) = 0 for x < 0 and H(x) = 1 for x > 0 we

obtain from (2.52):

g(E) =
m∗

π~2

√
2m∗

π~

∫

R

δ(E − E0 − z)
√

zH(z) dz =
m∗

π~2

√
2m∗

π~

√
E − E0 H(E − E0).

For the two-dimensional case, we start again from (2.50) and use polar coordinates

(%, φ) and the substitution z = ~2%2/2m∗,

g(E) =
2

(2π)2

∫ 2π

0

∫ ∞

0

δ

(
E − E0 −

~2

2m∗
%2

)
% d% dφ

=
2π

2π2

m∗

~2

∫ ∞

0

δ(E − E0 − z) · 1 dz =
m∗

π~2
.

Finally, for the one-dimensional case,

g(E) =
2

(2π)

∫

R

δ

(
E − E0 −

~2

2m∗
k2

)
dk =

1

π

√
2m∗

2~

∫ ∞

0

δ(E − E0 − z)
dz√

z

=
m∗

π~2

~√
2m∗(E − E0)

. ¤

Remark 2.18 In the non-parabolic band approximation

En(1 + αEn) =
~2

2m∗
|k|2, α > 0

(see (2.30)), the densities of states become in the three-dimensional case

g(E) =
m∗

π~2

√
2m∗E

π~

√
1 + αE (1 + 2αE)

and in the two-dimensional case

g(E) =
m∗

π~2
(1 + 2αE)

(see [45, Problem 1.4]). ¤

Lemma 2.19 Let the conduction and valence bands be given by the parabolic band ap-

proximations (2.31) and (2.32). Then, for three-dimensional particles,

n = NcF1/2

(
qµ − Ec

kBT

)
, p = NvF1/2

(
Ev − qµ

kBT

)
,

where

Nc = 2

(
m∗

ekBT

2π~2

)3/2

, Nv = 2

(
m∗

hkBT

2π~2

)3/2

(2.55)

are the effective densities of states and

F1/2(z) =
2√
π

∫ ∞

0

√
x dx

1 + ex−z
, z ∈ R,

is the Fermi integral (of index 1/2). Furthermore, m∗
e and m∗

h denote the (isotropic)

effective mass of the electrons and holes, respectively.
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Proof: From Lemmas 2.16 and 2.17 and the substitution x = (E − Ec)/kBT we obtain

n =
m∗

e

π~2

√
2m∗

e

π~

∫ ∞

Ec

√
E − Ec

1 + e(E−qµ)/kBT
dE =

4√
π

(
m∗

ekBT

2π~2

)3/2 ∫ ∞

0

√
x dx

1 + ex−(qµ−Ec)/kBT

= NcF1/2

(
qµ − Ec

kBT

)
.

In a similar way,

p =
m∗

h

π~2

√
2m∗

h

π~

∫ Ev

−∞

√
Ev − E

e(E−qµ)/kBT

1 + e(E−qµ)/kBT
dE

=
4√
π

(
m∗

h

2π~2

)3/2 ∫ Ev

−∞

√
Ev − E dE

1 + e−(E−qµ)/kBT

=
4√
π

(
m∗

hkBT

2π~2

)3/2 ∫ 0

−∞

√
x dx

1 + ex−(Ev−qµ)/kBT

= NvF1/2

(
Ev − qµ

kBT

)
.

¤

We compute the carrier densities in some special situations.

Lemma 2.20 The electron density in a quantum well equals

n =
m∗

ekBT

π~2
ln

(
1 + e(qµ−Ec)/kBT

)
.

Proof: In a quantum well, electrons are confined in one direction. Therefore, using the

density of states function for two-dimensional carriers (see Lemma 2.17),

n =
m∗

e

π~2

∫ ∞

Ec

dE

1 + e(E−qµ)/kBT
=

m∗
ekBT

π~2

[
− ln(1 + e−(E−qµ)/kBT )

]∞
Ec

=
m∗

ekBT

π~2
ln(1 + e−(E−qµ)/kBT ).

¤

Lemma 2.21 The electron and hole densities in the three-dimensional parabolic band and

Maxwell-Boltzmann approximation are

n = Ncexp

(
qµ − Ec

kBT

)
, p = Nvexp

(
Ev − qµ

kBT

)
,

where Nc and Nv are the effective densities of states defined in (2.55).
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Proof: For z → −∞ we can approximate

F1/2(z) = ez 2√
π

∫ ∞

0

√
x dx

ez + ex
∼ ez 2√

π

∫ ∞

0

√
x dx

ex
= ez 2√

π
Γ

(
3

2

)
= ez,

where Γ(p) is the Γ function,

Γ(p) =

∫ ∞

0

xp−1e−x dx,

with the properties Γ(1
2
) =

√
π and Γ(p+1) = pΓ(p), p > 0. Thus, the result follows from

Lemma 2.19. ¤

Finally, we discuss two notions needed in the subsequent chapters, the intrinsic density

and the doping of semiconductors.

A pure semiconductor with no impurities is called an intrinsic semiconductor. In this

case, electrons in the conduction band can only come from valence band levels leaving

a vacancy behind them. Vacancies in the valence band are called holes (Figure 2.11).

Therefore, the number of electrons in the conduction band is equal to the number of holes

in the valence band,

n = p = ni.

The quantity ni is called intrinsic density. It can be computed in the non-degenerate

parabolic band case from Lemma 2.21:

ni =
√

np =
√

NcNv exp

(
Ev − Ec

2kBT

)
=

√
NcNv exp

(
− Eg

2kBT

)
(2.56)

since the energy gap is Eg = Ec−Ev. This allows to determine the Fermi energy EF = qµ

of an intrinsic semiconductor [3, (28.22)]:

EF = Ec + kBT ln
n

Nc

= Ec + kBT ln
ni

Nc

= Ec −
Eg

2
+

kBT

2
ln

Nv

Nc

=
1

2
(Ec + Ev) +

3

4
kBT ln

m∗
h

m∗
e

.

This asserts that at zero temperature, the Fermi energy lies precisely in the middle of

the energy gap. Furthermore, since ln(m∗
h/m

∗
e) is of order one, the correction is only of

order kBT for non-zero temperature. In most semiconductors at room temperature, the

energy gap is much larger than kBT ≈ 0.0259 eV (T = 300K). This shows that the

non-degeneracy assumptions

E − EF ≥ Ec − EF =
Eg

2
+

3

4
kBT ln

m∗
h

m∗
e

À kBT,

EF − E ≥ EF − Ev =
Eg

2
+

3

4
kBT ln

m∗
h

m∗
e

À kBT
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Ec

Ev

Eg À kBT

E

Ev + Eg
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EF

k

Figure 2.15: Illustration of the energy gap Eg in relation to the energies Ec, Ev, and EF

(see [3, Fig. 28.10]).

are satisfied and that the result is consistent with our assumptions (see Figure 2.15).

The intrinsic density is too small to result in a significant conductivity for non-zero

temperature. For instance, in silicon we have ni ≈ 6.93 · 109 cm−3 compared to Nc, Nv ∼
1019 cm−3. Replacing some atoms in the semiconductor crystal by atoms which provide free

electrons in the conduction band or free holes in the valence band allows to increase the

conductivity. Such a process is called doping. Impurities are called donors if they supply

additional electrons to the conduction band, and acceptors if they supply additional holes

to (i.e. capture electrons from) the valence band. A semiconductor which is doped with

donors is termed n-type semiconductor, and a semiconductor doped with acceptors is called

p-type semiconductor. For instance, when we dope a germanicum crystal, whose atoms

have each 4 valence electrons, with arsenic, which has 5 valence electrons per atom, each

arsenic atom provides one additional electron (see Figure 2.16). These additional electrons

are only weakly bound to the arsenic atom. Indeed, the binding energy is about 0.013 eV

(see [3, Table 28.2]) which is much smaller than the thermal energy kBT ≈ 0.026 eV at

room temperature. More generally, denoting by Ed and Ea the energies of a donor electron

and an acceptor hole, respectively, then Ec −Ed and Ea −Ev are small compared to kBT

(see Figure 2.17). This means that the additional carriers contribute at room temperature

to the electron and hole density and increase the conductivity of the semiconductor.

Let ND(x), NA(x) denote the densities of the donor and acceptor impurities, respec-

tively. Then the doping profile or doping concentration is C(x) = NA(x)−ND(x) and the

total space charge (see Chapter 1) is given by

% = −qn + qp + qNA(x) − qND(x) = −q(n − p − C(x)).
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Ge Ge Ge

Ge GeAs

Figure 2.16: Germanium crystal with an arsenic impurity. The bullets • represent electrons

bound to the atoms. The arsenic atom provides an additional electron which is not bound.

-

6
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E

Ea

Ed
6

?

Eg

Figure 2.17: Illustration of the donor and acceptor energy levels Ed and Ea.
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3 Classical Kinetic Models

3.1 The Liouville equation

We first analyze the motion of M particles with mass m in a vacuum under the action

of a force. The particles are described as classical particles, i.e., we associate the position

vector xi ∈ Rd and the velocity vector vi ∈ Rd with the i-th particle of the ensemble.

The trajectories (xi(t), vi(t)) of the particles satisfy Newton’s equations in the (2d · M)-

dimensional ensemble position-velocity space

ẋ = v, v̇ =
1

m
F (t), t > 0, (3.1)

with initial conditions

x(0) = x0, v(0) = v0. (3.2)

Here, x = (x1, . . . , xM), v = (v1, . . . , vM), F = (F1, . . . , FM) is a force and the dot means

differentiation with respect to t. For instance, the forces can be given by the electric field

acting on the electron ensemble:

Fi = −qE(x, t), i = 1, . . . ,M,

where q > 0 is the elementary charge. In this case the forces are independent of the ve-

locity. In semiconductors, M is a very large number (typically, M ∼ 104) and therefore,

the numerical solution of (3.1)–(3.2) is very expensive. It seems reasonable to use a sta-

tistical description. Instead of the precise initial conditions x(0) and v(0) we are given

the probability density fI(x, v) of the initial position and velocity of the particles. The

integral ∫

A

fI(x, v) dx dv

is the probability to find the particle ensemble at time t = 0 in the subset A of the

(v, x)-phase space.

Let f(x, v, t) be the probability density of the ensemble at time t. We wish to derive a

differential equation for f . In Chapter 1 we have already argued that under the assumption

that f is constant along the trajectories (x(t), v(t)), i.e.

f(x(t), v(t), t) = fI(x0, v0), (3.3)

differentiation with respect to t leads to the differential equation

0 =
d

dt
f(x(t), v(t), t) = ∂tf + ẋ · ∇xf + v̇ · ∇vf

= ∂tf + v · ∇xf +
1

m
F · ∇vf. (3.4)
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This equation is referred to as the (classical) Liouville equation. It has to be solved in

R2dM × R and is supplemented by the initial condition

f(x, v, 0) = fI(x, v), (x, v) ∈ R
2dM .

In the following we show under which conditions (3.3) is satisfied.

Theorem 3.1 (Liouville)

Assume that
M∑

j=1

(
∂ẋi

∂xi

+
∂v̇i

∂vi

)
= 0 for all t > 0. (3.5)

Then (3.3) holds.

Notice that (3.5) is trivially satisfied if Newton’s laws (3.1) are assumed. However,

in the semiconductor case, (3.1) has to be replaced by the semi-classical picture (2.33)

for which (3.5) will be verified later. For details about the Liouville equation for gases,

see [19].

t = 0

dv0

dx0

dv

dx

t > 0

(x(t), v(t))

v

x

Figure 3.1: Infinitesimal volume elements dx0dv0 at time t = 0 and dxdv at time t > 0 in

the phase space.

Proof: We will examine how the infinitesimal phase-space element dx0dv0 will change

during time. In particular, we show that [23, Sec. 1.2]

dxdv(t) = dx0dv0. (3.6)

This implies the assertion (3.3). Indeed, the number of particles at time t in the volume

dxdv(t) is given by

f(x(t), v(t), t)dxdv(t).
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The conservation of particles implies that

f(x(t), v(t), t)dxdv(t) = f(x0, v0, 0)dx0dv0

and therefore, (3.6) gives (3.3).

In the following we show (3.6). Assuming sufficient regularity of the functions, the

mapping (x0, v0) 7→ (x(t), v(t)) is continuously differentiable and invertible with continu-

ously differentiable inverse. Then

dxdv(t) = J(t)dx0dv0, (3.7)

where

J(t) =

∣∣∣∣det
∂(x(t), v(t))

∂(x0, v0)

∣∣∣∣ =

∣∣∣∣∣∣
det




∂x(t)
∂x0

∂x(t)
∂v0

∂v(t)
∂x0

∂v(t)
∂v0




∣∣∣∣∣∣
.

We claim that (3.5) implies ∂tJ(t) = 0. In order to see this, we use the Taylor expansion

x(t + ε) = x(t) + εẋ(t) + O(ε2), v(t + ε) = v(t) + εv̇(t) + O(ε2).

This gives

∂x(t + ε)

∂x(t)
= I + ε

∂ẋ(t)

∂x(t)
+ O(ε2),

∂v(t + ε)

∂v(t)
= I + ε

∂v̇(t)

∂v(t)
+ O(ε2),

where I denotes the unit matrix in (dM) × (dM). Since x(t) and v(t) are independent

variables, we have
∂x(t)

∂v(t)
= 0,

∂v(t)

∂x(t)
= 0

and therefore,

∂x(t + ε)

∂v(t)
= ε

∂ẋ(t)

∂v(t)
+ O(ε2),

∂v(t + ε)

∂x(t)
= ε

∂v̇(t)

∂x(t)
+ O(ε2).

Thus we can compute

det
∂(x, v)(t + ε)

∂(x, v)(t)
= det




∂x(t + ε)

∂x(t)

∂x(t + ε)

∂v(t)
∂v(t + ε)

∂x(t)

∂v(t + ε)

∂v(t)




= det




I + ε
∂ẋ(t)

∂x(t)
ε
∂ẋ(t)

∂v(t)

ε
∂v̇(t)

∂x(t)
I + ε

∂v̇(t)

∂v(t)


 + O(ε2)

= 1 + ε
∑

i

(
∂ẋi(t)

∂xi(t)
+

∂v̇i(t)

∂vi(t)

)
+ O(ε2)

= 1 + O(ε2),
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by using assumption (3.5). Hence, by the chain rule,

J(t + ε) =

∣∣∣∣det

(
∂(x, v)(t + ε)

∂(v, x)(t)

∂(v, x)(t)

∂(x0, v0)

)∣∣∣∣ =

∣∣∣∣det
∂(x, v)(t + ε)

∂(v, x)(t)
det

∂(v, x)(t)

∂(x0, v0)

∣∣∣∣

=

∣∣∣∣det
∂(v, x)(t)

∂(x0, v0)

∣∣∣∣ + O(ε2) = J(t) + O(ε2),

and we obtain finally

∂tJ(t) = lim
ε→0

1

ε
(J(t + ε) − J(t)) − lim

ε→0
O(ε) = 0.

The mapping (x0, v0) 7→ (x(t), v(t)) is the identity for t = 0 such that J(0) = 1. This

implies that J(t) = 1 for all t ≥ 0 and hence, (3.7) reduces to (3.6). The theorem is

proved. ¤

The Liouville equation (3.4) is valid for an ensemble of particles moving in a vacuum

according to the laws of classical mechanics. An ensemble of M electrons moving in a

semiconductor crystal can be described semi-classically by the equations

ẋj = vn(k) =
1

~
∇kj

En(k), k̇j = − q

~
∇xj

V (x, t), j = 1, . . . ,M (3.8)

(see (2.33)), where En(kj) is the energy of the n-th band depending on the (pseudo-) wave

vector k and V (x, t) is the electrostatic potential. We denote as above x = (x1, . . . , xM)

and k = (k1, . . . , kM) ∈ RdM . We assume that the ensemble stays in the same energy band

so that we can drop the index n in the equations (3.8).

We claim that Liouville’s Theorem 3.1 can be applied to the semi-classical picture.

Since the classical momentum p = mv translates into the crystal momentum p = ~k, we

have to verify
∑

j

(
∂ẋi

∂xi

+
∂k̇i

∂ki

)
= 0.

Actually, ẋ depends on k but not on x, and k̇ depends on x but not on k (see (3.8)) such

that this condition is satisfied. Therefore, (3.3) holds and the Liouville equation (3.4) is

valid here. Observing that Newton’s law (3.1) can be written as

ṗ = F,

and that (3.8) can be reformulated as

ṗ = −q∇xV,

the Liouville equation (3.4) becomes

∂tf +
1

~
∇kE(k) · ∇xf − q

~
∇xV · ∇kf = 0. (3.9)
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Here, we have used that the classical term ∇p = 1
m
∇v translates into the semi-classical

expression ∇p = 1
~
∇k. Equation (3.9) is referred to as the semi-classical Liouville equation.

More precisely, the scalar products are defined as

∇kE(k) · ∇xf =
M∑

j=1

∇kj
E(kj) · ∇xj

f, ∇xV · ∇kf =
M∑

j=1

∇xj
V (x) · ∇kj

f.

Equation (3.9) has to be solved for x ∈ RdM , k ∈ BM , t > 0, where B is the Brillouin zone

(see Section 2.1). As the Brillouin zone is a bounded subset, we have to impose boundary

conditions. Often, periodic boundary conditions

f(x, k1, . . . , kj, . . . , kM , t) = f(x, k1, . . . ,−kj, . . . , kM , t), kj ∈ ∂B,

for all j = 1, . . . ,M are chosen [49, (1.2.47)]. This formulation makes sense since B is

point symmetric to the origin, i.e., k ∈ B if and only if −k ∈ B. We also impose the

initial conditions

f(x, k, 0) = fI(x, k), x ∈ R
dM , k ∈ BM .

Before we show some properties of the solutions to (3.9), we introduce the electron-

ensemble particle density and the electron-ensemble current density:

n(x, t) =

∫

BM

f(x, k, t) dk, (3.10)

J(x, t) = −q

∫

BM

f(x, k, t)v(k) dk,

where v(k) = (v(k1), . . . , v(kM)).

Remark 3.2 Definition (3.10) of the number density is slightly inexact. Indeed, similar

to Lemma 2.16 and arguing as in [23, Sec. 1.2.2], the total number of electrons at time t

in the volume dx dk of the (conduction band) phase space is given by

dN(x, k) = f(x, k, t)g(x, k) dx dk,

where g(x, k) is the momentum density of states (in the conduction band) and f(x, k, t)

can be interpreted as an occupation distribution, i.e, the ratio of the number of occupied

states in the phase-space volume dx dk and the total number of quantum states in this

volume (in the conduction band). The volume in phase space occupied by a single quantum

state is of the order of (2π)d. Thus, we have dx dk/(2π)d quantum states in the volume

dx dk. To be precise, we have to take into account the spin of the electrons. Each quantum

state can be occupied by two electrons with opposite spin. Therefore, the number of
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quantum states is twice such that g(x, k) = 2/(2π)d. The correct definition of the electron

density becomes

n(x, t) =

∫

BM

f(x, k, t)g(x, k) dk =

∫

BM

f(x, k, t)
2

(2π)d
dk

(see [23] for details). In the following we ignore the factor 2/(2π)d which can be achieved,

for instance, by scaling. ¤

Lemma 3.3 The solution of the semi-classical Liouville equation (3.9) satisfies formally

the following properties:

(1) If fI(x, k) ≥ 0 for all x ∈ RdM , k ∈ BM , then f(x, k, t) ≥ 0 for all x ∈ RdM ,

k ∈ BM .

(2) The following conservation law holds:

∂tn − 1

q
divxJ = 0, x ∈ R

dM , t > 0.

(3) The number of particles is conserved:

∫

RdM

n(x, t) dx =

∫

RdM

∫

BM

fI(x, k) dk dx.

Proof: The first property follows immediately from (3.3). By formally integrating (3.9)

over k ∈ BM we obtain from the divergence theorem,

∂tn =

∫

BM

∂tf dk = −
∫

BM

divx(v(k)f) dk +
q

~

∫

BM

divk(∇xV f) dk

= −1

q
divxJ.

Finally, the last property follows from the second one after integrating over x ∈ RdM . ¤

We notice that in the parabolic band approximation

E(kj) =
~2

2m∗
|kj|2, j = 1, . . . ,M, kj ∈ R

d,

the semi-classical Liouville equation (3.9) reduces to its classical counterpart (3.4) since

v(kj) = ~kj/m
∗ = pj/m

∗, which is the classical momentum-velocity relation, and ∇kf =

(~/m∗)∇vf . We obtain from (3.9)

∂tf + v · ∇xf − q

m∗
∇xV · ∇vf = 0, x, v ∈ R

dM , t > 0.
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3.2 The Vlasov equation

The main disadvantage of the (semi-)clasical Liouville equation is that it has to be solved

in the very high-dimensional phase space R2dM . Typically, M ∼ 104, d = 3, and the

dimension becomes 6 · 104 which is prohibitive for numerical simulations. In this section

we will formally derive a lower-dimensional equation, the so-called Vlasov equation. We

proceed as in [49, Sec. 1.3].

The idea of the derivation is first to assume a certain structure of the force field, then

to integrate the Liouville equation in a certain sub-phase space and finally to carry out the

formal limit M → ∞, where M is the number of particles. More precisely, we consider an

ensemble of M electrons and denote by x = (x1 . . . , xM) ∈ RdM , k = (k1, . . . , km) ∈ BM

the position and wave vector coordinates of the particles, respectively. We impose the

following assumptions:

(1) The motion is governed by an external electric field and by two-particle (long-range)

interaction forces

Fj(x, t) = −qEext(xj, t) − q

M∑

`=1,j 6=`

Eint(xj, x`), j = 1, . . . ,M,

such that

Eint(xj, x`) = −Eint(x`, xj). (3.11)

(2) The interaction force |Eint| is of order 1/M .

(3) The initial density is independent of the numbering of the particles:

fI(x1, . . . , xM , k1, . . . , kM) = fI(xπ(1), . . . , xπ(M), kπ(1), . . . , kπ(M)) (3.12)

for all xj ∈ Rd, kj ∈ B, j = 1, . . . ,M , and for all permutations π of {1, . . . ,M}.

(4) The sub-ensemble initial density

f
(a)
I (x1, . . . , xa, k1, . . . , ka) =

∫

(Rd×B)M−a

fIdxa+1 · · · dxMdka+1 · · · dkM

can be factorized:

f
(a)
I =

a∏

j=1

PI(xj, kj), a = 1, . . . ,M − 1.

We discuss the above assumptions. The first assumption means that magnetic fields

are ignored. In fact, this hypothesis can be discarded, see [49, p. 26ff]. This assumption,

which is crucial for the derivation of the Vlasov equation, also means that the force field Fi
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exerted on the i-th electron is given by the sum of an external electric field acting on the i-

th electron and of the sum of M−1 two-particle interaction forces between the i-th electron

and all other electrons. The interaction force Eint is independent of the electron indices

which interprets the fact that the electrons are indistinguishable. The action-reaction law

implies that the force exerted by the j-th electron on the `-th electron is the negative force

of the `-th electron on the j-th electron, i.e. Eint(xj, x`) = −Eint(x`, xj). This property and

assumption (3) imply that also f(x, k, t) is independent of the numbering of the particle!

s for all t > 0. Finally, assumption (4) is needed for the limit M → ∞ (in order to get a

finite force Fj) and its meaning will become clear later.

We introduce the density f (a) of a subensemble consisting of a < M electrons:

f (a)(x1, . . . , xa, k1, . . . , ka, t) =

∫

(Rd×B)M−a

f(x, k, t) dx(a+1) dk(a+1),

where dx(a+1) = dxa+1 · · · dxM and dk(a+1) = dka+1 · · · dkM .

Theorem 3.4 Let the above assumptions (1)-(4) hold. Then the function f(x, k, t) is a

particular solution to the semi-classical Liouville equation (3.9) if M À 1,

f (a)(x1, . . . , xa, k1, . . . , ka, t) =
a∏

j=1

P (xj, kj, t) (3.13)

and F (x, k, t) := MP (x, k, t) is a solution to the semi-classical Vlasov equation

∂tF + v(k) · ∇xF − q

~
Eeff · ∇kF = 0, x ∈ R

d, k ∈ B, t > 0, (3.14)

F (x, k, 0) = FI(x, k), x ∈ R
d, k ∈ B,

where

Eeff(x, t) = Eext(x, t) +

∫

Rd×B

F (x2, k2, t)Eint(x, x2) dx2dk2

= Eext(x, t) +

∫

Rd

n(x∗, t)Eint(x, x∗) dx∗ (3.15)

and FI(x, k) = MPI(x, k) (see assumption (4)). Furthermore,

n(x, t) =

∫

B

F (x, k, t) dk

represents the electron density, and we impose periodic boundary conditions:

F (x, k, t) = F (x,−k, t), x ∈ R
d, k ∈ ∂B, t > 0.
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Proof: We integrate the semi-classical Liouville equation

∂tf +
M∑

j=1

v(kj) · ∇xj
f − q

~

M∑

j=1

Eext(xj, t) · ∇kj
f − q

~

M∑

j,`=1

Eint(xj, x`) · ∇kj
f = 0 (3.16)

with respect to xa+1, . . . , xM , ka+1, . . . , kM in order to obtain an equation for f (a). We

reformulate these integrals term by term.

Clearly, the first term on the left-hand side of (3.16) equals ∂tf
(a) after the integration.

For the second term we compute, using the divergence theorem,

M∑

j=1

∫

(Rd×B)M−a

v(kj) · ∇xj
f dx(a+1) dk(a+1) =

a∑

j=1

v(kj) · ∇xj

∫

(Rd×B)M−a

f dx(a+1) dk(a+1)

+
M∑

j=a+1

∫

(Rd×B)M−a

divxj
(v(kj)f) dx(a+1) dk(a+1)

=
a∑

j=1

v(kj) · ∇xj
f (a).

Similarly,

M∑

j=1

∫

(Rd×B)M−a

divkj
(Eext(xj, t)f) dx(a+1) dk(a+1) =

a∑

j=1

divkj

(
Eext(xj, t)f

(a)
)
.

The last integral on the left-hand side becomes

M∑

j,`=1

∫

(Rd×B)M−a

divkj
(Eint(xj, x`)f) dx(a+1) dk(a+1)

=
a∑

j,`=1

Eint(xj, x`) · ∇kj
f (a) +

M∑

j=a+1

M∑

`=1

∫

(Rd×B)M−a

divkj
(Eintf) dx(a+1) dk(a+1)

+
a∑

j=1

M∑

`=a+1

∫

(Rd×B)M−a

divkj
(Eint(xj, x`)f) dx(a+1) dk(a+1).

The second integral on the right-hand side of the above equation vanishes by the diver-

gence theorem. For the last integral we use the assumptions (3.11) and (3.12). Indeed, it

is possible to renumber the particles such that the last integral equals

a∑

j=1

(M − a)

∫

(Rd×B)M−a

divkj
(Eint(xj, xa+1)f) dx(a+1) dk(a+1)

=
a∑

j=1

(M − a)divkj

∫

Rd×B

Eint(xj, x∗)f
(a+1)
∗ dx∗dk∗,
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where

f (a+1)
∗ = f (a+1)(x1, . . . , xa, x∗, k1, . . . , ka, k∗, t).

Thus, integration of (3.16) yields the system of equations

0 = ∂tf
(a) +

a∑

j=1

v(kj) · ∇xj
f (a) − q

~

a∑

j=1

Eext(xj, t) · ∇kj
f (a) − q

~

a∑

j,`=1

Eint(xj, x`) · ∇kj
f (a)

− q

~

a∑

j=1

divkj

∫

Rd×B

(M − a)Eint(xj, x∗)f
(a+1)
∗ dx∗dk∗, (3.17)

where 1 ≤ a ≤ M − 1. These equations are called the BBGKY hierarchy (from Bogoli-

ubov [12], Born and Green [14], Kirkwood [39], and Yvon [67]). By assumption (2), |Eint|
is of the order of 1/M such that for M À 1, the fourth term on the right-hand side of

(3.17) can be neglected. The term (M − a)Eint however, stays finite and is approximately

equal to MEint. Therefore, we obtain for M À 1

0 = ∂tf
(a) +

a∑

j=1

v(kj) · ∇xj
f − q

~

a∑

j=1

Eext(xj, t)∇kj
f (a)

− q

~

a∑

j=1

divkj

∫

Rd×B

Mf (a+1)
∗ Eint(xj, x∗)dx∗dk∗. (3.18)

Now we claim that this equation is solved by the ansatz (3.13). In order to see this we

multiply (3.14) for (x, k) = (xj, kj) by

Qj =
1

M

∏

6̀=j

P (x`, k`, t)

and take the sum for j = 1, . . . , a. Then, for Fj = MP (xj, kj, t),

a∑

j=1

Qj∂tFj =
a∑

j=1

∏

6̀=j

P (x`, k`, t)∂tP (xj, kj, t) = ∂t

a∏

j=1

P (xj, kj, t) = ∂tf
(a).

In a similar way,

a∑

j=1

Qjv(kj) · ∇xj
Fj =

a∑

j=1

v(kj) · ∇xj
f (a),

a∑

j=1

QjEext(xj, t) · ∇kj
Fj =

a∑

j=1

Eext(xj, t) · ∇kj
f (a).
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a∑

j=1

Qj

(∫

Rd×B

MP (x∗, k∗, t)Eint(xj, x∗) dx∗ dk∗

)
· ∇kj

Fj

=
a∑

j=1

divkj

∫

Rd×B

M
a∏

`=1

P (x`, k`, t)P (x∗, k∗, t)Eint(xj, x∗) dx∗ dk∗

=
a∑

j=1

divkj

∫

Rd×B

Mf
(a+1)
(∗) Eint(xj, x∗) dx∗ dk∗.

Putting together the above computations, we see that the ansatz (3.13) indeed solves

(3.18). This proves the theorem. ¤

The semi-classical Vlasov equation has the form of a Liouville equation for a single

particle with the force −qEeff . Many-particle physics is taken into account through the

effective field Eeff which depends on the density n and hence on F . Thus, (3.14) is a

nonlinear equation with a nonlocal quadratic nonlinearity. The Vlasov equation describes

the macroscopic motion of many-particle systems with weak long-range forces. However, it

does not provide a description of strong short-range forces such as scattering of particles.

This case will be considered in Section 3.3.

As for the Liouville equation, the quantity F (x, k, t) can be interpreted as the proba-

bility density of a particle to be in the state (x, k) at time t. Indeed, we obtain from the

trajectory equations

ẋ = v(k), k̇ = − q

~
Eeff , t > 0, x(0) = x0, k(0) = k0,

and (3.14) the equation

0 = ∂tF + ẋ · ∇xF + k̇ · ∇kF =
d

dt
F (x(t), v(t), t)

and thus

F (x(t), k(t), t) = FI(x0, k0) ≥ 0 for all t ≥ 0.

Finally, we wish to reformulate the nonlinear system (3.14)–(3.15) in the case of the

Coulomb force in R3,

Eint(x, y) = − q

4πεs

x − y

|x − y|3 , x, y ∈ R
3, x 6= y, (3.19)

which is the most important long-range force between two electrons. Here, the permittivity

εs is a material constant. We assume that the external field is generated by doping atoms

in the semiconductor crystal of charge +q:

Eext(x, t) =
+q

4πεs

∫

R3

C(y)
x − y

|x − y|3 dy, (3.20)

where C(x) is the doping concentration (see Section 2.4).
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Proposition 3.5 In the case of the Coulomb force (3.19) and (3.20) the semi-classical

Vlasov equation (3.14)–(3.15) can be written as the Vlasov-Poisson system

∂tF + v(k) · ∇xF − q

~
∇xVeff · ∇kF = 0, (3.21)

εs∆xVeff = q(n − C), x ∈ R
3, k ∈ B, t > 0.(3.22)

Proof: It is well known that the function

φ(x) = − 1

4π

∫

R3

f(y)

|x − y| dy, x ∈ R
3,

solves the Poisson equation ∆φ = f in R3 under some regularity assumptions on f .

Therefore,

f(x) = ∆φ(x) =
1

4π

∫

R3

f(y)divx
x − y

|x − y|3 dy,

0 = curl∇φ(x) =
1

4π
curl x

∫

R3

f(y)
x − y

|x − y|3 dy.

This shows that

divEeff(x, t) = divEext(x, t) +

∫

R3

n(x∗, t)divEint(x, x∗) dx∗

= divEext(x, t) − q

εs

n(x, t),

curl Eeff(x, t) = curl Eext(x, t) +

∫

R3

n(x∗, t)curl Eint(x, x∗) dx∗

= curl Eext(x, t), x ∈ R
3, t > 0.

Furthermore,

divEext =
q

εs

C, curl Eext = 0 in R
3,

and hence,

divEeff = − q

εs

(n − C), curl Eeff = 0 in R
3.

Since Eeff is vortex-free, there exists a potential Veff such that Eeff = −∇Veff . Thus,

εs∆Veff = −εsdivEeff = q(n − C),

and the proposition follows. ¤
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3.3 The Boltzmann equation

The Vlasov equation does not account for short-range particle interactions, like collisions

of the particles with other particles or with the crystal lattice. We wish to extend the

Vlasov equation to include scattering mechanisms which leads to the Boltzmann equation.

We present only a phenomenological derivation; for details on more rigorous derivations,

we refer to [4, Sec. 1.5.3], [15, Ch. 7], and [19]. The Boltzmann equation has been first

formulated by Boltzmann in 1872 for the non-equilibrium transport of dilute gases [13].

The Vlasov equation along trajectories

dF

dt
= 0

states that the probability F (of occupation of states) does not change in time. Scattering

allows particles to jump to another trajectory. Our main assumption is that the rate of

change of F due to convection and the effective field, dF/dt, and the rate of change of F

due to collisions, Q(F ), balance:
dF

dt
= Q(F ).

Clearly, this equation has to be understood along trajectories. By (3.4) this equation

equals (writing f instead of F )

∂tf + v(k) · ∇xf − q

~
Eeff · ∇kf = Q(f), x ∈ R

d, k ∈ B, t > 0, (3.23)

where the effective field is given by (3.15).

It remains to derive an expression for Q(f). We assume that scattering of particles

occurs instantaneously and only changes the crystal momentum of the particles. The rate

P (x, k′ → k, t) at which a particle at (x, t) changes its Bloch state k′ into another Bloch

state k due to a scattering event is proportional to

• the occupation probability f(x, k′, t) and

• the probability 1 − f(x, k, t) that the state (x, k) is not occupied at time t.

Here, we used the Pauli exclusion principle. Thus,

P (x, k′ → k, t) = s(x, k′, k)f(x, k′, t)(1 − f(x, k, t)),

where the proportionality constant s(x, k′, k) is called the scattering rate. Then the rate

of change of f due to collisions is the sum of all in-scattering rates from k′ to k minus the

out-scattering rate from k to k′,

P (x, k′ → k, t) − P (x, k → k′, t),
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for all possible Bloch states k′ in the volume element dk′. In the continuum limit, the sum

becomes an integral and we obtain

(Q(f))(x, k, t) =

∫

B

[P (x, k′ → k, t) − P (x, k → k′, t)]dk′ (3.24)

=

∫

B

[s(x, k′, k)f ′(1 − f) − s(x, k, k′)f(1 − f ′)]dk′,

where f = f(x, k, t), f ′ = f(x, k′, t). Equation (3.23), together with the effective field

equation

Eeff(x, t) = Eext(x, t) +

∫

Rd

n(y, t)Eint(x, y) dy, (3.25)

where Eext and Eint are given functions, and the collision operator (3.24), is called the

semi-classical Boltzmann equation. When Eext and Eint are given by the Coulomb forces

(3.19) and (3.20), equations (3.23)–(3.25) are called the Boltzmann-Poisson system which

can be written as (3.21)–(3.22) with f instead of F and with the right-hand side Q(f) in

(3.21).

Again we impose the initial and periodic boundary conditions

f(x, k, t) = f(x,−k, t), x ∈ R
d, k ∈ ∂B, t > 0, (3.26)

f(x, k, 0) = fI(x, k), x ∈ R
d, k ∈ B. (3.27)

The Boltzmann equation has two nonlinearities:

• a quadratic nonlocal nonlinearity in the position variable caused by the self-consistent

field Eeff in (3.25) and

• another quadratic nonlocal nonlineariy in the wave vector caused by the collision

integral (3.24).

These nonlinearities make the mathematical analysis of the initial-boundary-value prob-

lem (3.23)–(3.27) very difficult. Only at the end of the 1980ies, an existence proof for

global-in-time solutions and large data in the field-free case Eeff = 0 has been obtained

by DiPerna and Lions employing the theory of renormalized solutions [26, 27]. We refer

to the reviews [44, 63] for details and more references.

We give now some examples of collision operators.

Example 3.6 In semiconductor crystals, scattering of electrons occurs by lattice defects,

phonons, and other carriers. We consider only the following important collision events:

• electron-phonon scattering,

• ionized impurity scattering, and
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• carrier-carrier scattering.

Extensive treatments of scattering mechanisms in semiconductors can be found in, e.g.,

[11, Ch. 9], [37, Ch. 7], [45, Ch. 2], [61, Ch. 6], and in the textbooks [33, 58, 68].

Phonon scattering. At nonzero temperature, the atoms in the crystal lattice vibrate

about their fixed equilibrium. These vibrations are quantized and the quantum of lattice

vibrations is called phonon. We can distinguish so-called acoustic phonons and optical

phonons. Acoustic phonons arise from displacements of lattice atoms in the same direction

like sound waves. Optical phonos describe displacements in the wave vector and are able

to interact strongly with light. Denoting by ~ωα the energy of a phonon, the phonon

occupation number Nα is given by Bose-Einstein statistics,

Nα =
1

e~ωα/kBT − 1
,

where the index α refers to either “op” for optical phonons or “ac” for accoustic phonons.

Notice that Bose-Einstein statistics can be used for indistinguishable particles not obey-

ing the Pauli exclusion principle and therefore also for phonons (see [11, p.307ff.] for a

derivation).

An electron in the Bloch state k′ with conduction-band energy E(k′) before the colli-

sion with a phonon can change to the state k after the collision if

E(k′) − E(k) = ±~ωα, (3.28)

where the plus sign refers to the phonon emission and the minus sign for phonon absorp-

tion. The acoustic phonon energy ~ωα is usually a function of the difference k − k′ of the

wave vectors before and after a scattering event [8, Sec. 2]. The transition rate s(x, k, k′)

is non-zero only if (3.28) is satisfied. Therefore,

sα(x, k, k′) = σα(x, k, k′)[(1 + Nα)δ(E(k′) − E(k) + ~ωα) + Nαδ(E(k′) − E(k) − ~ω)],

where σα(x, k, k′) is assumed to be symmetric in k and k′ and δ is the delta distribution

used in Section 2.4. This transition rate can be derived more generally from Fermi’s golden

rule (see [11, Sec. 4.4], [45, Sec. 1.7.1], or [65, Appendix C]). The collision operator reads

according to (3.24)

(Qα(f))(x, k, t) =

∫

B

[sα(x, k′, k)f ′(1 − f) − sα(x, k, k′)f(1 − f ′)] dk′. (3.29)

The above expression for sα shows that the scattering rates can be highly non-smooth.

Ionized impurity scattering. A doping atom in the semiconductor material donates

either an electron or a hole, leaving behind an ionized charged impurity center. This fixed

charge may attract or repulse an electron propagating through the crystal lattice. The
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interaction of carriers with neutral impurities is another scattering possibility but we do

not consider it here. Since the scattering is elastic, the electron energy E(k′) after the

collision is the same as the energy E(k) before the interaction, and the transition rate is

[57]

simp(x, k, k′) = σimp(x, k, k′)δ(E(k′) − E(k)),

where σimp is symmetric in k and k′. Again, this expression can be derived from Fermi’s

golden rule (see above). The symmetry of σimp and δ implies that

simp(x, k′, k)f ′f − simp(x, k, k′)ff ′ = σimp(x, k, k′)δ(E(k′) − E(k))(f ′f − ff ′) = 0,

and hence, the collision operator becomes

(Qimp(f))(x, k, t) =

∫

B

σimp(x, k, k′)δ(E(k′) − E(k))(f ′ − f) dk′.

Carrier-carrier scattering. We only consider binary electron-electron interactions. Also

binary electron-hole scattering or collective carrier-carrier collisions (i.e. interactions of

carriers with oscillations in the carrier density; see [45, Sec. 2.10.2]) are possible but we do

not consider these mechanisms here. The influence of electron-electron interactions on the

carrier dynamics is more pronounced in degenerate semiconductors in which Fermi-Dirac

statistics instead of Maxwell-Boltzmann statistics has to be used (see Section 2.4). The

transition rate that carrier in the Bloch states k′ and k′
1 collide and scatter to the states

k and k1 is given by

see(x, k, k′, k1, k
′
1) = σee(x, k, k′, k1, k

′
1)δ(E(k′) + E(k′

1) − E(k) − E(k1)),

since the collisions are elastic. Therefore, the collision operator becomes [9, (2.7)]:

(Qee(f))(x, k, t) =

∫

B3

see(x, k, k′, k1, k
′
1)[f

′f ′
1(1−f)(1−f ′)−ff1(1−f ′)(1−f ′

1)]dk′ dk1 dk′
1,

(3.30)

where f = f(x, k, t), f ′ = f(x, k′, t), f1 = f(x, k1, t), and f ′
1 = f(x, k′

1, t). Notice that this

operator has a nonlocal nonlinearity of fourth order.

Generally, the collision operator in (3.23) can be written as the sum of the various

collision operators considered above:

Q(f) = Qop(f) + Qac(f) + Qimp(f) + Qee(f). ¤

In the following we show some properties of the collision operator (3.24). The transition

rate s(x, k, k′) is assumed to satisfy

s(x, k, k′)

s(x, k′, k)
= exp

E(k) − E(k′)

kBT
for x ∈ R

d, k, k′ ∈ B. (3.31)
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We explain this hypothesis. The so-called principle of detailed balance [3, 37] asserts that

in thermal equilibrium, the local scattering probabilities vanish,

s(x, k′, k)f ′
eq(1 − feq) − s(x, k, k′)feq(1 − f ′

eq) = 0,

and that the equilibrium occupation number density is given by the Fermi-Dirac distri-

bution,

feq(x, k) =
1

1 + eu(k)
, u(k) =

E(k) − EF

kBT

(see (2.48)). A calculation shows that

s(x, k, k′)

s(x, k′, k)
=

f ′
eq(1 − feq)

feq(1 − f ′
eq)

= eu(k)−u(k′),

which is (3.31).

The following result is due to Poupand [52] (also see the review [54]).

Theorem 3.7 Let (3.31) hold for some function E(k) and let s(x, k, k′) > 0 for all

x ∈ Rd, k, k′ ∈ B.

(1) For all (regular) functions f there holds:
∫

B

(Q(f))(x, k, t) dk = 0 for x ∈ R
d, t > 0.

(2) For all functions f(x, k, t) ∈ (0, 1) and non-decreasing functions χ : R → R there

holds:
∫

B

(Q(f))(x, k, t)χ

(
f(x, k, t)

1 − f(x, k, t)
eE(k)/kBT

)
dk ≤ 0, (3.32)

∫

B

(Q(f))(x, k, t)χ

(
1 − f(x, k, t)

f(x, k, t)
e−E(k)/kBT

)
dk ≥ 0.

(3) The kernel of Q only consists of Fermi-Dirac distributions, i.e. Q(f) = 0 if and only

if, for some −∞ ≤ EF ≤ ∞,

f(k) =
1

1 + exp((E(k) − EF )/kBT )
, k ∈ B. (3.33)

The theorem can be physically interpreted as follows. Let f be a solution to the

Boltzmann equation (3.23)–(3.24). Then, by Theorem 3.7 (1),

∂t

∫

Rd

n(x, t) dx =

∫

Rd

∫

B

∂tf(x, k, t) dk dx

=

∫

Rd

∫

B

(−divx(v(k)f) +
q

h
divk(Eefff) + Q(f)) dk dx

= 0,
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where we have used the divergence theorem. This implies that the total number of elec-

trons is conserved in time:
∫

Rd

n(x, t) dx =

∫

Rd

n(x, 0) dx for all t > 0.

Physically, this is reasonable: collisions neither destroy nor generate particles. The state-

ment of Theorem 3.7 (2) is also called H-theorem.

Proof of Theorem 3.7: (1) Changing k and k′ in the second integral gives
∫

B

Q(f) dk =

∫

B2

s(k′, k)f ′(1 − f) dk′ dk −
∫

B2

s(k, k′)f(1 − f ′) dk′ dk

=

∫

B2

s(k′, k)f ′(1 − f) dk′ dk −
∫

B2

s(k′, k)f ′(1 − f) dk dk′

= 0.

(2) We show only the second inequality. The proof of the first one is similar. Set

M(k) = e−E(k)/kBT , F (k) =
1 − f(k)

f(k)
M(k). (3.34)

The function M(k) is called Maxwellian. Then assumption (3.31) is equivalent to

s(k′, k)

M(k)
=

s(k, k′)

M(k′)
, (3.35)

and we obtain, with the notations F = F (k), F ′ = F (k′), M = M(k), M ′ = M(k′),

∫

B

Q(f)χ(F ) dk =

∫

B2

s(k, k′)

[
M

M ′
f ′(1 − f)χ(F ) − f(1 − f ′)χ(F )

]
dk′ dk

=

∫

B2

s(k, k′)

M ′
ff ′(F − F ′)χ(F ) dk′ dk, (3.36)

and, after changing k and k′ and then using (3.35),

∫

B

Q(f)χ(F ) dk =

∫

B2

s(k′, k)

M
f ′f(F ′ − F )χ(F ′) dk dk′

=

∫

B2

s(k, k′)

M ′
f ′f(F ′ − F )χ(F ′) dk′ dk. (3.37)

Adding (3.36) and (3.37) leads to

∫

B

Q(f)χ(F ) dk =
1

2

∫

B2

s(k, k′)

M ′
ff ′(F − F ′)(χ(F ) − χ(F ′)) dk′ dk

≥ 0, (3.38)

since χ is non-decreasing and all the other factors are non-negative.
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(3) We see from (2), with χ(x) = x, taking into account (3.38), that Q(f) = 0 is

equivalent to

ff ′(F − F ′)2 = 0 for almost all k, k′ ∈ B.

This implies f ≡ 0 or F = F ′ almost everywhere. The latter equation is equivalent to

1 − f(k)

f(k)
M(k) =

1 − f(k′)

f(k′)
M(k′) for almost all k, k′ ∈ B.

We infer that both sides are constant and denote this constant by exp(−EF /kBT ) with

EF ∈ R. Notice that the constant is positive since 0 ≤ f ≤ 1, except if f ≡ 1. But then

1 − f(k)

f(k)
=

e−EF /kBT

M(k)
= e(E(k)−EF )/kBT

and solving for f(k) yields (3.33). Finally, choosing EF = ±∞ leads to the other two

possibilities F ≡ 0 of F ≡ 1. ¤

In the literature, two approximations of the collision operator are frequently used [49,

p. 33ff]:

• the low density approximation

Q0(f))(x, k, t) =

∫

B

σ(x, k′, k)(Mf ′ − M ′f) dk′, (3.39)

where σ(x, k′, k) = s(x, k′, k)/M(k) is called collision cross-section;

• the relaxation time approximation

(Qτ (f))(x, k, t) = − 1

τ(x, k)
(f(x, k, t) − M(k)n(x)) , (3.40)

where

τ(x, k) =

(∫

B

s(x, k, k′) dk′

)−1

is called the relaxation time describing the average time between two consecutive

scattering events at (x, k), and n(x) is some given density such that

n(x) =

∫

B

fI(x, k) dk.

These approximations can be derived as follows. The low-density collision operator is

obtained by assuming that the distribution function is small:

0 ≤ f(x, k, t) ¿ 1.
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Then 1 − f(x) ≈ 1 and we can approximate, using (3.35),

Q(f)(k) =

∫

B

[s(k′, k)f ′ − s(k, k′)f ] dk′

=

∫

B

s(k′, k)

M(k)
[M(k)f ′ − M(k′)f ] dk′,

which is (3.39). Notice that (3.35) implies that σ(x, k′, k) is symmetric in k and k′.

When the initial distribution is close to a multiple of M(k) it is reasonable to approx-

imate f ′ in (3.39) by n(x)M(k′). Thus, (3.39) yields

(Q(f))(k) =

∫

B

σ(k′, k)(nMM ′ − M ′f) dk′

=

∫

B

s(k′, k)
M ′

M
(nM − f) dk′

=

∫

B

s(k, k′)(nM − f) dk′

= (nM − f)

∫

B

s(k, k′) dk′,

which is equal to (3.40).

Why is τ(x, k) called relaxation time? In order to see this, we argue as in [49, p. 34f.]

and consider the Boltzmann equation with (3.40) along the trajectories (x(t), k(t))

df

dt
= −1

τ
(f − nM), t > 0,

where x(t), k(t) solves ẋ = v(k), k̇ = −qEeff/~, x(0) = x0, k(0) = k0 for constant relax-

ation time τ . Multiplying this differential equation with f − nM gives

1

2

d

dt
(f − nM)2 = (f − nM)

df

dt
= −1

τ
(f − nM)2.

Separation of variables leads to

f(x(t), k(t), t) − n(x(t))M(k(t)) = ce−t/τ → 0 as t → ∞,

where c ∈ R is an integration constant. This means that the distribution function relaxes

to the equilibrium density nM , starting from fI , along the trajectory after a time of order

τ .

Notice that the low-density and the relaxation-time approximations (3.39) and (3.40)

coincide if the collision cross-section only depends on the position variable and if the

Maxwellians are normalized such that
∫

B
M dk = 1. Indeed, we obtain

(Q0(f))(x, k, t) =

∫

B

σ(x)(Mf ′ − M ′f) dk′

= σ(x)M(k)

∫

B

f ′ dk′ − σ(x)f(x)

∫

B

M ′ dk′

= −σ(x)(f(x, k, t) − M(k)n(x, t)),
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which corresponds to (3.40) with τ(x) = 1/σ(k) and time-dependent density n(x, t).

Lemma 3.8 Let σ(x, k′, k) in (3.39) be symmetric in k and k′. Then the kernel of the

low-density collision operator consists exactly of the Maxwellians, i.e. Q0(f) = 0 if and

only if

f(x, k) = n(x)M(k) = n(x)e−E(k)/kBT ,

where n(x) is any (non-negative) function.

Proof: The proof is very similar to the proof of Theorem 3.7, parts (2) and (3), using

χ(x) = x and F (k) = M(k)/f(k). Indeed, an analogous computation leads to F (k) =

F (k′) or
M(k)

f(k)
=

M(k′)

f(k′)
for almost all k, k′ ∈ B.

This implies M(k)/f(k) = const. = 1/n(x). ¤

Remark 3.9 In the parabolic band approximation

E(k) =
~2

2m∗
|k − k0|2

we can characterize the kernel of the low-density operator by the family of functions

M%,u,T (v) = %

(
m∗

2πkBT

)d/2

exp

(
−m∗|v − u|2

2kBT

)
(3.41)

with %, T > 0 and u ∈ R. Indeed, the velocity is

1

~
∇kE(k) =

~

m∗
(k − k0) =: v − u

such that

M(v) = exp

(
−E(k)

kBT

)
= exp

(
−m∗|v − u|2

2kBT

)
.

Setting

n(x) = %

(
m∗

2πkBT

)d/2

then gives (3.41). The constant % represents a density, u a velocity, and T the temperature.

¤

The semi-classical Boltzmann equation (3.23) is fundamental in deriving simpler macro-

scopic models for semiconductors (see Chapter 3). It is the basis equation in (classical)

semiconductor modeling and usually, other models are validated by numerical comparisons

with the Boltzmann equation. Nevertheless, it is important to understand its limitations

(see [45, Sec. 37]):
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• The Boltzmann equation is only a single-particle description of many-particle sys-

tems of charged carriers. In particular, correlations between carriers are neglected.

• Quantum mechanical phenomena are only modeled in a semi-classical way. Electrons

are considered as particles which obey Newton’s laws.

• Collisions are assumed to be binary and to be instantaneous in time and local in

space.

We can estimate the range of validity by using Heisenberg’s uncertainty principles

4p4x ≥ ~ and 4E4t ≥ ~, (3.42)

which means that it is impossible to determine both momentum and space at the same

time and that the energy of a particle can be defined only if it stays in the same state for

some time [45, p. 152]. For instance, writing

p2

2m∗
= E

for the momentum p and assuming that the energy spread is of the order of the thermal

energy kBT , we obtain

4p =
√

2m∗4E ∼
√

2m∗kBT .

Introduce the de Broglie length

λB =
h√

2m∗kBT

which is the wave length of an electron with thermal energy. Then the first inequality in

(3.42) leads to the requirement

4x ≥ ~

4p
∼ λB

2π
.

Therefore, when treating electrons as particles, they cannot be localized sharper than 4x

which is of the order of λB. At room temperature and with the effective mass m∗ = 0.98me

(see Table 2.3) of silicon, we obtain 4x ∼ 8 nm.

Taking 4t to be the time between collisions and again assuming that 4E ∼ kBT , the

second inequality in (3.42) gives

4t ≥ ~

4E
∼ ~

kBT
.

Supposing further that the electron has the velocity v = p/m∗ ∼
√

2kBT/m∗, correspond-

ing to the thermal energy, the distance between two collisions is

4L = v4t ≥
√

2kBT

m∗

~

2πkBT
=

λB

π
.
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Thus, the mean free path 4L should be (much) larger than the de Broglie length λB ∼
8 nm.

Finally, in Figure 3.2 we present a summary of the models derived in this chapter and

the relations between them.

semi-classical Boltzmann equation

semi-classical Vlasov equation

semi-classical Liouville equation

no collisions

no two-particle interactions

Figure 3.2: Relations between the models of Sections 3.1–3.3.

3.4 The bipolar Boltzmann model

So far we have only considered the transport of electrons in the conduction band. How-

ever, also holes in the valence band contribute to the carrier flow in semiconductors (see

Section 2.2). It is possible that an electron moves from the valence band to the conduction

band, leaving a hole in the valence band behind it. This process is called the generation

of an electron-hole pair (see Figure 3.3). The electron has to overcome the energy gap,

which is of the order of 1eV; on the other hand, the thermal energy of an electron is

only of the order of kBT ∼ 0.026eV at room temperature. Therefore, a lot of absorption

energy is necessary for such processes. The inverse process of an electron moving from the

conduction to the valence band, occupying an empty state, is termed the recombination

of an electron-hole pair. For such an event, energy is emitted. The basic mechanisms for

generation-recombination processes are

• Auger/impact ionization generation-recombination,

• radiative generation-recombination,

• thermal generation-recombination.
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An Auger process is defined as an electron-hole recombination followed by a transfer of

energy to a free carrier which is excited to a state of higher energy. The inverse Auger

process, i.e. the generation of an electron-hole pair, is called impact ionization. The energy

for the pair generation comes from the collision of a high-energetic free carrier with the

lattice or from electron-electron or hole-hole collisions.

When an electron from the conduction band recombines with a hole from the valence

band and emittes a photon, we call this process radiative recombination. The energy of

the photon is equal to the bandgap energy. Radiative generation occurs when a photon

with energy larger than or equal to the gap energy is absorbed.

A third source of energy is coming from lattice vibrations or phonons. Thus, thermal

recombination or generation arises from phonon emission or absorption, respectively.

-

6E(k)

k

?

valence band

conduction band

energy
emission

-

-

6E(k)

k

6

valence band

conduction band

energy
absorption

¾

Figure 3.3: Recombination (left) and generation (right) of an electron-hole pair.

The recombination-generation operators can be derived as the collision operator of

Section 3.3 from phenomenological considerations. The generation of an electron in the

state k and a hole in the state k′ is possible if both states are not occupied, and its rate

is given by

g(x, k′, k)(1 − fn)(1 − f ′
p),

where g(x, k′, k) ≥ 0 is the generation rate, fn = fn(x, k, t) the electron distribution

function and f ′
p = fp(x, k′, t) the hole distribution function. The rate of recombination of

an electron at state k and a hole at state k′ is

r(x, k, k′)fnf
′
p,

where r(x, k, k′) ≥ 0. The net rate is the difference of generation and recombination rates:

g(x, k′, k)(1 − fn)(1 − f ′
p) − r(x, k, k′)fnf

′
p,

69



and the recombination-generation operator for electrons in the conduction band is the

integral over all states k′ (see [49, Sec. 1.6]):

(In(fn, fp))(x, k, t) =

∫

B

[g(x, k′, k)(1 − fn)(1 − f ′
p) − r(x, k, k′)fnf

′
p] dk′. (3.43)

In a similar way, the recombination-generation operator for holes in the valence band can

be written as

(Ip(fn, fp))(x, k, t) =

∫

B

[g(x, k, k′)(1 − f ′
n)(1 − fp) − r(x, k′, k)f ′

nfp] dk′. (3.44)

The recombination and generation rates are related by the equation

r(x, k, k′) = exp

(
En(k) − Ep(k

′)

kBT

)
g(x, k′, k) (3.45)

which can be derived from the principle of detailed balance as in Section 3.3 (see (3.39)).

This principle holds here since recombination and generation balance in thermal equilib-

rium.

The operators (3.43) and (3.44) are added to the electron and hole collision operators.

Then, the evolution of the distribution functions fn and fp is given by the system of

Boltzmann equations

∂tfn + vn(k) · ∇xfn − q

~
Eeff · ∇kfn = Qn(fn) + In(fn, fp) (3.46)

∂tfp + vp(k) · ∇xfp +
q

~
Eeff · ∇kfp = Qp(fp) + Ip(fn, fp), (3.47)

where

vn(k) =
1

~
∇kEn(k), vp(k) =

1

~
∇kEp(k)

and En and Ep are the conduction and valance band energies, respectively. Denoting by

n(x, t) =

∫

B

fn(x, k, t) dk, p(x, t) =

∫

B

fp(x, k, t) dk

the electron and hole densities, respectively, the effective-field equation (3.25) becomes

Eeff(x, t) = Eext(x, t) +

∫

Rd

(n(y, t) − p(y, t))Eint(x, y) dy, (3.48)

since electrons and holes have charges with opposite sign. The equations (3.46)–(3.48),

together with the collision operators (3.24) and (3.43)–(3.44) are called the semi-classical

bipolar Boltzmann model.

The bipolar model has an additional nonlinearity due to the coupling between the

carrier densities n and p through (3.48). In particular, the total number of each type of

particles is not conserved anymore since recombination-generation effects can take place.
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However, the total space charge n− p−C is conserved if the doping atoms are immobile,

i.e., C is a function of the space variable x only. Indeed, taking the difference of the

Boltzmann equations (3.46) and (3.47) and integrating over (x, k) ∈ Rd × B yields

∂t

∫

Rd

(n − p − C(x)) dx =

∫

Rd

∫

B

(In(fn, fp) − Ip(fn, fP )) dk dx = 0,

by arguing as in the proof of Theorem 3.7 (1).

Finally, we discuss two special cases. In the low density approximation fn, fp ¿ 1 we

can write the recombination-generation operators as

(In(fn, fp))(x, k, t) =

∫

B

g(x, k′, k)
(
1 − e(En(k)−Ep(k′))/kBT fnf

′
p

)
dk′, (3.49)

(Ip(fn, fp))(x, k, t) =

∫

B

g(x, k, k′)
(
1 − e(En(k′)−Ep(k))/kBT f ′

nfp

)
dk′, (3.50)

using (3.45). In the case of Coulomb forces in R3, the effective field is given by

Eeff(x, t) =
1

4πεs

∫

R3

%(y, t)
x − y

|x − y|3 dy,

where the total space charge % is the sum of the electron density n, the hole density

p, and the densities ND, NA of the implanted positively charged donor ions and the

negatively charged acceptor ions, respectively, with which the semiconductor is doped

(see Section 2.4), weighted by the corresponding charges +q or −q:

% = q(−n + p − NA + ND).

Defining the electrostatic potential Eeff = −∇V and the doping profile C = ND −NA, we

can replace the effective-field equation (3.48) by the Poisson equation

εs∆V = q(n − p − C) in R
3. (3.51)

The Boltzmann equations (3.43)–(3.44) and the Poisson equation (3.51) constitute the

so-called bipolar Boltzmann-Poisson system.
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4 Classical Fluid Models

The mathematical and numerical solution of the Boltzmann equation of Chapter 3 is

very difficult due to the complex structure of the collision operator and the high number

of independent variables (three position plus three wave vector plus one time variable).

In this chapter we derive simpler models with only four independent variables (three

space and one time variable) from the Boltzmann equation. The main feature of these

models is that they describe the evolution of averaged quantities, like the carrier density

or the current density, rather than a distribution function. Thus the carrier ensemble is

considered as a “fluid” consisting of charged particles.

4.1 Derivation of the drift-diffusion equations

The drift-diffusion equations are one of the simplest semiconductor models. It has been

first derived by van Roosbroeck in 1950 [64]. We derive this model by employing the

so-called Hilbert method which consists in expanding the distribution function in powers

of the scaled mean free path. This procedure has been analyzed in [51]. We follow the

presentation of [49, Sec. 22].

The starting point of the derivation is the bipolar Boltzmann model of Section 3.4 in

three dimensions,

∂tfn + vn(k) · ∇xfn − q

~
Eeff · ∇kfn = Qn(fn) + In(fn, fp), (4.1)

∂tfp + vp(k) · ∇xfp +
q

~
Eeff · ∇kfp = Qp(fp) + Ip(fn, fp), (4.2)

together with the field equation

−εsdivEeff = q(n − p − C(x)), x, k ∈ R
3.

We assume low-density collision operators,

(Qj(fj))(x, k, t) =

∫

B

σj(x, k, k′)
(
e−Ej(k)/kBT f ′

j − e−Ej(k
′)/kBT fj

)
dk′, (4.3)

where j ∈ {n, p} (see (3.39)) and the low-density recombination-generation operators

(3.49)–(3.50),

(In(fn, fp))(x, k, t) =

∫

B

g(x, k′, k)
(
1 − e(En(k)−Ep(k′))/kBT

)
fnf ′

p dk′, (4.4)

(Ip(fn, fp))(x, k, t) =

∫

B

g(x, k, k′)
(
1 − e(En(k′)−Ep(k))/kBT

)
fnf ′

p dk′. (4.5)

As in Chapter 3, f ′
j means evaluation at k′, i.e., f ′

j = fj(x, k′, t), j ∈ {n, p}, and B ⊂ R3

denotes the Brillouin zone. Furthermore, we assume the parabolic band approximation

En(k) = Ec +
~2

2m∗
e

|k|2, Ep(k) = Ev −
~2

2m∗
h

|k|2,
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where Ec denotes the conduction band minimum, Ev the valence band maximum, and m∗
e

and m∗
h are the effective masses of electrons and holes, respectively. In particular, we can

replace B by R3 in the above integrals. The velocities in (4.1)–(4.2) are given by

vn(k) =
1

~
∇kEn(k) =

~k

m∗
e

, vp(k) = −1

~
∇kEp(k) =

~k

m∗
h

.

The drift-diffusion equations are derived under the (main) assumption that collisions

occur on a much shorter time scale than recombination-generation events. Indeed, typ-

ically the time scale of collisions is 10−12s whereas a typical time for recombination-

generation effects is 10−9s [49, p. 86]. In order to make this statement more precise, we

scale the Boltzmann equations, i.e., we choose new variables which make the equation

dimension free. We choose the following reference parameter:

• Define the reference velocity v =
√

kBT/m∗
e. Behind this setting there are two

assumptions: The effective masses of electrons and holes are of the same order and

the thermal energy kBT is of the same order as the kinetic energy m∗
ev

2/2.

• Let τc, τR be characteristic times of collision and recombination-generation events.

Then λc = τcv and λR = τRv are the so-called mean free paths between two consec-

utive scattering and recombination-generation events. Thus we have to scale

Qn =
1

τc

Qn,s, Qp =
1

τc

Qp,s,

In =
1

τR

In,s, Ip =
1

τR

Ip,s.

• A reference length λ0 is given by the geometric average of λc and λR:

λ0 =
√

λRλc.

Then x = λ0xs.

• We use the reference time τR, the reference wave vector m∗
ev/~ and the reference

field strength kBT/qλ0:

t = τRts, k =
m∗

ev

~
ks, Eeff =

kBT

λ0q
Eeff,s. (4.6)

Our main assumption is

τc ¿ τR.

Then the parameter α2 = λc/λR = τc/τR satisfies α ¿ 1. With the above scaling we can

rewrite (4.1) as

1

τR

∂tsfn +
v

λ0

ks · ∇xs
fn − kBT

λ0m∗
ev

Eeff,s · ∇ks
fn =

1

τc

Qn,s(fn) +
1

τR

In,s(fn, fp).
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Multiplying this equation by τc = λc/v, using α = λc/λ0 and kBT = m∗
ev

2, and omitting

the index s, we obtain the scaled Boltzmann equation

α2∂tfn + α (k · ∇xfn − Eeff · ∇kfn) = Qn(fn) + α2In(fn, fp). (4.7)

In a similar way, we have

α2∂tfp + α

(
m∗

e

m∗
h

k · ∇xfp + Eeff · ∇kfp

)
= Qp(fp) + α2Ip(fn, fp). (4.8)

The scaled operators Qj,s and Ij,s have the same form as (4.3)–(4.5) but

e−En(k)/kBT and e−Ep(k)/kBT

have to be replaced by

e−Ec/kBT−|k|2/2 and e−Ev/kBT−(m∗

e/m∗

h
)|k|2/2,

respectively, and the rates σn, σp, and g are multiplied by (m∗
ev/~)d.

We want to study the scaled Boltzmann equations for “‘small” α. First we analyze

the collision operators Qn and Qp. We proceed as in [53]. It is convenient to write them

in the form

Qf (fj) =

∫

R3

sj(x, k, k′)(Mj(k)f ′
j − Mj(k

′)fj) dk′, j ∈ {n, p}, (4.9)

where

sn(x, k, k′) = Nnσn(x, k, k′)e−Ec/kBT ,

sp(x, k, k′) = Npσp(x, k, k′)e−Ev/kBT ,

and

Mn(k) =
1

Nn

e−|k|2/2, Mp(k) =
1

Nn

e−(m∗

e/m∗

h
)|k|2/2

are the scaled Maxwellians. The constants

Nn = (2π)3/2, Np = (2π)3/2

(
m∗

h

m∗
e

)3/2

are chosen in such a way that the Maxwellians are normalized, i.e.
∫

R3

Mn(k) dk =

∫

R3

Mp(k) dk = 1.

Here we have used that fact that
∫

Rd

e−|k|2/2 dk = (2π)d/2.

74



For the following analysis we introduce the functions

λj(k) =

∫

R3

sj(x, k, k′)Mj(k
′) dk′, k ∈ R

3, j ∈ {n, p}, (4.10)

for some fixed x ∈ Rd, and the Banach spaces

Xj = {f : R
3 → R measurable: ‖f‖Xj

< ∞},
Yj = {f : R

3 → R measurable: ‖f‖Yj
< ∞}

with associated norms

‖f‖Xj
=

(∫

R3

f(k)2λj(k)Mj(k)−1 dk

)1/2

,

‖f‖Yj
=

(∫

R3

f(k)2λj(k)−1Mj(k)−1 dk

)1/2

.

Lemma 4.1 Let j ∈ {n, p} and let sj > 0 be symmetric in k and k′. Then the kernel of

Qj, N(Qj) = {f ∈ Xj : Qj(f) = 0}, only consists of Maxwellians:

N(Qj) = {σMj : σ = σ(x) ∈ R}.

Proof: The proof is similar to the proofs of Theorem 3.7 and Lemma 3.8. In the following

we omit the index j. First we symmetrize the collision operator by setting fs = (λ/M)1/2f

and Qs(fs) = (λM)−1/2Q(f). Then

Qs(fs) = (λM)−1/2

(
M

∫

R3

s(x, k, k′)f ′ dk′ − λf

)

=

∫

R3

s(x, k, k′)

(
MM ′

λλ′

)1/2

f ′
s dk′ − fs,

where M ′ = M(k′) and λ′ = λ(k′). Since s is symmetric in k and k′ by assumption, the

operator Qs : L2(R3) → L2(R3) is self-adjoint (see Section 2.1).

Now we analyze the kernel of Qs. By definition of λ we have

∫

R3

s(x, k, k′)
M ′

λ
dk′ = 1
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and therefore

−
∫

R3

Qs(fs)fs dk =

∫

R3

[
f 2

s −
∫

R3

s(x, k, k′)

(
MM ′

λλ′

)1/2

f ′
sfs dk′

]
dk

=
1

2

∫

R3

(∫

R3

s(x, k, k′)
M ′

λ
dk′

)
f 2

s dk

+
1

2

∫

R3

(∫

R3

s(x, k, k′)
M

λ′
dk

)
(f ′

s)
2 dk′

−
∫

R3

∫

R3

s(x, k, k′)

(
MM ′

λλ′

)1/2

f ′
sfs dk′ dk

=
1

2

∫

R3

∫

R3

s(x, k, k′)MM ′

(
fs√
λM

− f ′
s√

λ′M ′

)2

dk dk′

≥ 0. (4.11)

Thus, Qs(fs) = 0 implies that

fs√
λM

=
f ′

s√
λ′M ′

for k, k′ ∈ R
3.

We conclude that both sides must be constant, fs/
√

λM = σ = const., where σ = σ(x)

is a parameter. In the original variables, Q(f) = 0 implies f =
√

M/λfs =
√

M/λ ·
σ
√

λM = σM for all σ ∈ R. Conversely, if f = σM for some σ ∈ R, the formulation (4.9)

immediately gives Q(f) = 0. This proves the lemma. ¤

Lemma 4.2 Let the assumptions of Lemma 4.1 hold. Then

(1) The equation Qj(f) = g ∈ Yj has a solution f ∈ Xj if and only if

∫

R3

g(k) dk = 0.

In this situation, any solution of Qj(f) = g can be written as f + σMj, where

σ = σ(x) is a parameter.

(2) The solution f ∈ Xj of Qj(f) = g is unique if the orthonogality relation

∫

R3

f(k)λj(k) dk = 0 (4.12)

is satisfied.

This lemma is a consequence of the Fredholm alternative which we prove first.
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Lemma 4.3 (Fredholm alternative)

Let X be a Hilbert space with scalar product (·, ·) and Q : X → X a linear, continuous

and closed operator (i.e. R(Q) = {g ∈ X : ∃ f ∈ X : Q(f) = g} is closed). Then

Q(f) = g has a solution ⇐⇒ g ∈ N(Q∗)⊥.

Proof: We show first that N(Q∗) = R(Q)⊥. Indeed,

f ∈ N(Q∗) ⇐⇒ Q∗(f) = 0 ⇐⇒ (g,Q∗(f)) = 0 for all g ∈ X

⇐⇒ (Q(g), f) = 0 for all g ∈ X ⇐⇒ f ⊥ R(Q)

⇐⇒ f ∈ R(Q)⊥.

Thus, since Q is closed,

R(Q) = R(Q) = R(Q)
⊥⊥

= N(Q∗)⊥.

This identity is equivalent to the assertion. ¤

Proof of Lemma 4.2: Again, we omit the index j.

(1) It is possible to show that the operator Qs : L2(R3) → L2(R3) is linear, continuous,

and closed. Moreover, we have shown in the proof of Lemma 4.1 that Qs is self-adjoint. We

conclude from Lemma 4.3 that Qs(fs) = gs has a solution if and only if gs ∈ N(Q∗
s)

⊥ =

N(Qs)
⊥ or ∫

R3

gsh dk = 0 for all h ∈ N(Qs).

By Lemma 4.1, the kernel of Qs is spanned by
√

λM , such that this equivalent to

0 =

∫

R3

gs

√
λM dk =

∫

Rd

g dk,

since in the original variables we have

g = Q(f) =
√

λMQs(fs) =
√

λMgs.

Let f1 and f2 be two solutions of Q(f) = g. Then, since Q is linear, Q(f1 − f2) =

Q(f1) − Q(f2) = 0 and f1 − f2 ∈ N(Q). This shows that f1 = f2 + σM for some σ ∈ R.

(2) We only give a sketch of the proof and refer to [53] for details. It is possible to

show that the operator −Q is coercive in the following sense:
∫

R3

(−Q(f))fM−1 dk ≥ c‖f‖2
X (4.13)

for some c > 0 and for all f ∈ X satisfying (4.12). Clearly, this implies that Q is one-to-

one on the subset of functions satisfying (4.12), and the uniqueness property is shown. In

order to prove (4.13) one needs to show that Id + Q is a Hilbert-Schmidt operator and to

use general properties of these operators (see [53]). ¤
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Lemma 4.4 Let the assumptions of Lemma 4.1 hold and assume that

sj(x,Ak,Ak′) = sj(x, k, k′) for x, k, k′ ∈ R, j ∈ {n, p}, (4.14)

and for all isometric matrices A ∈ R3×3. Then the equations

(Qn(hn,i))(k) = kiMn(k), (Qp(hp,i))(k) =
m∗

e

m∗
h

kiMp(k), i = 1, 2, 3,

have solutions hn(x, k) = (hn,1(x, k), . . . , hn,3(x, k)) and hp(x, k) = (hp,1(x, k), . . . , hp,3(x, k))

with the property that there exist µn(x), µp(x) ≥ 0 satisfying

∫

R3

k ⊗ hn dk = −µn(x)I, (4.15)
∫

R3

m∗
e

m∗
h

k ⊗ hp dk = −µp(x)I, (4.16)

where I ∈ R3×3 is the unit matrix and a ⊗ b = a>b ∈ R3×3 for a, b ∈ R3.

In the statement of the lemma we have omitted some technical assumptions on the

scattering rates sn and sp (regularity conditions). Again, we refer to [53] for the precise

hypotheses.

Proof: Again we omit the index j ∈ {n, p}. The existence of a solution h(k) = (h1(k),

h2(k), h3(k)) of Q(h) = kM(k) follows from Lemma 4.3 (1) since

∫

R3

kiM(k) dk = 0 for all i = 1, 2, 3.

We only show (4.15) since the proof of (4.16) is similar.

Let A be the matrix of a rotation with axis k1. Then (Ak)1 = k1 for all k =

(k1, k2, k3)
> ∈ R3. Since A is isometric, i.e., |Ak| = |k|, we obtain M(Ak) = N−1e−|Ak|2/2 =

N−1e−|k|2/2 = M(k) and (Ak)1M(Ak) = k1M(k). This implies, together with the assump-

tion (4.14) and the transformation w = Ak′ with dw = | det A|dk′ = dk′

(Q(h1 ◦ A))(k) =

∫

R3

s(x, k, k′)[M(k)h1(Ak′) − M(k′)h1(Ak)] dk′

=

∫

R3

s(x,Ak,Ak′)[M(Ak)h1(Ak′) − M(Ak′)h1(Ak)] dk′

=

∫

R3

s(x,Ak, w)[M(Ak)h1(w) − M(w)h1(Ak)] dw

= (Q(h1))(Ak) = (Ak)1M(Ak) = k1M(k) = (Q(h1))(k),
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and thus Q(h1 ◦ A − h1) = 0. Another computation yields (see (4.10))

∫

R3

h1(Ak)λ(k) dk =

∫

R3

∫

R3

s(x, k, k′)h1(Ak)M(k′) dk′ dk

=

∫

R3

∫

R3

s(x,Ak,Ak′)h1(Ak)M(Ak′) dk′ dk

=

∫

R3

∫

R3

s(x, v, w)h1(v)M(w) dw dv

=

∫

R3

h1(v)λ(v) dv

and ∫

R3

(h1 ◦ A − h1)λ dk = 0.

This is the orthogonality condition (4.12) which ensures the uniqueness of the solution of

Q(h1 ◦ A − h1) = 0. Therefore, h1 ◦ A − h1 = 0. We conclude that h1 remains invariant

under a rotation with axis k1. In particular, we can write

h1(k) = H1(k1, |k|2 − k2
1).

Now, let A be the isometric matrix of the linear mapping k 7→ (−k1, k2, k3). Since

k 7→ k1M(k) is odd, a similar computation as above gives Q(h1 ◦ A) = −Q(h1) and

∫

R3

(h1 ◦ A + h1)λ dk = 0.

This implies as above that h1 ◦ A + h1 = 0. Thus, h1 is an odd function with respect to

k1.

In a similar way, we can show that

hi(k) = Hi(ki, |k|2 − k2
i ), i = 2, 3,

and Hi are odd functions with respect to ki. In fact, all the functions Hi equal H since,

for instance, exchanging k1 and k2 in

Q(H1(k1, k
2
2 + k2

3)) = k1M(k2
1 + k2

2 + k2
3)

(with a slight abuse of notation) leads to

Q(H1(k2, k
2
1 + k2

3)) = k2M(k2
1 + k2

2 + k2
3) = Q(H2(k2, |k|2 − k2

2))

or Q(H1 − H2) = 0, and a similar argument as above shows that H1 = H2. We set

H := H1.
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Since H is odd with respect to the first argument and |k|2 − k2
j does not depend on

kj, we obtain for all i 6= j,
∫

R3

kihj(k) dk =

∫

R3

kiH(kj, |k|2 − k2
j ) dk = 0. (4.17)

Furthermore,
∫

R3

kihi(k) dk =

∫

R3

kiH(ki, |k|2 − k2
i ) dk =

∫

R3

kjH(kj, |k|2 − k2
j ) dk

=

∫

R3

kjhj(k) dk

for all i, j. This means that the integral is independent of i, and we can set

µ := −
∫

R3

k1h1(k) dk = −
∫

R3

Q(h1)h1M
−1 dk.

The parameter µ depends on x since h1 depends on x through Q. Moreover, by (4.11),

µ(x) =

∫

R3

(−Q(h1))h1M
−1 dk ≥ 0

and by (4.17) ∫

R3

k ⊗ h(k) dk = −µ(x)I,

which shows (4.15). ¤

Now, we are able to analyze the scaled Boltzmann equations (4.7)–(4.8). Setting for-

mally α = 0 gives

Qn(fn) = 0, Qp(fp) = 0.

By Lemma 4.1, these equations possess the solutions

fn0 = n(x, t)Mn, fp0 = p(x, t)Mp, (4.18)

respectively, where n(x, t) and p(x, t) are some parameters. Since
∫

R3

fn0 dk = n(x, t),

∫

R3

fp0 dk = p(x, t),

we can interpet n and p as scaled number densities of electrons and holes, repectively. In

order to obtain more information from (4.7)–(4.8) we use the Hilbert method. The idea is

to expand fn and fp in terms of powers of α,

fn = fn0 + αfn1 + α2fn2 + · · · , (4.19)

fp = fp0 + αfp1 + α2fp2 + · · · , (4.20)

and to derive equations for fni and fpi. We substitute this ansatz into (4.7)–(4.8) and

equate coefficients of equal powers of α, noticing that Qj and Ij are linear operators,
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• terms α0:

Qn(fn0) = 0, Qp(fp0) = 0; (4.21)

• terms α1:

k · ∇xfn0 − Eeff · ∇kfn0 = Qn(fn1), (4.22)

k · ∇xfp0 + Eeff · ∇kfp0 = Qp(fp1); (4.23)

• terms α2:

∂tfn0 + k · ∇xfn1 − Eeff · ∇kfn1 = Qn(fn2) + In(fn0, fp0), (4.24)

∂tfp0 + k · ∇xfp1 + Eeff · ∇kfp1 = Qp(fp2) + Ip(fn0, fp0). (4.25)

Theorem 4.5 The Hilbert expansions (4.19)–(4.20) are solvable up to second order if

and only if

n =

∫

R3

fn0 dk, p =

∫

R3

fp0 dk (4.26)

solve the (bipolar) drift-diffusion equations

∂tn − divxJn = −R(n, p), Jn = µn(∇xn + nEeff), (4.27)

∂tp − divxJp = −R(n, p), Jp = −µp(∇xp − pEeff), (4.28)

R(n, p) = A(x)(np − n2
i ), (4.29)

where

A(x) =
1

n2
i

∫

R3

∫

R3

g(x, k, k′) dk′ dk, ni =
√

NnNp e(Ev−Ec)/2kBT .

Proof: We already solved (4.21). With the solutions (4.18) we can rewrite (4.22)–(4.23),

using ∇kMn(k) = −kMn(k),∇kMp(k) = −(m∗
e/m

∗
h)kMp(k),

Qn(fn1) = Mnk · (∇xn + nEeff) = Mnk · Jn

µn

,

Qp(fp1) =
m∗

e

m∗
h

Mpk · (∇xp − pEeff) = −m∗
e

m∗
h

Mpk · Jp

µp

.

By Lemma 4.4, these equations have solutions and moreover, any solution can be expressed

as

fn1 =
Jn

µn

· hn + σnMn, fp1 = −Jp

µp

· hp + σpMp

for some unspecified parameters σn(x, t), σp(x, t).
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Equation (4.24) is solvable by Lemma 4.2 (1) if and only if

0 =

∫

R3

(∂tfn0 + k · ∇xfn1 − divk(Eefffn1) − In(fn0, fp0)) dk

= ∂tn +

∫

R3

k · ∇xfn1 dk −
∫

R3

In(fn0, fp0) dk.

We infer from the definition (4.15) of µn that
∫

R3

k · ∇xfn1 dk =

∫

R3

k · ∇x

(
Jn

µn

· hn + σnMn

)
dk

=
3∑

i,j=1

∂

∂xi

(
Jnj

µn

∫

R3

kihnj dk

)
+ ∇xσn ·

∫

R3

kMn dk

= −
3∑

i,j=1

∂

∂xi

Jnjδij = −divxJn.

Furthermore,

−
∫

R3

In(fn0, fp0) dk =

∫

R3

∫

R3

g(x, k′, k)

[
exp

(
Ec − Ev

kBT
+

|k|2
2

+
m∗

e

m∗
h

|k′|2
2

)

×nMn(k)pMp(k
′) − 1

]
dk′ dk

=

∫

R3

∫

R3

g(x, k, k′)

[
exp

(
Ec − Ev

kBT

)
np

NnNp

− 1

]
dk′ dk

=

∫

R3

∫

R3

g(x, k, k′)

[
np

n2
i

− 1

]
dk′,.dk

= A(x)(np − n2
i ).

This shows (4.27) and (4.29). The proof of (4.28) is analogous. ¤

The first equations in (4.27) and (4.28) show that the quantities Jn and Jp can be

interpreted as particle current densities. They are the sum of the drift currents µnnEeff ,

µppEeff and the diffusion currents µn∇xn, −µp∇xp, respectively, which explains the name

of the model.

Equations (4.27)–(4.29) are in scaled form. In order to scale back to the physical

variables we notice that the scaled number densities, now called ns and ps, read

ns =

∫

R3

fn0 dks =

(
~

m∗
ev

)3 ∫

Rd

fn0 dk =

(
~2

m∗
ekBT

)3/2

n,

ps =

∫

R3

fn0 dks =

(
~2

m∗
ekBT

)3/2

p,
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where n and p are the unscaled variables. Thus, using

ts =
t

τR

, Eeff,s =
ι0
UT

Eeff , xs =
x

ι0
, µn,s =

m∗
e

qτc

µn,

where UT = kBT/q is the thermal voltage, we obtain after some computations the unscaled

equations

∂tn − 1

q
divxJn = −R(n, p), Jn = qµn(UT∇xn + nEeff), (4.30)

∂tp +
1

q
divxJp = −R(n, p), Jp = −qµp(UT∇xp − pEeff), (4.31)

the unscaled recombination-generation rate equals

R(n, p) = A(x)(np − n2
i )

for some unscaled A(x) and with the intrinsic density

ni =

(
2πkBT

√
m∗

em
∗
h

~2

)3/2

exp

(
Ev − Ec

2kBT

)

which equals the intrinsic density (2.56) up to a factor 2/(2π)3/2. The reason for this

difference is that we ignored the moment density of states in (4.26) (see Section 2.4).

Equations (4.30)–(4.31) are solved in x ∈ R3, t > 0, together with the initial conditions

n(x, 0) = nI(x), p(x, 0) = pI(x), x ∈ R
3.

For a self-consistent treatment of the electric field Eeff = −∇V , equations (4.30)–(4.31)

are supplemented by the Poisson equations

εs∆V = q(n − p − C(x)),

where εs is the semiconductor permittivity and C(x) the doping concentration (see Propo-

sition 3.5).

Mathematically, (4.30)–(4.31) are parabolic convection-diffusion equations with diffu-

sion coefficients

Dn := µnUT , Dp := µpUT

and so-called mobilities µn and µp. It is remarkable that the quotients of diffusivities and

mobilities are constant; the equations

Dn

µn

=
Dp

µp

= UT

are called Einstein relations.

The derivation of the drift-diffusion model is mainly based on the following assump-

tions:
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• The mean free path λc between two consecutive scattering events is much smaller

than the mean free path λR between two recombination-generation events (typically,

λc ∼ 10−8m and λR ∼ 10−5m).

• The device diameter is of the order of λ0 =
√

λRλc (typically, λ0 ∼ 10−6m).

• The electrostatic potential is of the order of UT = kBT/q (at room temperature:

UT ≈ 0.026V).

This implies that the drift-diffusion model is appropriate for semiconductor devices with

typical length scales not much smaller than 10−6m and applied voltages much smaller

than 1V. However, in applications, this model is used also for voltages much larger than

UT , sometimes together with some correction forms.

4.2 Derivation of the hydrodynamic equations

In the previous section we have derived a fluiddynamical model from the Boltzmann

equation by using the Hilbert expansion method. A second approach for the derivation

of fluid models is the moment method which consists in deriving evolution equations for

averaged quantities, like particle density, current density, and energy.

We consider the semi-classical Boltzmann equation in the parabolic-band approxima-

tion

∂tf +
~

m∗
e

k · ∇xf − q

~
Eeff · ∇kf = Q(f), x, k ∈ R

d, t > 0. (4.32)

We assume that the collision operator splits into two parts

Q(f) = Q1(f) + Q2(f),

with the mean free paths λc for the first part and λ for the second part. Similarly as in

Section 4.1 we choose the reference length λ, the reference velocity v =
√

kBTL/m∗
e, the

reference time τ = λ/v, the reference wave vector m∗
ev/~, and the reference field UT /λ,

where UT = kBTL/q, and TL is the lattice temperature. Then, defining

x = λxs, t = τts, k =
m∗

ev

~
ks, Eeff =

UT

λ
Eeff,s

and

Q1(f) =
1

τc

Q1,s(f), Q2(f) =
1

τ
Q2,n(f),

where τc = λc/v, inserting this scaling into (4.32), multiplying this equation by τ , and

omitting the index s, gives the scaled equation

∂tfα + k · ∇xfα − Eeff · ∇kfα =
1

α
Q1(fα) + Q2(fα), (4.33)
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where α = λc/λ.

For the following we set

〈g(k)〉 =

∫

Rd

g(k) dk

for any function g depending on k. We call the averaged quantities 〈χ(k)f〉 moments of

f , In particular, 〈f〉, 〈kif〉, and 〈1
2
|k|2f〉 are called the zeroth, first, and second moments

of f , respectively.

The collision operators are assumed to satisfy

〈α−1Q1(f) + Q2(f)〉 = 0, (4.34)

〈k(α−1Q1(f) + Q2(f))〉 = −〈kf〉, (4.35)

〈1
2
|k|2(α−1Q1(f) + Q2(f))〉 = d

2
〈f〉 − 〈c1

2
|k|2f〉 (4.36)

for all functions f . The following example shows that the relaxation-time operator (3.40)

fulfills these conditions.

Example 4.6 Let

(Q1(f))(x, k, t) = α〈f(x, ·, t)〉M(k), (Q2(f))(x, k, t) = −f(x, k, t),

where M(k) = (2π)−d/2e−|k|2/2. Then α−1Q1 + Q2 satisfies (4.34)–(4.36). Indeed, since

〈M〉 =
1

(2π)d/2

∫

Rd

e−|k|2/2 dk = 1,

〈kiM〉 =
1

(2π)d/2

∫

Rd

kie
−k2

i /2 dki

∏

j 6=i

∫

R

e−k2
j /2 dkj = 0,

〈1
2
|k|2M〉 =

1

2(2π)d/2

d∑

i=1

∫

Rd

k2
i e

−k2
i /2 dki

∏

j 6=i

∫

R

e−k2
j /2 dkj,

=
1

2(2π)d/2

d∑

i=1

(2π)1/2(2π)(d−1)/2 =
d

2
,

we obtain

〈α−1Q1(f) + Q2(f)〉 = 〈f〉〈M〉 − 〈f〉 = 0,

〈k(α−1Q1(f) + Q2(f))〉 = 〈f〉〈kM〉 − 〈kf〉 = −〈kf〉,
〈1

2
|k|2(α−1Q1(f) + Q2(f))〉 = 〈f〉〈1

2
|k|2M〉 − 〈1

2
|k|2f〉 = d

2
〈f〉 − 〈1

2
|k|2f〉. ¤

Multiplying the scaled Boltzmann equation (4.33) by 1, k, 1
2
|k|2, respectively, and

integrating over k ∈ Rd yields the so-called moment equations

∂t〈fα〉 + divx〈kfα〉 = 0 (4.37)

∂t〈kfα〉 + divx〈k ⊗ kfα〉 + Eeff〈fα〉 = −〈kfα〉 (4.38)

∂t〈1
2
|k|2fα〉 + divx〈1

2
k|k|2fα〉 + Eeff〈kfα〉 = d

2
〈kfα〉 − 〈1

2
|k|2fα〉, (4.39)
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where we have used the divergence theorem to compute the force terms:

〈Eeff · ∇kfα〉 = 〈divk(Eefffα)〉 = 0,

〈kiEeff · ∇kfα〉 = −〈∇kki · Eefffα〉 = −〈Eeff,ifα〉,
〈1

2
|k|2Eeff · ∇kfα〉 = −〈1

2
∇k|k|2 · Eefffα〉 = −〈k · Eefffα〉.

The goal of the moment method is to express all integrals in the moment equations in

terms of the first moments 〈fα〉,〈kfα〉 and 〈1
2
|k|2fα〉. However, it is not clear how to express

the fluxes 〈k⊗kfα〉 and 〈1
2
k|k|2fα〉 in terms of the first moments. Moreover, the third-order

moment flux 〈1
2
k|k|2fα〉 cannot be written with the help of the moments up to second

order. Therefore, an additional assumption is necessary. We present two approaches. The

first one consists in assuming that the mean free path λc of the first part of the collision

operator is much smaller than the typical device length λ such that α = λc/λ ¿ 1 and to

perform the formal limit α → 0. This idea is due to Bardos, Golse and Levermore [6, 7]

(also see the review [36]). The second approach closes the moment hierarchy by choosing

a special! function fα which gives the minimum of the entropy functional. This approach

is called the entropy minimization principle and has been used by Levermore [42, 43].

For the first approach we impose the following assumptions. Let fα be a solution to

(4.33) such that, as α → 0,

fα → f pointwise almost everywhere, (4.40)

〈χ(k)fα〉 → 〈χ(k)f〉 for χ(k) = 1, k1, . . . , kd, |k|2, (4.41)

and assume that

Q1(f) = 0 if and only if f = exp(α + β · k + γ|k|2), (4.42)

where α, γ ∈ R and β = (β1, . . . , βd)
> ∈ Rd.

The last condition implies that there exist functions n(x, t) > 0, u(x, t) ∈ R, and

T (x, t) > 0 such that f ∈ N(Q1) can be written equivalently as a so-called shifted

Maxwellian (see (3.41))

M(x, k, t) =
n(x, t)

(2πT (x, t))d/2
exp

(
−|k − u(x, t)|2

2T (x, t)

)
. (4.43)

The functions n, u, and T can be interpreted physically as the particle density, mean

velocity, and particle temperature, respectively.

Lemma 4.7 The Maxwellian (4.43) satisfies

〈M〉 = n, 〈kM〉 = nu, 〈k ⊗ kM〉 = n(u ⊗ u) + nTI,
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〈1
2
|k|2M〉 = n(1

2
|u|2 + d

2
T ), 〈k|k|2M〉 = 2nu(1

2
|u|2 + d+2

2
T ),

where I is the identity matrix in Rd×d and a ⊗ b = a>b for a, b ∈ Rd.

The quantity J = −nu is called the particle current density, and e = 1
2
|u|2 + d

2
T is the

total energy consisting of the sum of kinetic and thermal energy.

Proof: We use the identities
∫

R

x2me−x2/2 dx = (2m − 1)(2m − 3) · . . . · 5 · 3 · 1
√

2π,

∫

R

x2m+1e−x2/2 dx = 0 (4.44)

for m ∈ N0 and the transformation z = (k − u)/
√

T to compute

〈M〉 = n

∫

Rd

e−|z|2/2 dz = n,

〈kM〉 =
n

(2π)d/2

∫

Rd

(u +
√

Tz)e−|z|2/2 dz = nu

〈k ⊗ kM〉 =
n

(2π)d/2

∫

Rd

(u +
√

Tz) ⊗ (u +
√

Tz)e−|z|2/2 dz

= n(u ⊗ u) + nT (2π)−d/2

∫

Rd

z ⊗ ze−|z|2/2 dz

= n(u ⊗ u) + nTI.

From the last identity follows

〈1
2
|k|2M〉 = 1

2

∑d
i=1(nu2

i + nT ) = n(1
2
|u|2 + d

2
T ),

and finally,

〈ki|k|2M〉 =
n

(2π)d/2

d∑

j=1

∫

Rd

(ui +
√

Tzi)(uj +
√

Tzj)
2e−|z|2/2 dz

= nui|u|2 +
uinT

(2π)d/2

d∑

j=1

z2
j e

−|z|2/2 dz

+2
nT

(2π)d/2

d∑

j=1

uj

∫

Rd

zizje
−|z|2/2 dz

+
nT 3/2

(2π)d/2

∫

Rd

zi|z|2e−|z|2/2 dz

= nui|u|2 + nT

d∑

j=1

(ui + 2ujδij)

= 2nui

(
1

2
|u|2 +

d + 2

2
T

)
. ¤
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Theorem 4.8 Let the assumptions (4.40)–(4.42) hold. Then, as α → 0, the moment

equations (4.37)–(4.38) become

∂tn − divJ = 0, (4.45)

∂tJ − div

(
J ⊗ J

n

)
−∇(nT ) + nEeff = −J, (4.46)

∂t(ne) − div[J(e + T )] + J · Eeff = −n(e − d

2
), (4.47)

where J = −nu and e = 1
2
|u|2 + d

2
T .

Equations (4.45)–(4.47) are called the (scaled) hydrodynamic equations for semicon-

ductors. They have the same form as the Euler equations of gas dynamics subject to the

electric force Eeff and the momentum and energy relaxation terms −J , −n(e − d
2
), re-

spectively. Mathematically, they are nonlinear equations of hyperbolic type. For constant

particle temperature T = 1 (or T = TL in unscaled variable) equations (4.45)–(4.46) are

referred to as the isothermal hydrodynamic model. For Coulomb forces Eeff = −∇V , they

are supplemented with the scaled Poisson equation

λ2
D∆V = n − C(x),

where the so-called Debye length λ2
D = εsUT /(qL2 max C) comes from the scaling. Equa-

tions (4.45)–(4.46) are solved for x ∈ Rd, t > 0, together with the initial conditions

n(x, 0) = nI(x), J(x, 0) = JI(x), T (x, 0) = TI(x), x ∈ R
d,

which determine the initial function e(x, 0).

Proof: Assumption (4.40) implies that for all smooth functions φ,
∫

R2d+1

(∂tfα + k · ∇xfα −Eeff · ∇kfα)φ dk dx = −
∫

R2d+1

fα(∂tφ + k · ∇xφ−Eeff · ∇kφ) dk dx

is bounded; therefore, in the weak sense,

Q1(f) = lim
α→0

Q1(fα) = 0

and by assumption (4.42), f = M . Assumption (4.41) allows us to pass to the limit α → 0

in the moment equations (4.37)–(4.38) yielding

∂t〈M〉 + div〈kM〉 = 0,

∂t〈kM〉 + div〈k ⊗ kM〉 + Eeff〈M〉 = −〈kM〉,
∂t〈1

2
|k|2M〉 + div〈1

2
k|k|2M〉 + Eeff〈kM〉 = d

2
〈M〉 − 〈1

2
|k|2M〉.

Then Lemma 4.7 gives the assertion. ¤
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Remark 4.9 The unscaled hydrodynamic equations can be written as follows:

∂tn − 1

q
divJ = 0 (4.48)

∂tJ − 1

q
div

(
J ⊗ J

n

)
+

qkB

m∗
e

∇(nT ) − q2

m∗
e

nEeff = −J

τ
(4.49)

∂t(ne) − 1

q
div[J(e + kBT )] − J · Eeff = −n

τ

(
e − d

2
kBTL

)
, (4.50)

where the energy is given by

e =
m∗

e

2q2

|J |2
n2

+
d

2
kBT. ¤

We now turn to the second approach of deriving the hydrodynamic model. The main

hypotheses of the first approach are α ¿ 1 and that the kernel of Q1 consists of the

shifted Maxwellians such that they can be used as a closure function in the moment

equations. The idea of the second approach is to choose a closure function f ∗ in the

moment equations, which minimizes the entropy functional

(H(f))(x, t) =

∫

Rd

f(log f − 1) dk. (4.51)

We will see that f ∗ is in fact equal to the shifted Maxwellian. We present this entropy

minimization method in a slightly more general framework.

Let χi(k) be some monomials in the variables k1, . . . , kd for i = 0, . . . , N and set α = 1.

The moment equations are now

∂t〈χi(k)f〉 + divx〈kχi(k)f〉 − Eeff · 〈χi(k)∇kf〉 = 〈χi(k)(Q1 + Q2)〉 (4.52)

for x ∈ Rd, t > 0, i = 0, . . . , N . In order to close this system of equations we choose the

distribution function f ∗ which minimizes the entropy (4.51) among those functions whose

moments m(x) = (m0(x), . . . ,mN(x)) are given. In the first approach, we have used the

moments m0 = n, mi = −nui (i = 1, . . . , d), and md+1 = e. More precisely, let f ∗ be the

solution to the so-called Gibbs problem

H(f ∗) = min{H(f) : 〈χi(k)f〉 = mi(x) for all x, i}. (4.53)

Notice that the physical entropy is −H(f), i.e., the physical entropy has to be maximized.

Lemma 4.10 The formal solution to (4.53) is

f ∗(x, k) = e−λ(x)·χ(k), (4.54)

where λ(x) are Lagrange multipliers and χ(k) = (χ0(k), . . . , χN(k))>.
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Proof: Using Lagrange multipliers, we have to analyze the functional

G(f, λ) =

∫

Rd

f(log f − 1) dk +
N∑

i=0

λi(〈χif〉 − mi).

We claim that
∂G(f, λ)

∂f
(g) =

∫

Rd

g log f dk + λ · 〈χg〉. (4.55)

Indeed, we compute formally

1

ε
[G(f + εg, λ)−G(f, λ)] =

∫

Rd

[
1

ε
f log

(
1 + ε

g

f

)
+ g(log(f + εg) − 1)

]
dk +

1

ε
λ · 〈χεg〉.

Since log(1 + εg/f) ∼ εg/f (ε → 0), we obtain

lim
ε→0

1

ε
[G(f + εg, λ) − G(f, λ)] = lim

ε→0

∫

Rd

g log(f + εg) dk + λ · 〈χg〉

=

∫

Rd

g log f dk + λ · 〈χg〉,

which proves (4.55).

Now, the necessary condition

∂G(f ∗, λ)

∂f
(g) = 0 for all functions g

for an extremal f leads to
∫

Rd

g(log f ∗ + λ · χ) dk = 0 for all functions g

and hence, log f ∗ = −λ · χ. ¤

The Lagrange multipliers λi(x) can be derived by inserting (4.54) into the constraints

(4.53):

m(x) =

∫

Rd

χi(k)e−λ(x)·χ(k) dk for x ∈ R
d, i = 0, . . . , N. (4.56)

These are implicit equations for λ0, . . . , λN which, generally, cannot be directly inverted

to give explicit expressions for λ0, . . . , λN . However, when choosing

m = (n, nu, ne) and χ(k) =

(
1, k,

1

2
|k|2

)
, (4.57)

we can solve (4.56). To see this, we observe that

f ∗ = exp(−λ · χ) = exp

(
−λ0 −

d∑

j=1

λjkj −
1

2
λd+1|k|2

)
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can be equivalently written as the shifted Maxwellians

f ∗ =
n

(2πT )d/2
exp

(
−|k − u|2

2T

)
,

where now the parameters n, u, T play the role of the Lagrange multipliers. The notation

is chosen correctly since the moments of this Maxwellian yield the moments (n, nu, ne).

This shows that (4.56) is satisfied. Then Lemma 4.7 and (4.34)–(4.36) show that the choice

f = f ∗ in the moment equations (4.52) yields the hydrodynamic model (4.45)–(4.47). We

have shown the following result.

Theorem 4.11 Assume that (4.34)–(4.36) hold and let f ∗ be the solution to the Gibbs

problem (4.53). Then, choosing mi(x) and χi(k) according to (4.57), the moments (n, nu, e)

solve the hydrodynamic equations (4.45)–(4.47).

The hydrodynamic equations have been first introduced by Bløtekjær [10] and Bac-

carani and Wordeman [5] in the context of semiconductor devices. In their model, some-

times called the BBW equations, the heat conduction term −div(κ(n, T )∇T ) is added to

the left-hand side of (4.50). The heat conductivity κ(n, T ) is usually modeled in R3 by

κ(n, T ) =
3

2

k2
Bτ

m∗
e

nT

(see [5]). The heat conduction term makes equation (4.50) parabolic since we can write it

as
d

2
kB∂tT − div(κ(n, T )∇T ) = function of n, J, T and first derivatives.

In particular, the heat conduction term is often used in numerical simulations. However,

it is not clear how to justify this term.

4.3 Derivation of the spherical harmonics expansion equations

In Section 4.1 we have derived the drift-diffusion model from the Boltzmann equation by

the Hilbert expansion method under the assumption that the mean free path between

two consecutive collision events is much smaller than the typical time. In this section we

perform a Hilbert expansion using the same hypothesis but a different collision operator.

We show that this approximation leads to the Spherical Harmonics Expansion (SHE)

model.

We consider the semi-classical Boltzmann equation

∂tf + v(k) · ∇kf − q

~
Eeff · ∇kf = Qel(f) + Qinel(f), x ∈ R

3, k ∈ B, t > 0, (4.58)
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where v(k) = ~−1∇kE(k), Qel(f) models elastic collisions and is given by

(Qel(f))(x, k, t) =

∫

B

σ(x, k, k′)δ(E(k′) − E(k))(f ′ − f) dk′, (4.59)

with the scattering rate σ(x, k, k′) and f = f(x, k, t), f ′ = f(x, k′, t) (see Example 3.6).

Furthermore, Qinel(f) models inelastic collisions (e.g., inelastic corrections to electron-

phonon and electron-electron scattering) and will not specified in this section. We impose

the following assumptions:

• The operator Qinel is linear.

• The scattering rate σ is positive and symmetric in k and k′:

σ(x, k, k′) > 0, σ(x, k, k′) = σ(x, k′, k) for all x ∈ R
3, k, k′ ∈ B. (4.60)

We scale the Boltzmann equation (4.58) by using the same scaling as in Section 4.1,

i.e., we fix the reference velocity v0 =
√

kBT/m∗
e, the characteristic times τel, τinel of elastic

and inelastic collisions, respectively, with corresonding mean free paths λel = τelv0 and

λinel = τinelv0, the reference length λ0 =
√

λelλinel and time τ0 = λ0/v0. Then, with the

scaling

x = λ0xs, t = τinelts, k =
m∗

ev0

~
ks, Eeff =

UT

λ0

Eeff,s,

E(k) = m∗
ev

2
0Es(ks), Qel(f) =

1

τel

Qel,s(f), Qinel(f) =
1

τinel

Qinel(f),

we obtain, omitting the index s and introducing α2 = λel/λinel,

α2∂tf + α (∇kE(k) · ∇xf − Eeff · ∇kf) = Qel(f) + α2Qinel(f), (4.61)

since v0τel/λ0 = α. We assume that α ¿ 1.

We now analyze the collision operator Qel. In [8] the following results are shown.

Lemma 4.12 Assume that (4.60) holds. Then

(1) −Qel is self-adjoint and non-negative on L2(B), i.e.

−
∫

B

Qel(f)f dk ≥ 0 for all f ∈ L2(B).

(2) The kernel of Qel is given by

N(Qel) = {f ∈ L2(B) : f only depends on E(k)}.
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(3) The equation Qel(f) = h has a solution if and only if

∫

B

h(k)δ(e − E(k)) dk = 0 for all e ∈ R(E). (4.62)

(4) For all functions g only depending on E(k) and all f ∈ L2(B) there holds

Qel(gf) = gQel(f). (4.63)

In the statement of the lemma we have omitted some technical assumptions on the

regularity of σ(x, k, k′) and g(E(k)); we refer to [8] for details.

Proof: (1) Let x ∈ R3, f, g ∈ L2(B), and set f = f(k), f ′ = f(k′), g = g(k), g′ = g(k′),

E = E(k), and E ′ = E(k′). Then, using the property

∫

B

δ(E ′ − E)ψ(k, k′) dk′ =

∫

B

δ(E − E ′)ψ(k, k′) dk′

for any (smooth) function ψ and employing the symmetry of σ, we compute

∫

B

Qel(f)g dk =
1

2

∫

B2

σ(x, k, k′)δ(E ′ − E)(f ′ − f)g dk′ dk

+
1

2

∫

B2

σ(x, k′, k)δ(E − E ′)(f − f ′)g′ dk dk′

= −1

2

∫

B2

σ(x, k, k′)δ(E ′ − E)(f ′ − f)(g′ − g) dk′ dk

=

∫

B

Qel(g)f dk.

This shows that Qel is self-adjoint. Taking f = g gives

−
∫

B

Qel(f)f dk =
1

2

∫

B2

σ(x, k, k′)δ(E ′ − E)(f ′ − f)2 dk′ dk ≥ 0 (4.64)

and thus, −Qel is non-negative.

(2) Let f ∈ N(Qel). Then (4.64) implies that

δ(E(k′) − E(k))(f(k′) − f(k))2 = 0 for k, k′ ∈ B.

Heuristically, δ(x) = 0 for x 6= 0 and δ(x) 6= 0 for x = 0. This motivates

E(k′) = E(k) and f(k′) = f(k) for k, k′ ∈ B.

Hence, f must be constant on each energy surface {k ∈ B : E(k) = e}. We infer that f

is a function of E(k) only.
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(3) We show that N(Qel)
⊥ only consists of functions satisfying (4.62). Then the self-

adjointness of Qel and Fredholm’s alternative give the conclusion. Let h ∈ N(Qel)
⊥ and

f ∈ N(Qel). By part (2), we can write f(k) = g(E(k)) for some function g and

0 =

∫

B

h(k)f(k) dk =

∫

B

h(k)g(E(k)) dk =

∫

B

h(k)

∫

R(E)

g(e)δ(E(k) − e) de dk

=

∫

R(E)

(∫

B

h(k)δ(E(k) − e) dk

)
g(e) de.

This equation holds for all f ∈ N(Qel) and thus for any function g. Hence

∫

B

h(k)δ(E(k) − e) dk = 0 for e ∈ R(E).

Thus, functions of N(Qel)
⊥ are satisfying (4.62). On the other hand, if h fulfills (4.62) the

same arguments as above show that h ∈ N(Qel)
⊥.

(4) We claim that

∫

B

σ(x, k, k′)δ(E ′ − E)f ′g(E ′) dk′ = g(E(k))

∫

B

σ(x, k, k′)δ(E ′ − E)f ′ dk′. (4.65)

Indeed, by the coarea formula (Theorem 2.15) we can write formally

∫

B

σ(x, k, k′)δ(E ′ − E)f ′g(E ′) dk′

=

∫

R(E)

∫

E−1(e)

σ(x, k, k′)δ(e − E(k))f(k′)g(e)
dF (k′)

|∇kE(k′)| de

=

∫

R(E)

∫

E−1(e)

σ(x, k, k′)δ(e − E(k))f(k′)g(E(k))
dF (k′)

|∇kE(k′)| de

= g(E(k))

∫

B

σ(x, k, k′)δ(E ′ − E)f ′ dk′.

This gives

(Qel(gf))(k) =

∫

B

σ(x, k, k′)δ(E ′ − E)f ′g(E ′) dk′ −
∫

B

σ(x, k, k′)δ(E ′ − E)fg(E) dk′

= g(E(k))

∫

B

σ(x, k, k′)δ(E ′ − E)f ′ dk′

−g(E(k))

∫

B

σ(x, k, k′)δ(E ′ − E)f dk′

= g(E(k))(Qel(f))(k).

This finishes the proof of the lemma. ¤

94



Remark 4.13 From the proof of Lemma 4.12 (4) we conclude the following general result:

For all functions ψ(k, k′) and g(E(k)) it holds
∫

B

ψ(k, k′)δ(E ′ − E)g(E ′) dk′ = g(E(k))

∫

B

ψ(k, k′)δ(E ′ − E) dk′. (4.66)

Now we insert the Hilbert expansion.

f = f0 + αf1 + α2f + · · · (4.67)

into the scaled Boltzmann equation (4.61), use the linearity of the collision operators Qel

and Qinel and identify terms of equal order in α to find

• terms α0:

Qel(f0) = 0; (4.68)

• terms α1:

Qel(f1) = ∇kE(k) · ∇xf0 − Eeff · ∇kf0; (4.69)

• terms α2:

Qel(f2) = ∂tf0 + ∇kE(k) · ∇xf1 − Eeff · ∇kf1 − Qinel(f0). (4.70)

These equations can be solved using the properties of the operator Qel.

Theorem 4.14 The Hilbert expansion (4.67) is solvable up to second order if and only

if f0(x, k, t) = F (x,E(k), t) and F is a solution of

N(ε)∂tF − divxJ + Eeff · ∂J

∂ε
= S(F ), x ∈ R

3, ε ∈ R(E), t > 0, (4.71)

where

J(x, ε, t) = D(x, ε)

(
∇xF − Eeff

∂F

∂ε

)
(4.72)

is the current density,

N(ε) =

∫

B

δ(ε − E(k)) dk (4.73)

is called the density of states of energy ε (compare with Lemma 2.14),

D(x, ε) =

∫

B

∇kE(k) ⊗ µ(x, k)δ(ε − E(k)) dk ∈ R
3×3 (4.74)

is the diffusion matrix, where µ is a solution of Qel(µ) = −∇kE(k), and

(S(F ))(x, ε, t) =

∫

B

(Qinel(F ))(x, k, t)δ(ε − E(k)) dk (4.75)

is the collision operator, averaged over the energy surface ε = E(k).
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Equations (4.71)–(4.72) are called the Spherical Harmonic Expansion (SHE) model.

It has been first derived in the physical literature for spherically symmetric band dia-

grams and rotationally invariant collision operators as a numerical approximation of the

Boltzmann equation [34, 35] or through a macroscopic limit [28] which explains the name.

Notice, however, that the above SHE model is derived without the assumption of spherical

symmetric energy bands. The presented expansion is no more “spherical” but rather on

surfaces of constant energy. The SHE model is supplemented by the initial conditions

F (x, ε, 0) = FI(x, ε), x ∈ R
3, ε ∈ R(E),

and appropriate boundary conditions for ε which we do not detail here.

Proof: By Lemma 4.12 (2), any solution to (4.68) can be written as

f0(x, k, t) = F (x,E(k), t)

for some function F . Thus we can reformulate (4.69) as

Qel(f1) = ∇kE ·
(
∇xF − Eeff

∂F

∂ε

)
.

We claim that any solution of this equation can be written as

f1(x, k, t) = −µ(x, k) ·
(
∇xF − Eeff

∂F

∂ε

)
+ F1(x,E(k), t), (4.76)

where F1 ∈ N(Qel) and µ(x, k) is a solution of

Qel(µ) = −∇kE. (4.77)

Notice that µ depends on the parameter x since σ in the definition of Qel also depends

on x. By Lemma 4.12 (3), (4.77) is solvable if and only if
∫

B

∇kEδ(e − E(k)) dk = 0 for all e ∈ R(E).

To see this we introduce the Heaviside function H, defined by H(x) = 0 for x < 0 and

H(x) = 1 for x > 0. This function has the property that H ′(x) = δ(x). Hence
∫

B

∇kEδ(e − E(k)) dk = −
∫

B

∇kH(e − E(k)) dk = 0, (4.78)

since E(k) is periodic on B. Thus (4.77) is solvable. Observing that ∇xF − Eeff(∂F/∂ε)

only depends on E(k) (and on the parameters x, t), Lemma 4.12 (4) shows that

Qel(f1) =

(
∇xF − Eeff

∂F

∂ε

)
· ∇kE = Qel

(
−µ

(
∇xF − Eeff

∂F

∂ε

))
.
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The linearity of Qel implies that

Qel

(
f1 + µ

(
∇xF − Eeff

∂F

∂ε

))
= 0

and therefore, (4.76) follows. In the following, we take a particular solution to (4.69) by

choosing F1 = 0.

It remains to solve (4.70). Again, by Lemma 4.12 (3), this operator equation is solvable

if and only if
∫

B

(∂tf0 + ∇kE · ∇xf1 − Eeff · ∇kf1 − Qinel(f0)) δ(e − E(k)) dk = 0 (4.79)

for all e ∈ R(E). We claim that this condition is equivalent to (4.71). To show this, we

compute the terms separately. By (4.66) we obtain for the first term
∫

B

∂tf0δ(e − E(k)) dk =

∫

B

∂tF (x,E(k), t)δ(e − E(k)) dk

= ∂tF (x, e, t)

∫

B

δ(e − E(k)) dk = N(e)∂tF (x, e, t).

We introduce the electron current density by

J(x, e, t) = −
∫

B

∇kE(k)f1(x, k, t)δ(e − E(k)) dk.

Then the second term in (4.79) becomes
∫

B

∇kE · ∇xf1δ(e − E(k)) dk = −divxJ(x, e, t).

The current density can be reformulated in terms of the function F by using the expression

(4.76) for f1 and the property (4.66):

J(x, e, t) =

∫

B

∇kE(k)µ(x, k) ·
(
∇xF − Eeff

∂F

∂ε

)
(x,E(k), t)δ(e − E(k)) dk

= D(x, e)

(
∇xF − Eeff

∂F

∂ε

)
(x, e, t).

For the computation of the third term in (4.79) we choose a smooth function ψ with

compact support on R(E) and use the definition of the δ distribution and integration by

parts to obtain
∫

R(E)

ψ(e)

∫

B

∇kf1(x, k, t)δ(e − E(k)) dk de

=

∫

B

ψ(E(k))∇kf1(x, k, t) dk = −
∫

B

f1(x, k, t)ψ′(E(k))∇kE(k) dk

= −
∫

R(E)

ψ′(e)

∫

B

∇kE(k)f1(x, k, t)δ(e − E(k)) dk de

=

∫

R(E)

ψ′(e)J(x, e, t) de = −
∫

R(E)

ψ(e)
∂J

∂ε
(x, e, t) de.
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Since ψ is arbitrary, it follows
∫

B

∇kf1(x, k, t)δ(e − E(k)) dk = −∂J

∂ε
(x, e, t).

We have shown that (4.79) is equivalent to (4.71)–(4.72). ¤

The advantage of the SHE model is twofold:

• The SHE equations have to be solved in 3 + 1 dimensions of the position-energy

space instead of the (3 + 3)-dimensional phase space of the Boltzmann equation.

• The SHE model is of parabolic type which simplifies its numerical solution.

In order to see that the SHE model is of parabolic type, we assume that the electric

field Eeff is a gradient, i.e, Eeff = −∇xV , and we introduce the total energy variable

u = ε − V (x, t).

Then, with the change of unknowns

F (x, ε, t) = f(x, ε − V (x, t), t) = f(x, u, t),

D(x, ε) = d(x, ε − V (x, t), t) = d(x, u, t),

N(ε) = N(u + V (x, t)) = %(x, u, t),

we obtain

∇xF = ∇xf −∇xV
∂f

∂u
= ∇xf −∇xV

∂F

∂ε
or

∇∗F :=

(
∇x + ∇xV

∂

∂ε

)
F = ∇xf

and

∂tF = ∂tf − ∂tV
∂f

∂u
.

Since we can write (4.71)–(4.72) equivalently as

N(ε)∂tF −∇∗ · J = S(F ), J = D∇∗F,

we obtain, in the total energy variable,

%(x, u, t)∂tf − divx(d(x, u, t)∇xf) = S(F ) + %(x, u, t)∂tV
∂f

∂u
.

The parabolicity now follows from the positive (semi-) definiteness of the diffusion matrix

d or D, respectively, as stated in the following lemma.

Lemma 4.15 The diffusion matrix D(x, ε) ∈ R3×3 is symmetric and positive semi-

definite.
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In [8, Prop. 3.6] a stronger property for D(x, ε) is shown: There exists K > 0 such

that

Dij(x, ε) ≥ K

N(ε)

∫

B

∂E

∂ki

(k)
∂E

∂kj

(k)δ(ε − E(k)) dk, i, j = 1, 2, 3. (4.80)

In particular, det D = 0 at critical points of E, (i.e. ∇kE(k) = 0 and ε = E(k)).

Proof: We use the symmetry of Qel (Lemma 4.12 (1)) and the property (4.63) of Lemma 4.12

(4) to show the symmetry of D(x, ε). Let ψ be a (smooth) function. Then
∫

R

Dij(x, ε)ψ(ε) dε =

∫

R

∫

B

∂E

∂ki

µjδ(ε − E(k)) dk ψ(ε) dε

= −
∫

B

Qel(µi)µjψ(E(k)) dk = −
∫

B

Qel(ψ(E(k))µi)µj dk

= −
∫

B

Qel(ψ(E(k))µj)µi dk =

∫

R

Dji(x, ε)ψ(ε) dε.

since ψ is arbitrary, Dij(x, ε) = Dji(x, ε) for all x ∈ R3, ε ∈ R.

In order to show that D(x, ε) is positive semi-definite, let z ∈ R3. Then, by definition

of Qel,

z>D(x, ε)z = −
3∑

i,j=1

∫

B

ziQel(µi)µjzjδ(ε − E(k)) dk

= −
3∑

i,j=1

∫

B

∫

B

σ(x, k, k′)δ(E(k′) − E(k))zi(µi(k
′) − µi(k))zjµj(k)

×δ(ε − E(k)) dk′ dk.

Similar as in the proof of Lemma 4.12 (1), we can write

z>D(x, ε)z =
1

2

3∑

i,j=1

∫

B

∫

B

σ(x, k, k′)δ(E(k′) − E(k))δ(ε − E(k))

×zi(µi(k
′) − µi(k))zj(µj(k

′) − µj(k)) dk′ dk

=
1

2

∫

B

∫

B

σ(x, k, k′)δ(E(k′) − E(k))δ(ε − E(k))

×
(

3∑

i=1

zi(µi(k
′) − µj(k))

)2

dk′ dk

≥ 0.

For the last equality we have used the elementary identity

n∑

i,j=1

aiaj =

(
n∑

i=1

ai

)2

for all an, . . . , an ∈ R.

99



The lemma is shown. ¤

More explicit expressions for the density of states N(ε) and the diffusion matrix D(x, ε)

can be derived for special energy bands (see [8, Sec. 3.4]).

Example 4.16 (Spherical symmetric energy bands)

Assume that the scattering rate only depends on E(k), i.e.

σ(x, k, k′) = s(x,E(k)) for all k, k′ with E(k) = E(k′),

and that E(k) is spherical symmetric, i.e. E = E(|k|), and strictly monotone in |k|, i.e.,

there exists a function γ : R → R such that

|k|2 = γ(E(|k|)).

Notice that the first assumption makes sense since due to the term δ(E(k′) − E(k)) in

the definition of Qel, the scattering rate needs to be defined only on the surface {k′ ∈
B : E(k′) = E(k)} of energy E(k). The second assumption implies that we can choose

B = R3.

We claim that

N(ε) = 2π
√

γ(ε)γ′(ε), (4.81)

D(x, ε) =
4

3

γ(ε)

s(x, ε)γ′(ε)2
I, (4.82)

where I ∈ R3×3 is the identity matrix.

First we reformulate D(x, ε). From the first assumption and the definition (4.73) of

the density of states follows, with E = E(k), E ′ = E(k′),

(Qel(f))(x, k, t) = s(x,E(k))

∫

R3

δ(E ′ − E)f(k′) dk′ − s(x,E(k))N(E(k))f(k)

=
([f ] − f)(x, k, t)

τ(x,E(k))
, (4.83)

where τ(x, ε) = 1/s(x, ε)N(ε) is called relaxation time and

[f ](k) =
1

N(E(k))

∫

R3

δ(E ′ − E)f(k′) dk′

is the average of f on the energy surface {k′ : E(k′) = E(k)}. The expression (4.83) is

called relaxation-time operator (compare with (3.40)).

We claim that the solution of Qel(µ) = −∇kE can now be written explicitly as

µ(x, k) = τ(x,E(k))∇kE(k).
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Indeed, by (4.64) and (4.78),

[µ](k) =
1

N(E(k))

∫

R3

δ(E ′ − E)τ(x,E ′)∇kE(k′) dk′

=
τ(x,E(k))

N(E(k))

∫

R3

δ(E ′ − E)∇kE(k′) dk′ = 0,

and hence

Qel(µ) =
[µ] − µ

τ(x,E(k))
= −∇kE(k).

Thus, we can write

D(x, ε) =

∫

R3

∇kE(k) ⊗∇kE(k)τ(x,E(k))δ(ε − E(k)) dk

= τ(x, ε)

∫

R3

∇kE(k) ⊗∇kE(k)δ(ε − E(k)) dk.

This shows that the estimate (4.80) is sharp.

The above expression for D(x, ε) can be further simplified under the second assump-

tion. As E only depends on |k|, it is convenient to use spherical coordinates k = %ω, where

% > 0 and

ω =




sin θ cos φ

sin θ sin φ

cos θ


 , 0 ≤ φ < 2π, 0 ≤ θ < π.

Then, transforming η = E(%) with dη = E ′(%) d%,

D(x, ε) = τ(x, ε)

∫ ∞

0

∫ 2π

0

∫ π

0

E ′(%)ω ⊗ E ′(%)ωδ(ε − E(%))%2 sin θ dθ dφ d%

= τ(x, ε)

∫

R

E ′(%)δ(ε − η)%2 dη ·
∫ 2π

0

∫ π

0

ω ⊗ ω sin θ dθ dφ.

By the definition of the δ distribution, the first integral is

∫

R

E ′(%)δ(ε − η)%2 dη = E ′(|k|)|k|2 with ε = E(|k|).

For the second integral an elementary computation gives

∫ 2π

0

∫ π

0

ω ⊗ ω sin θ dθ dφ =
4π

3
I,

where I is the identity matrix. Therefore

D(x, ε) =
4π

3
τ(x, ε)E ′(|k|)|k|2 with ε = E(|k|).
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Differentiation of |k|2 = γ(E(|k|)) with respect to |k| yields 2|k| = γ′(E(|k|))E ′(|k|) and

therefore

E ′(|k|) =
2
√

γ(ε)

γ′(ε)
with ε = E(|k|). (4.84)

We conclude that

D(x, ε) =
8π

3

τ(x, ε)γ(ε)3/2

γ′(ε)
I =

8π

3

γ(ε)3/2

s(x, ε)N(ε)γ′(ε)
I.

The density of states can be computed as

N(ε) =

∫

R3

δ(ε − E(|k|)) dk =

∫ ∞

0

∫ 2π

0

∫ π

0

δ(ε − E(%))%2 sin θ dθ dφ d%

= 4π

∫

R

δ(ε − η)E ′(%)−1%2 dη =
4π|k|2
E ′(|k|) with ε = E(|k|).

Employing (4.84) we infer that

N(ε) = 2π
√

γ(ε)γ′(ε)

and

D(x, ε) =
4

3

γ(ε)

s(x, ε)γ′(ε)2
I.

This shows (4.81) and (4.82). ¤

Example 4.17 (Parabolic band approximation)

We assume that σ(x, k, k′) = s(x,E(k)) for all k, k′ ∈ R3 such that E(k) = E(k′) and

E(k) =
1

2
|k|2.

Then γ(ε) = 2ε and

N(ε) = 4π
√

2ε, D(x, ε) =
2ε

3s(x, ε)
I.

With the specification (see [24, (2.6)] or [45, (3.63)])

τ(x, ε) =
1

s0εβN(ε)
, β > −1, (4.85)

we obtain s(x, ε) = 1/τ(x, ε)N(ε) = s0ε
β and hence

D(x, ε) =
2

3s0

ε1−βI. ¤
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It remains to determine the average collision operator S(F ) (see (4.75)). The precise

structure of this term depends on the assumptions on the inelastic collision operator

Qinel. Here we only notice that a simplified expression is given by the Fokker-Planck

approximation [60]

S(F ) =
∂

∂ε

[
s1ε

βN(ε)2

(
F +

∂F

∂ε

)]
. (4.86)

Remark 4.18 The SHE equations read in unscaled form

N(ε)∂tF − 1

q
divxJ − Eeff · ∂J

∂ε
= S(F ),

J(x, ε, t) = D(x, ε)

(
∇xF − qEeff

∂F

∂ε

)
,

where

N(ε) =

∫

B

δ(ε − E(k)) dk,

D(x, ε) =
q

~

∫

B

∇kE(k) ⊗ µ(x, k)δ(ε − E(k)) dk.
¤

4.4 Derivation of the energy-transport equations

The SHE model of Section 4.3 is much simpler than the semi-classical Boltzmann equation

since it has a parabolic structure and has to be solved in the one-dimensional energy

variable instead of the three-dimensional wave vector. However, it is numerically more

expensive than usual macroscopic models due to the additional energy variable. In this

section we derive a macroscopic energy-transport model from the SHE model following [8].

We start with the scaled SHE equations of Theorem 4.14

N(ε)∂tF − divJ −∇V · ∂J

∂ε
= S(F ), x ∈ R

3, ε ∈ R, t > 0, (4.87)

J(x, ε, t) = D(x, ε)

(
∇F + ∇V · ∂F

∂ε

)
, (4.88)

for the distribution function F (x, ε, t) depending on the position x, energy ε and time t.

We have assumed that the effective field in Theorem 4.14 can be written as Eeff = −∇V

with the electrostatic potential V (x, t) which is assumed to be a given function. The

density of states N(ε), the diffusion matrix D(x, ε), and the averaged inelastic collision

operator S(F ) are defined in (4.73), (4.74), and (4.75), respectively. We recall that the

inelastic collision operator contains the inelastic corrections to phonon scattering and

electron-electron collisions.
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Our main assumption is that the electron-electron collision operator is dominant in

the sense

S(F ) =
1

α
See(F ) + Sph(F ),

where See and Sph(F ) are given by

(See(F ))(x, ε, t) =

∫

B

(Qee(F ))(x, k, t)δ(ε − E(k)) dk,

(Sph(F ))(x, ε, t) =

∫

B

(Qac(F ) + Qop(F ))(x, k, t)δ(ε − E(k)) dk,

and the collision operators Qee, Qac and Qop model electron-electron scattering and scat-

tering with acoustic or optical phonons and are defined by (3.30) and (3.29), respectively.

Our assumption means that the energy loss due to phonon scattering occurs on a longer

time scale than carrier-carrier collisions. Note that the rescaled SHE equation

N(ε)∂tF − divJ −∇V · ∂J

∂ε
=

1

α
See(F ) + Sph(F ) (4.89)

corresponds to the hyperbolic scaling of Section 4.2 (see (4.33)).

We need the following properties of the operators

(See(F ))(x, ε, t) =

∫

B4

see(k, k′, k1, k
′
1)[F

′F ′
1(1 − F )(1 − F1) − FF1(1 − F ′)(1 − F ′

1)]

×δ(ε − E(k)) dk dk′ dk1 dk′
1, (4.90)

(Sph(F ))(x, ε, t) =

∫

B2

[sph(k
′, k)F ′(1 − F ) − sph(k, k′)F (1 − F ′)]δ(ε − E(k)) dk dk′,

where F = F (E(k)), F ′ = F (E(k′)), F1 = F (E(k1)), F ′
1 = F (E(k′

1)), and

see(k, k′, k1, k
′
1) = σee(x, k, k′, k1, k

′
1)δ(E(k) + E(k1) − E(k′) − E(k′

1))

has the properties

see(k, k′, k1, k
′
1) = see(k1, k

′, k, k′
1) = see(k

′, k, k′
1, k1). (4.91)

Lemma 4.19 Let See(F ) and Sph(F ) be given as above satisfying (4.91). Then
∫

R

See(F )εidε = 0 (i = 0, 1),

∫

R

Sph(F )dε = 0.

Proof: The second assertion follows directly by integrating over ε ∈ R and using the

definition of the delta distribution:
∫

R

Sph(F )dε =

∫

B2

[sph(k
′, k)F ′(1 − F ) − sph(k, k′)F (1 − F ′)]) dk dk′

=

∫

B2

sph(k
′, k)F ′(1 − F ) dk dk′ −

∫

B2

sph(k
′, k)F ′(1 − F ) dk′ dk

= 0.
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To prove the first assertion we show a more general result. It holds for all F and G:

∫

R

See(F )Gdε = −1

4

∫

B4

s(k, k′, k1, k
′
1)[F

′F ′
1(1 − F )(1 − F1) − FF1(1 − F ′)(1 − F ′

1)]

×(G′ + G′
1 − G − G1) d4k, (4.92)

where d4k = dk dk′ dk1 dk′
1. Indeed, we obtain from (4.91)

∫

R

See(F )Gdε

=

∫

B4

Qee(F (E(k))G(E(k)) dk

=
1

4

∫

B4

see(k, k′, k1, k
′
1)[F

′F ′
1(1 − F )(1 − F1) − FF1(1 − F ′)(1 − F ′

1)]Gd4k

+
1

4

∫

B4

see(k
′, k, k′

1, k1)[FF1(1 − F ′)(1 − F ′
1) − F ′F ′

1(1 − F )(1 − F1)]G
′ d4k

+
1

4

∫

B4

see(k1, k
′, k, k′

1)[F
′F ′

1(1 − F1)(1 − F ) − F1F (1 − F ′)(1 − F ′
1)]G1 d4k

+
1

4

∫

B4

see(k
′
1, k1, k

′, k)[F1F (1 − F ′
1)(1 − F ′) − F ′

1F
′(1 − F1)(1 − F )]G′

1 d4k

= −1

4

∫

B4

see(k, k′, k1, k
′
1)[F

′F ′
1(1 − F )(1 − F1) − FF1(1 − F ′)(1 − F ′

1)]

×(G − G′ + G1 − G′
1) d4k.

¤

It remains to show that the first assertion follows from (4.92). Taking G(ε) = 1 it is

clear that ∫

R

See(F ) dε = 0.

Choosing G(ε) = ε, we obtain an integral over B4 involving the product

δ(E + E1 − E ′ − E ′
1)(E

′ + E ′
1 − E − E1)

which vanishes in view of the properties of the δ distribution. This shows that

∫

R

See(F )ε dε = 0.

Lemma 4.20 (1) The kernel of See is given by

N(See) = {F : R → R : ∃µ ∈ R, T > 0 : F = Fµ,T},

where

Fµ,T (ε) =
1

1 + e(ε−µ)/T
.
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(2) For given F0, the equation DSee(F0)F = G is solvable if and only if

∫

R

G(ε) dε = 0 and

∫

R

G(ε)ε dε = 0,

where DSee(F0) is the first derivative of See with respect to F0.

The variable µ is called chemical potential and T the electron temperature. The function

Fµ,T is termed Fermi-Dirac distribution and has already been derived in Theorem 3.7

under different assumptions on the collision operator.

Proof: We only give a sketch of the proof and refer to [8, Sec. 4.2] for details.

(1) Choosing G = H(F ) = ln F − ln(1 − F ) in (4.92) yields

∫

R

See(F )H(F ) dε

= −1

4

∫

B4

see(k, k′, k1, k
′
1)[F

′F ′
1(1 − F )(1 − F1) − FF1(1 − F ′)(1 − F ′

1)]

×[ln(F ′F ′
1(1 − F )(1 − F1)) − ln(FF1(1 − F ′)(1 − F ′

1))] d
4k

≤ 0

since (x − y)(ln x − ln y) ≥ 0 for all x, y 0. Thus, taking F ∈ N(See), we obtain

ln(F ′F ′
1(1 − F )(1 − F1)) = ln(FF1(1 − F ′)(1 − F ′

1))

or

H(F ′) + H(F ′
1) = H(F ) + H(F1)

when E(k′) + E(k′
1) = E(k) + E(k1) (which follows from the δ distribution in (4.90)) and

k′ + k′
1 = k + k1 modulo B (which follows from the so-called umklapp processes, see [8,

(2.5)]). It can be motivated that

H(F (ε − c)) + H(F (ε + c)) = H(F (ε)) + H(F (ε))

for some c > 0. This means that the function x 7→ g(x) := H(F (x)) fulfills the functional

equation

g(x − c) + g(x + c) = 2g(x) for all x ∈ R and some c = c(x).

The only functions solving such an identiy are affine, i.e. g(x) = ax+b. Then, introducing

formally

T = −1/a and µ = −b/a,

we obtain from

ln
F

1 − F
= H(F ) = aε + b = −ε − µ

T
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the equation

F (ε) =
1

1 + e(ε−µ)/T
.

(2) The assertion is a consequence of the Fredholm alternative Lemma 4.3; we refer

to [8, Prop. 4.2]. ¤

We now employ the Hilbert expansion

F = F0 + αF1 + α2F2 + · · · , J = J0 + αJ1 + α2J2 + · · · (4.93)

and Taylor approximation for the collision operators in (4.89):

N(ε)∂tF0 − divJ0 −∇V · ∂J0

∂ε
=

1

α
(See(F0) + αDSee(F0)F1)

+Sph(F0) + αDSph(F0)F1 + O(ε2).

Identifying equal powers of α leads to

See(F0) = 0, N(ε) = ∂tF0 − divJ0 −∇V · ∂J0

∂ε
= DSee(F0)F1 + Sph(F0). (4.94)

Theorem 4.21 The Hilbert expansion (4.93) is solvable up to first order if and only if

F0(x, ε, t) = Fµ(x,t),T (x,t)(ε) and µ(x, t), T (x, t) satisfy formally the equations

∂tn(µ, t) − divJn = 0,

∂t(ne)(µ, t) − divJe + ∇V · Jn = W (µ, T ),

Jn = D11∇
(µ

T

)
+ D12∇

(−1

T

)
− D11

∇V

T
,

Je = D21∇
(µ

T

)
+ D22∇

(−1

T

)
− D21

∇V

T
,

where

n(µ, T ) =

∫

R

Fµ,T (ε)N(ε) dε, (4.95)

ne(µ, T ) =

∫

R

Fµ,T (ε)εN(ε) dε, (4.96)

are the electron density and energy density, respectively,

W (µ, T ) =

∫

R

Sph(Fµ,T )ε dε

is the relaxation term, and

Dij(x, µ, T ) =

∫

R

D(x, ε)Fµ,T (1 − Fµ,T )εi+j−2 dε, i, j = 1, 2, (4.97)

are diffusion matrices in R3×3.

The variables Jn and Je are called the macroscopic partial and energy current densities,

respectively, and µ/T and −1/T are the so-called entropy variables.
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Proof: From Lemma 4.20 (1) follows that the solutions of the first equation in (4.94) are

given by

F0(x, ε, t) = Fµ,T (ε),

where µ and T also depend on the parameters x and t. Lemma 4.20 (2) implies that the

second equation in (4.94) is solvable if and only if

∫

R

(
N(ε)∂tFµ,T − divJ0 −∇V · ∂J0

∂ε
− Sph(Fµ,T )

)
εi dε = 0, i = 0, 1. (4.98)

Defining the macroscopic particle and energy current densities by

Jn(x, t) =

∫

R

J0(x, ε, t) dε, Je(x, t) =

∫

R

J0(x, ε, t)ε dε,

we can reformulate (4.98) as

∂tn − divJn = ∇V ·
∫

R

∂J0

∂ε
dε +

∫

R

Sph(Fµ,T ) dε = 0,

∂t(ne) − divJe = ∇V ·
∫

R

∂J0

∂ε
ε dε +

∫

R

Sph(Fµ,T )ε dε

= −∇V · J + W (µ, T ),

using Lemma 4.19.

It remains to compute the fluxes Jn and Je. We interpret Fµ,T (ε) as a function of the

entropy variables u1 = µ/T , u2 = −1/T , and ε,

F (u1, u2, ε) = Fµ,T (ε).

Then

F (u1, u2, ε) =
1

1 + e−(u1+εu2)

and

∂F

∂u1

=
e−(u1+εu2)

(1 + e−(u1+εu2))2
= Fµ,T (1 − Fµ,T ),

∂F

∂u2

=
εe−(u1+εu2)

(1 + e−(u1+εu2))2
= εFµ,T (1 − Fµ,T ),

∂F

∂ε
=

u2e
−(u1+εu2)

(1 + e−(u1+εu2))2
= − 1

T
Fµ,T (1 − Fµ,T ).

This yields

J0 = D(x, ε)

(
∇Fµ,T + ∇V · ∂Fµ,T

∂ε

)
= D(x, ε)

(
∂F

∂u1

∇u1 +
∂F

∂u2

∇u2 + ∇V · ∂F

∂ε

)
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and

Jn = D11∇u1 + D12∇u2 − D11
∇V

T
,

Je = D21∇u2 + D22∇u2 − D21
∇V

T

and completes the proof. ¤

The matrix D = (Dij) ∈ R6×6 has the following properties.

Proposition 4.22 It holds:

(1) The matrix D = (Dij) is symmetric. Moreover, D12 = D21 and D>
ij = Dji for

i, j = 1, 2.

(2) If the functions

∇kE, E∇kE (4.99)

are linearly independent then D(x, µ, T ) is symmetric, positive definite for any µ ∈ R

and T > 0.

The hypothesis (4.99) is a geometric assumption on the band structure. It requires

that the energy band has a real three-dimensional structure, excluding bands depending

only on one or two variables, for instance.

Proof: Part (1) follows from the definition (4.97) of the (3×3)-matrices Dij and Lemma 4.15.

For the proof of part (2) we choose z = (ξ, η) ∈ R6 with ξ, η ∈ R3 such that ξ 6= 0. Then,

by the symmetry of D(x, ε) and the property (4.80), we compute

z>Dz =

∫

R

z>

(
D(x, ε) εD(x, ε)

εD(x, ε) ε2D(x, ε)

)
zFµ,T (1 − Fµ,T ) dε

=

∫

R

(ξ + εη)>D(x, ε)(ξ + εη)Fµ,T (1 − Fµ,T ) dε

≥
∫

R

K

N(ε)

∫

B

3∑

i,j=1

(ξi + εηi)
∂E

∂ki

∂E

∂kj

(ξj + εηj)δ(ε − E(k))Fµ,T (1 − Fµ,T ) dk dε

=

∫

B

K

N(E(k))

(
3∑

j=1

(ξj + E(k)ηj)
∂E

∂kj

)2

Fµ,T (1 − Fµ,T ) dk

=

∫

B

K

N(E(k))

∣∣∣∣∣

(
∇kE

E∇kE

)
· z

∣∣∣∣∣

2

Fµ,T (1 − Fµ,T ) dk.
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The last integral is positive since otherwise,

(
∇kE

E∇kE

)
· z = 0, z 6= 0,

would imply that (∇kE,E∇kE) is linearly dependent which is excluded. ¤

The following result shows that the name “relaxation term” for W (µ, T ) is justified.

In fact, the temperature of the particles is expected to relax to the constant lattice tem-

perature TL = 1 if there are no other forces.

Proposition 4.23 The relaxation term W (µ, T ) with phonon collision operator (4.75)

and (3.29) is monotone in the sense of operator theory, i.e.

W (µ, T )(T − 1) ≤ 0.

Proof: We recall the definition of W (µ, T ),

W (µ, T ) =

∫

R

Sph(ε)ε dε

=

∫

R

∫

B2

[sph(k
′, k)F ′(1 − F ) − sph(k, k′)F (1 − F ′)]δ(ε − E(k))ε dk dk′ dε,

where F = Fµ,T ,

sph(k, k′) = σph(x, k, k′)[(1 + Nph)δ(E
′ − E + Eph) + Nphδ(E

′ − E + Eph)], (4.100)

and E = E(k), E ′ = E(k′), Nph = (eEph − 1)−1, and Eph > 0 is the phonon energy. Since

F = (1 − F )M, M = e−(ε−µ)/T ,

we obtain

W (µ, T ) =

∫

B2

(1 − F ′)(1 − F )[sph(k
′, k)M ′ − sph(k, k′)M ]E(k) dk dk′.

Definition (4.100) and the properties δ(x) = δ(−x) and δ(x − x0)x = δ(x − x0)x0 yield

[sph(k
′, k)M ′ − sph(k, k′)M ]E(k)

= σph(1 + Nph)δ(E − E ′ + Eph)M
′E + Nphδ(E − E ′ − Eph)M

′E

−σph(1 + Nph)δ(E − E ′ − Eph)ME − Nphδ(E − E ′ + Eph)ME

= σphδ(E − E ′ + Eph)[(1 + Nph)M
′ − NphM ]E

+σphδ(E − E ′ − Eph)[NphM
′ − (1 + Nph)M ](E ′ + Eph).
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Thus, exchanging k and k′ in the second integral and using δ(x) = δ(−x) again, some

terms cancel and we end up with

W (µ, T ) =

∫

B2

(1 − F ′)(1 − F )δ(E − E ′ + Eph)Eph[NphM − (1 + Nph)M
′] dk dk′

=

∫

B2

(1 − F ′)(1 − F )δ(E − E ′ + Eph)EphNph[M − eEphM ′] dk dk′,

since 1+Nph = eEphNph. The δ distribution allows to substitute E in M to E ′−Eph such

that

M − eEphM ′ = e−(E−µ)/T − eEphe−(E′−µ)/T = e−(E′−µ)/T
(
eEph/T − eEph

)

for all E and E ′ satisfying E = E ′ − Eph. We conclude that

W (µ, T )(T − 1) =

∫

B2

(1 − F ′)(1 − F )δ(E − E ′ + Eph)EphNphM
′

×
(
eEph/T − eEph

)
(T − 1) dk dk′

≤ 0,

since the function x 7→ eEph/x is decreasing and hence,

(
eEph/T − eEph

)
(T − 1) ≤ 0 for all T > 0. ¤

More explicit expressions for the particle and energy densities and for the diffusion

matrix can be derived for spherically symmetric energy bands and Maxwell-Boltzmann

statistics.

Example 4.24 (Spherically symmetric energy bands)

We impose the following simplifying hypotheses:

• The distribution function Fµ,T is approximated by e−(ε−µ)/T . This is possible if

ε − µ À T .

• The scattering rate σ of the elastic collision operator (4.59) depends only on x and

E(k).

• The energy band is spherically symmetric and strictly monotone in |k|.

From Example 4.16 and definitions (4.95)–(4.96) of the particle and energy densities

follows

n(µ, T ) =

∫

R

e−(ε−µ)/T N(ε) dε = 2πeµ/T

∫

R

√
γ(ε)γ′(ε)e−ε/T dε,

ne(µ, T ) =

∫

R

e−(ε−µ)/T N(ε)ε dε = 2πeµ/T

∫

R

√
γ(ε)γ′(ε)εe−ε/T dε,
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where we have used the expression (4.81) for N(ε) and |k|2 = γ(E(k)). From (4.82) the

diffusion matrices become

Dij(µ, T ) =
4

3
eµ/T

∫

R

γ(ε)εi+j−2

s(x, ε)γ′(ε)2
e−ε/T dε · I,

where I ∈ R3×3 is the identity matrix. ¤

Example 4.25 (Parabolic band approximation)

We impose the same assumptions as in the previous example and, additionally,

• The energy band is parabolic: E(k) = |k|2/2, k ∈ R3.

• The scattering rate is given by the so-called Chen model [21, 24]: s(x, ε) = s0(x)
√

ε.

The first assumption implies that γ(ε) = 2ε, ε ≥ 0. The second hypothesis means that

the relaxation time (4.85) in the formulation (4.83) of the elastic collision operator,

τ(x, ε) =
1

s(x, ε)N(ε)
=

1

s0(x)εβN(ε)
,

holds with β = 1/2. Recall that N(ε) = 4π
√

2ε by Example 4.17. Using

∫ ∞

0

e−z2/2z2 dz =
1

2

∫

R

e−z2/2z2 dz =
1

2

∫

R

e−z2/2 dz =

√
π

2

gives

n(µ, T ) = 4
√

2πeµ/T

∫ ∞

0

e−ε/T
√

ε dε = 4
√

2πeµ/T T 3/2

√
2

∫ ∞

0

e−z2/2z2 dz

= (2πT )3/2eµ/T . (4.101)

Furthermore, since
∫ ∞

0

e−z2/2z4 dz =
1

2

∫

R

e−z2/2z4 dz =
3

2

√
2π

(see (4.44)), we obtain

(ne)(µ, T ) = 4
√

2πeµ/T

∫ ∞

0

e−ε/T ε3/2 dε = 4
√

2πeµ/T T 5/2

23/2

∫ ∞

0

e−z2/2z4 dz

=
3

2
(2π)3/2T 5/2eµ/T =

3

2
nT.

The diffusion matrices become (see Example 4.24)

Dij(x, µ, T ) =
2

3

eµ/T

s0(x)

∫

R

εi+j−3/2e−ε/T dε

=
2

3

eµ/T

s0(x)

(
T

2

)i+j−3/2

T

∫ ∞

0

z2(i+j−1)e−z2/2 dz.
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Therefore, since ∫ ∞

0

e−z2/2z6 dz =
1

2

∫

R

e−z2/2z6 dz =
5 · 3
2

√
2π

(see (4.44)), we infer that

D(x, µ, T ) =

√
π

3s0(x)
T 3/2eµ/T

(
I 3

2
TI

3
2
TI 15

4
T 2I

)

=
n(µ, T )

6
√

2πs0(x)

(
I 3

2
TI

3
2
TI 15

4
T 2I

)
∈ R

6×6.

Notice that the matrix D(x, µ, T ) can be identified by the (2 × 2)-matrix

D(x, µ, T ) =
n(µ, T )

6
√

2πs0(x)

(
1 3

2
T

3
2
T 15

4
T 2

)
.

Example 4.26 (Fokker-Planck relaxation term)

The relaxation term W (µ, T ) can be written explicitely in terms of µ and T using the

Fokker-Planck approximation (4.86) and the assumptions of the previous example. Then,

by integrating by parts,

W (µ, T ) =

∫ ∞

0

∂

∂ε

[
s1ε

1/2N(ε)2

(
Fµ,T +

∂Fµ,T

∂ε

)]
ε dε

= 2(4π)2s1

∫ ∞

0

∂

∂ε

[
ε3/2e−(ε−µ)/T

(
1 − 1

T

)]
ε dε

= −2(4π)2s1

∫ ∞

0

ε3/2e−(ε−µ)/T

(
1 − 1

T

)
dε

= −2(4π)2s1 ·
3

4

√
πT 5/2 · e−µ/T

(
1 − 1

T

)

=
3

2

n(µ, T )(1 − T )

τ0

,

where

τ0 =
1

4
√

2πs1

is called the energy relaxation time. ¤

Remark 4.27 The energy-transport model of Theorem 4.21 ist written with physical
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parameters as

∂tn(µ, T ) − 1

q
divJn = 0,

∂t(ne)(µ, T ) − 1

q
divJe + ∇V · Jn = W (µ, T ),

Jn = D11∇
(

qµ

kBT

)
+ D12∇

( −1

kBT

)
− D11

q∇V

kBT
,

Je = D21∇
(

qµ

kBT

)
+ D22∇

( −1

kBT

)
− D21

q∇V

kBT
.

In the situation of Examples 4.25 and 4.26 we call this system of equations the Chen

model. In particular,

n(µ, T ) =

(
2πm∗

ekBT

~2

)3/2

eqµ/kBT ,

(ne)(µ, T ) =
3

2
n(µ, T ) · kBT,

D(x, µ, T ) =
q~3

6
√

2πS0(x)
n(µ, T )

(
1 3

2
kBT

3
2
kBT 15

4
(kBT )2

)
,

W (µ, T ) =
3

2

n(µ, T )kB(T − TL)

τ0

,

where TL is the lattice temperature and τ0 = (~2/2m∗
e)

3/2/2πS1. ¤

4.5 Relaxation-time limits

In this chapter we have derived four fluid-type models: the drift-diffusion, hydrodynamic,

SHE, and energy-transport equations (see Figure 4.1 for a summary). In this section we

show that the drift-diffusion and energy-transport equations can be formally derived from

the hydrodynamic model by performing so-called relaxation-time limits.

We recall the unscaled hydrodynamic model with electrostatic potential:

∂tn − 1

q
divJ = 0 (4.102)

∂tJ − 1

q
div

(
J ⊗ J

n

)
− qkB

m∗
e

∇(nT ) +
q2

m∗
e

n∇V = − J

τp

, (4.103)

∂t(ne) − 1

q
div[J(e + kBT )] + J · ∇V − div

(
τp

m∗
e

κ0nkBT∇(kBT )

)
(4.104)

= − n

τW

(
e − d

2
kBTL

)
, x ∈ Ω ⊂ R

d; t > 0,

where the energy density is

ne =
m∗

e

2q2

|J |2
n

+
d

2
nkBT.
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Drift-Diffusion

?

Energy-transport

?

Boltzmann

+ s
Hydrodynamic

=

SHE

R

energy relaxation- time limit

dominant
collisions

expansion)

electron-electron
(Hilbert

momentum
relaxation-time

limit

dominant
electron-electron

collision (Hilbert
expansion)

moment method

dominant elastic
collisions (Hilbert

expansion)

Figure 4.1: Hierarchy of classical semiconductor models. The drift-diffusion model can be

also directly derived from the Boltzmann equation via a moment method (see [9]).

These equations deviate from (4.102)–(4.104) by the inclusion of the heat conduction

term with the heat conductivity κ0 (see the end of Section 4.2) and by the introduction of

two different relaxation times; the momentum relaxation time τp and the energy relaxation

time τW . The reason is that we wish to consider two different time scales for momentum

and energy relaxation.

In order to scale (4.102)–(4.104) we choose the following reference values:

• reference length L,

• reference particle density N ,

• reference temperature TL (lattice temperature),

• reference time τ0,

• reference potential UT = kBTL/q,

• reference particle current density J0 = qNL/τ0.

We can choose, for instance, L as the diameter of the semiconductor domain Ω and N

as the maximal value of the doping concentration. The reference time τ0 is given by the

assumption that the thermal energy is of the same order as the geometric average of the

kinetic energies to cross the domain in time τ0, τp, respectively:

kBT0 =

√

m∗
e

(
L

τ0

)2
√

m∗
e

(
L

τp

)2

.

115



With these reference values we define the scaled variables:

x = Lxs, t = τ0ts, n = Nns,

T = TLTs, V = UT VS, J = J0Js.

Replacing the dimensional variables in (4.102)–(4.104) by the scaled ones and omitting

the index s we obtain

∂tn − divJ = 0, (4.105)

α∂tJ − αdiv

(
J ⊗ J

n

)
−∇(nT ) + n∇V = −J, (4.106)

∂t(ne) − div[J(e + T )] + J · ∇V − div (κ0nT∇T ) = −n

β

(
e − d

2

)
, (4.107)

where

α =
τp

τ0

, β =
τW

τ0

,

and the scaled energy is given by

e = α
|J |2
2n2

+
d

2
T. (4.108)

We consider the following limits:

(1) α → 0 and β → 0,

(2) α → 0 and β fixed,

(3) α fixed and β → 0.

(1) The combined limit α → 0 and β → 0 corresponds to the physical situation

when the kinetic energy needed to cross the domain in time τ0 is assumed to be much

smaller than the thermal energy, and when the momentum and energy relaxation times

are assumed to be of the same order. This means

1 À m∗
e(L/τ0)

2

kBT0

=
τp

τ0

= α and O(1) =
τp

τW

=
α

β
. (4.109)

The second condition implies that also β ¿ 1. Equations (4.105)–(4.107) become in the

limit α → 0 and β → 0

∂tn − divJ = 0, J = ∇(nT ) − n∇V, e =
d

2
. (4.110)

Moreover, by (4.108), e = (d/2)T , and the temperature is T = 1. Then the limit equations

(4.110) are the drift-diffusion equations.

116



(2) The limit α → 0 corresponds to the physical situation expressed by the first

equation in (4.109). Then (4.105)–(4.107) yield in the limit α → 0

∂tn − divJ = 0, J = ∇(nT ) − n∇V (4.111)

and

∂t

(
d

2
nT

)
− div

(
d + 2

2
JT + κ0nT∇T

)
+ J · ∇V = −d

2

n

β
(T − 1). (4.112)

In the entropic variables u1 = µ/T and u2 = −1/T we can write in view of the expression

n = (2πT )d/2eµ/T (see (4.95) for the case d = 3),

J =
∂(nT )

∂u1

∇u1 +
∂(nT )

∂u2

∇u2 − n∇V = n∇
(µ

T

)
+

d + 2

2
nT 2∇

(
− 1

T

)
− n∇V,

and

d + 2

2
JT + κ0nT∇T

=
d + 2

2
T

[
n∇

(µ

T

)
+

d + 2

2
nT 2∇

(
− 1

T

)
− n∇V

]
+ κ0nT 3∇

(
− 1

T

)

=
d + 2

2
nT∇

(µ

T

)
+

[(
d + 2

2

)2

+ κ0

]
nT 3∇

(
− 1

T

)
− d + 2

2
nT∇V.

Thus we can write (4.111)–(4.112) as the energy-transport model in the entropic variables

with the diffusion matrix

D = nT

(
1 d+2

2
T

d+2
2

T
((

d+2
2

)2
+ κ0

)
T 2

)
.

The determinant of this matrix is positive (for n, T > 0) if and only if κ0 > 0. This shows

that the heat conduction term is necessary to obtain wellposedness of the energy-transport

equations. We recall that this term is introduced heuristically, and no justification has

been given.

(3) The formal limit β → 0 only gives the equation e = d/2 which means that the sum

of kinetic and thermal energy is constant in space and time. More interesting is the limit

β → 0 in the energy-transport equations (4.111)–(4.112). This yields formally T = 1 and

∂tn − divJ = 0, J = ∇n − n∇V,

which are the drift-diffusion euqations.

The three relaxation-time limits are summarized in Figure 4.2.
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α → 0

β → 0

α → 0, β → 0

Energy-transport Drift-diffusion

Hydrodynamic

Figure 4.2: Relaxation-time limits in the hydrodynamic and energy-transport model.
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5 Quantum Kinetic Models

5.1 The Schrödinger equation

As the dimensions of a semiconductor device decrease, quantum mechanical effects have

to be included in the modeling of the transport phenomena. It is of great importance to

devise models which, on the one hand, are capable of describing quantum effects and,

on the other hand, are sufficiently simple to allow for efficient numerical simulations. We

start with the many-particle Schrödinger equation and follow [49, Sec. 1.4].

The motion of an electron ensemble consisting of M particles in a vacuum under the

influence of a (real-valued) electrostatic potential V is described by the many-particle

Schrödinger equation,

i~∂tψ = − ~2

2m

M∑

j=1

∆xj
ψ − qV (x, t)ψ, x ∈ R

dM , t > 0, (5.1)

ψ(x, 0) = ψI(x), (5.2)

where x = (x1, . . . , xM)> ∈ RdM , i2 = −1, ~ = h/2π is the reduced Planck constant, m

the electron mass, q the elementary charge, and ψ = ψ(x, t) is called the wave function of

the electron ensemble. The Laplace operator ∆xj
only acts on the position variable xj,

∆xj
=

d∑

`=1

∂

∂xj,`

, where xj = (xj,1, . . . , xj,d)
> ∈ R

d.

The variable xj ∈ Rd denotes the position vector of the j-th electron of the ensemble. The

ensemble position density n and the ensemble current density J are defined by

n = |ψ|2, J = −~q

m
Im (ψ∇xψ),

where ψ is the complex conjugate of ψ.

There are two alternative formulations of the motion of the electron ensemble:

• the density-matrix formulation and

• the kinetic (Wigner) formulation.

We introduce the density matrix in this section and explain the kinetic formulation in the

following section.

Define the ensemble Hamilton operator

H = Hx = − ~2

2m
∆x − qV (x, t) = − ~2

2m

M∑

j=1

∆xj
− qV (x, t)
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and the density matrix

%(r, s, t) = ψ(r, t)ψ(s, t), r, s ∈ R
dM , t > 0. (5.3)

Then the ensemble densities can be written in terms of % as

n(x, t) = %(x, x, t), (5.4)

J(x, t) =
i~q

2m
(ψ∇xψ − ψ∇xψ)(x, t) =

i~q

2m
(∇s −∇r)%(x, x, t). (5.5)

The evolution equation for % is obtained by differentiating (5.3) and using the Schrödinger

equation

i~∂tψ = Hψ (5.6)

which gives

i~∂t%(r, s, t) = i~(∂tψ(r, t)ψ(s, t) + ψ(r, t)∂tψ(s, t))

= (Hs − Hr)%(r, s, t), (5.7)

since V (x, t) is real-valued. This equation is referred to as the Liouville-von Neumann or

Heisenberg equation. With the initial condition

%(r, s, 0) = ψI(r)ψI(s), r, s ∈ R
dM , (5.8)

the Schrödinger problem (5.1)–(5.2) and the Heisenberg Problem (5.7)–(5.8) are formally

equivalent.

Is there any relation between the Schrödinger and the Heisenberg picture in the case

of general initial conditions

%(r, s, 0) = %I(r, s), r, s ∈ R
dM? (5.9)

In order to derive a relation let (φj) be an orthonormal basis of L2(RdM). Then (φjφk) is

an orthonormal basis of L2(RdM × RdM) and we can develop

%I(r, s) =
∞∑

j,k=1

%jkφj(r)φk(s),

if %I ∈ L2(RdM ×RdM) is assumed. Now let ψj be the solution of the Schrödinger equation

(5.6) with initial datum φj. A computation as above shows that the product ψj(r, t)ψk(s, t)

solves the Heisenberg equation (5.7), and since this equation is linear, also

%(r, s, t) =
∞∑

j,k=1

%jkψj(r, t)ψk(s, t) (5.10)
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solves the Heisenberg equation with initial datum %I . Thus, the solution of the Heisenberg

problem (5.7), (5.9) can be written as an infinite sum of wave functions. Such a situation

is called mixed quantum states, whereas the formulation (5.3) refers to a single quantum

state.

In the mixed state case (5.10), the ensemble position density is written as

n(x, t) =
∞∑

j=1

%jj|ψj(x, t)|2,

and the weights %jj can be interpreted as occupation probabilites of the j-th quantum

state.

5.2 The quantum Liouville equation

The Wigner equation is the quantum equivalent of the Liouville equation and can be de-

rived from the Heisenberg equation by Fourier transformation. We recall that the Fourier

transform F is defined by

ĝ(η) = (Fg)(η) = (2π)−dM/2

∫

RdM

g(v)e−iη·v dv

for (sufficiently smooth) functions g : RdM → C with inverse

ȟ(v) = (F−1h)(v) = (2π)−dM/2

∫

RdM

h(η)eiη·v dη

for functions h : RdM → C.

Definition 5.1 The inverse Fourier transform of the density matrix,

w(x, v, t) = (2π)−dM

∫

RdM

%

(
x +

~

2m
η, x − ~

2m
η, t

)
eiη·v dη, (5.11)

is called Wigner function.

The Wigner function has been introduced by Wigner in 1932 [66]. Setting

u(x, η, t) = %

(
x +

~

2m
η, x − ~

2m
η, t

)
, (5.12)

the expression

w = (2π)−dM/2ǔ

shows that w is indeed related to the inverse Fourier transform of %. Since (~/2m)η has

the dimension of length and ~/2m has the dimension of m2/s, η has the unit of inverse

velocity s/m. Thus, the variable v in the Fourier transform has the dimension of velocity

m/s.
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Lemma 5.2 Let % be a solution of the Heisenberg equation (5.7), (5.9). Then the Wigner

function w, defined in (5.11), is formally a solution of

∂tw + v · ∇xw − q

m
θ[V ]w = 0, x, v ∈ R

dM , t > 0, (5.13)

w(x, v, 0) = wI(x, v), x, v ∈ R
dM ,

where

wI(x, v) = (2π)−dM

∫

RdM

%I

(
x +

~

2m
η, x − ~

2m
η

)
eiη·v dη

and θ[V ] is a so-called pseudo-differential operator, defined by

(θ̂[V ]w)(x, η, t) = δV (x, η, t)ŵ(x, η, t), (5.14)

where

δV (x, η, t) =
im

~

[
V

(
x +

~

2m
η, t

)
− V

(
x − ~

2m
η, t

)]
.

Equation (5.13) is called the many-particle Wigner equation or quantum Liouville

equation. Generally an operator whose Fourier transform acts as a multiplication operator

on the Fourier transform of its argument, is called a (linear) pseudo-differential operator.

We refer to [62] for the mathematical theory of pseudo-differential operators. The function

δV is a kind of discrete directional derivative. Indeed, in the formal limit “~ → 0” it holds

δV (x, η, t) → i∇xV (x, t) · η = i
∂V

∂η
(x, t). (5.15)

Clearly, the limit “~ → 0” makes sense only after an appropriate scaling (see below).

The operator θ[V ]w is written more explicitly as

(θ[V ]w)(x, v, t) = ((δV )ŵ)∨(x, v, t) = (2π)−dM/2((δV )u)∨(x, v, t) (5.16)

=
1

(2π)dM

∫

RdM

δV (x, η, t)u(x, η, t)eiη·v dη

=
1

(2π)dM

∫

RdM

∫

RdM

δV (x, η, t)w(x, v′, t)eiη·(v−v′) dv′ dη. (5.17)

Proof: Since, by (5.12),

divη(∇xu)(x, η, t) = divη(∇r% + ∇s%)

(
x +

~

2m
η, x − ~

2m
η, t

)

=
~

2m
(∆r% − ∆s%)

(
x +

~

2m
η, x − ~

2m
η, t

)
,

122



the transformed Heisenberg equation for u becomes, for r = x + ~η/2m, s = x − ~η/2m,

i~∂tu(x, η, t) = i~∂t%(r, s, t)

=

(
− ~2

2m
(∆s − ∆r) − qV (s, t) + qV (r, t)

)
%(r, s, t)

= ~divη(∇xu)(x, η, t) +
i~q

m
δV (x, η, t)u(x, η, t)

or

∂tu + idivη(∇xu) − q

m
(δV )u = 0, x, η ∈ R

dM , t > 0.

Taking the inverse Fourier transform gives

∂tǔ + i(divη∇xu)∨ − q

m
((δV )u)∨ = 0. (5.18)

We compute the second and the third term of this equation:

i(divη∇xu)∨(x, v, t) =
i

(2π)dM/2

∫

RdM

divη∇xu(x, η, t)eiη·v dη

=
v

(2π)dM/2

∫

RdM

∇xu(x, η, t)eiη·v dη

= v · ∇xǔ(x, v, t) = (2π)dM/2v · ∇xw(x, v, t),

where we have employed integration by parts, and, by (5.16),

(θ[V ]w)(x, v, t) = (2π)−dM/2((δV )u)∨(x, v, t).

Therefore, (5.18) equals the Wigner equation (5.13). ¤

Lemma 5.3 The ensemble particle density n and the ensemble current density J can be

expressed in terms of the Wigner function as

n(x, t) =

∫

RdM

w(x, v, t) dv, J(x, t) = −q

∫

RdM

w(x, v, t)v dv.

The above integrals are called the zeroth and first moments of the Wigner function,

respectively, in analogy to the classical situation (see Section 3.1).

Proof: The first identity follows from (5.4):

n(x, t) = %(x, x, t) = u(x, 0, t) = (2π)dM/2ŵ(x, 0, t) =

∫

RdM

w(x, v, t) dv.

For the proof of the second identity we use the fact that the Fourier transform translates

differential operators into a multiplication:

i∇ηŵ(x, η, t) =
1

(2π)dM/2

∫

RdM

w(x, v, t)ve−iη·v dv = v̂w(x, η, t).
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Therefore, by (5.5),

J(x, t) =
i~q

2m
(∇s −∇r)%(x, x, t) = −iq∇ηu(x, 0, t)

= −iq(2π)dM/2∇ηŵ(x, 0, t) = −q(2π)dM/2v̂w(x, 0, t)

= −q

∫

RdM

w(x, v, t)v dv.
¤

We discuss two questions related to the quantum Liouville equation:

• How can we formalize the classical limit “~ → 0” and which is the limit equation?

• Are the solutions of the quantum Liouville equation nonnegative if this property

holds true initially?

The limit “~ → 0” can be formalized in an appropriate scaling. We choose the reference

length λ, the reference time τ , the reference velocity λ/τ , and the reference voltage kBT/q,

where kB is the Boltzmann constant and T the temperature. We assume that the reference

wave energy ~/τ is much smaller than the thermal and kinetic energies,

~/τ

kBT
= ε and

~/τ

m(λ/τ)2
= ε with ε ¿ 1X

(this fixes λ for given τ and vice versa). Thus, introducing the scaling

x = λxs, t = τts, v =
λ

τ
vs, V =

kBT

q
Vs,

we obtain, after omitting the index s,

∂tw + v · ∇xw − θ[V ]w = 0, (5.19)

where θ[V ]w is given by (5.17) with

δV (x, η, t) =
i

ε

[
V (x +

ε

2
η, t) − V (x − ε

2
η, t)

]
.

The limit ε → 0 leads to (see (5.15))

δV (x, η, t) → i∇xV (x, t) · η

and hence, using i(ηu)∨ = ∇vǔ,

θ[V ]w = (2π)−dM/2((δV )u)∨ → i(2π)−dM/2 ((∇xV · η)u)∨

= (2π)−dM/2∇xV · ∇vǔ = ∇xV · ∇vw.
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Thus, (5.19) becomes in the limit ε → 0

∂tw + v · ∇xw −∇xV · ∇vw = 0,

which is the classical Liouville equation (see Section 3.1). The above consideration makes

clear the limit performed in (5.15). The classical limit ε → 0 has been made rigorous

in [47, 48] for smooth potentials.

The solution of the classical Liouville equation stays nonnegative for all time if the

initial distribution function is nonnegative. Unfortunately, this property does not hold for

the quantum Liouville equation. Thus, a (fully) probabilistic interpretation of the Wigner

function as a distribution function is not possible. In the case of a pure quantum state it

is possible to characterize the states for which the Wigner function is nonnegative exactly.

It is shown in [38] that

w(x, v, t) =
1

(2π)dM

∫

RdM

ψ

(
x +

~

2m
η, t

)
ψ

(
x − ~

2m
η, t

)
eiη·v dη

is nonnegative if and only if either ψ ≡ 0 or

ψ(x, t) = exp
(
−x>A(t)x − a(t) · x − b(t)

)
, x ∈ R

dM , t > 0,

where A(t) ∈ CdM×dM is a matrix with symmetric positive definite real part and a(t) ∈
CdM , b(t) ∈ C. Inserting this ansatz into the Schrödinger equation (5.1) shows that the

potential has to be quadratic in x, i.e.

V (x, t) = x>Ã(t)x + ã(t) · x + b̃(t)

for some Ã(t) ∈ CdM×dM , ã(t) ∈ CdM , b̃(t) ∈ C, in order to obtain a nonnegative Wigner

solution.

The case of mixed quantum states, i.e. for arbitrary initial data wI ∈ L2(RdM ×RdM),

is more involved. In fact, a necessary condition for the nonnegativity of w is not known.

5.3 The quantum Vlasov and Boltzmann equation

The quantum Liouville equation has the same disadvantage as its classical analogue,

namely, the equation needs to be solved in a very high-dimensional phase space which

makes its numerical solution almost unfeasible. In this section we derive the quantum

analogue of the classical Vlasov equation, the quantum Vlasov equation, which acts on a

2d-dimensional phase space. We proceed similarly as in [49, Sec. 1.5] (also see Section 3.2).

Consider as in the proceeding section an ensemble of M electrons with mass m in a

vacuum under the action of a (real-valued) electrostatic potential V (x, t). The motion of

the particle ensemble is described by the density matrix as a solution of the Heisenberg

equation (5.7). We impose the following assumptions:
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(1) The potential can be decomposed into a sum of external potentials acting on one

particle and of two-particle interaction potentials,

V (x1, . . . , xM , t) =
M∑

j=1

Vext(xj, t) +
1

2

M∑

i,j=1

Vint(xi, xj), (5.20)

where Vint is symmetric, i.e. Vint(xi, xj) = Vint(xj, xi) for all i, j = 1, . . . ,M , and is

of the order 1/M as M → ∞.

(2) The electrons of the ensemble are initially indistinguishable in the sense

%(r1, . . . , rM , s1, . . . , sM , 0) = %(rπ(1), . . . , rπ(M), sπ(1), . . . , sπ(M), 0) (5.21)

for all permutations π of {1, . . . ,M} and all rj, sj ∈ Rd.

(3) The initial subsensemble density matrices can be factorized

%
(a)
I (r(a), s(a)) = %(a)(r(a), s(a), 0) =

a∏

j=1

RI(rj, sj), 1 ≤ a < M − 1.

We discuss now these assumptions. The factor 1
2

in (5.20) is necessary since each

electron-electron pair in the sum of two-particle interactions is counted twice. The sym-

metry of the interaction potentials implies that

V (x1, . . . , xM , t) = V (xπ(1), . . . , xπ(M), t) for all t ≥ 0

and for all permutations π. This property and (5.21) has the consequence that

%(r1, . . . , rM , s1, . . . , sM , t) = %(rπ(1), . . . , rπ(M), sπ(1), . . . , sπ(M), t) (5.22)

holds for all t > 0. Physically, this means that the electrons are indistinguishable for all

time.

In fact, (5.22) is not enough to describe the behavior of the electron ensemble. Indeed,

in the pure quantum state,

%(r1, . . . , rM , s1, . . . , sM , t) = ψ(r1, . . . , rM , t)ψ(s1, . . . , rM , t),

where ψ is the electron-ensemble wave function, the condition (5.22) is satisfied if either

the wave function is antisymmetric,

ψ(x1, . . . , xM , t) = sign(π)ψ(xπ(1), . . . , xπ(M), t)

for all permutations π, where sign(π) ∈ {−1, +1} is the sign of π, or if it is symmetric,

ψ(x1, . . . , xM , t) = ψ(xπ(1), . . . , xπ(M), t)
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for all π. The first case corresponds to ensembles consisting of Fermions (and in particular,

of electrons) and the latter case to ensembles of Bosons. In the first case (which is the

interesting case for us) we obtain

ψ(x1, . . . , xM , t) = 0 if xi = xj for some i 6= j.

This expresses the Pauli exclusion principle which is not contained in condition (5.22).

We wish to derive the evolution equation for a subensemble density matrix. The density

matrix of a subensemble consisting of a electrons is defined by

%(a)(r(a), s(a), t) =

∫

Rd(M−a)

%(r(a), ua+1, . . . , uM , s(a), ua+1, . . . , uM , t) dua+1 . . . duM ,

where

r(a) = (r1, . . . , ra), s(a) = (s1, . . . , sa) ∈ R
da.

Clearly, in view of the indistinguishable property (5.22), the subensemble density matrices

satisfy

%(a)(r1, . . . , ra, s1, . . . , sa, t) = %(a)(rπ(1), . . . , rπ(a), sπ(1), . . . , sπ(a), t) (5.23)

for all permutations π of {1, . . . , a} and all rj, sj ∈ Rd, t ≥ 0.

We recall that the evolution of the complete electron ensemble is governed by the

Heisenberg equation (5.7), rewritten as

i~∂t% = − ~2

2m

M∑

j=1

(∆sj
− ∆rj

)% − q
M∑

j=1

(Vext(sj, t) − Vext(rj, t)) %

−q

2

M∑

j,`=1

(Vint(sj, s`) − Vint(rj, r`)) %. (5.24)

Theorem 5.4 Let the above hypotheses (1)–(3) hold. Then the density matrix %(r, s, t)

is a particular solution to the Heisenberg equation (5.23) if M À 1,

%(a)(r(a), s(a), t) =
a∏

j=1

R(rj, sj, t), (5.25)

and the function W = (2π)−d/2MŘ is a solution to the quantum Vlasov equation

∂tW + v · ∇xW − q

m
θ[Veff ]W = 0, x, v ∈ R

d, t > 0 (5.26)

W (x, v, 0) = WI(x, v), x, v ∈ R
d,

where the pseudo-differential operator θ[Veff ] is defined as in (5.14), the effective potential

Veff is

Veff(x, t) = Vext(x, t) +

∫

Rd

n(z, t)Vint(x, z) dz, (5.27)
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the quantum electron density is

n(x, t) =

∫

R

W (x, v, t) dv = MR(x, x, t), (5.28)

and WI = (2π)−d/2MŘI .

The expression (5.25) is also called Hartree ansatz. As the effective potential depends

on the function W through (5.28), we obtain a nonlinear pseudo-differential equation.

Proof: We set uj = sj = rj for j = a + 1, . . . ,M in (5.24), integrate over (ua+1, . . . , uM) ∈
Rd(M−a) and use the property (5.23) to obtain, after an analogous computation as in

Section 3.2, a quantum equivalent of the BBGKY hierarchy,

i~∂t%
(a) = − ~2

2m

M∑

j=1

(∆sj
− ∆rj

)%(a) − q
M∑

j=1

(Vext(sj, t) − Vext(rj, t)) %(a)

−q(M − a)
a∑

j=1

∫

Rd

(Vint(sj, u∗) − Vint(rj, u∗)) %(a+1)
∗ du∗

for all 1 ≤ a ≤ M − 1, where

%(a+1)
∗ = %(a+1)(r(a), u∗, s

(a), u∗, t).

Since we have assumed that Vint is of the order of 1/M as M → ∞, we can approximate

the above equation, by neglecting terms of order 1/M , by

i~∂t%
(a) = − ~2

2m

a∑

j=1

(∆sj
− ∆rj

)%(a) − q
a∑

j=1

(Vext(sj, t) − Vext(rj, t)) %(a)

−q
a∑

j=1

∫

Rd

(Vint(sj, u∗) − Vint(rj, u∗)) M%(a+1)
∗ du∗.

Similar to the classical case, it can be seen that this equation is satisfied by the ansatz

(5.25) if R solves the equation

i~∂tR = − ~2

2m
(∆s − ∆r)R − q (Veff(s, t) − Veff(r, t)) R, r, s,∈ R

d, t > 0, (5.29)

where the effective potential Veff is defined in (5.27) and (5.28).

The kinetic formulation of (5.29) is derived as in Section 5.2. Introducing the change

of coordinates

r = x +
~

2m
η, s = x − ~

2m
η,

the function U(x, η, t) = MR(r, s, t) solves the equation

∂tU + idivη∇xU +
iq

~

[
Veff

(
x +

~

2m
η, t

)
− Veff

(
x − ~

2m
η, t

)]
U = 0.
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Finally, the inverse Fourier transform W = (2π)−d/2Ǔ solves the quantum Vlasov equation

(5.26). ¤

Contrary to the classical Vlasov equation, the quantum Vlasov equation does not

preserve the nonnegativity of the solution; cf. the discussion in Section 5.2. However, if

the initial single-particle density matrix R(r, s, 0) is positive semi-definite, the electron

density n, defined in (5.28), remains nonnegative for all times.

Similar to the quantum Liouville equation, the solution to the quantum Vlasov equa-

tion converges (at least formally) as “~ → 0” to a solution to the classical Vlasov equation

∂tW + v · ∇xW − q

m
∇xVeff · ∇vW = 0.

The limit “~ → 0” has to be understood in the sense explained in Section 5.2.

As in Section 3.2, a usual choice for the two-particle interaction potential is the

Coulomb potential which reads in three space dimensions as

Vint(x, y) = − q

4πεs

1

|x − y| , x, y ∈ R
3, x 6= y,

where εs denotes the permittivity of the semiconductor material (see (3.19)). In Section 3.2

it has been shown that the effective potential

Veff(x, t) = Vext(x, t) − q

4πεs

∫

R3

n(z, t)

|z − x| dz (5.30)

solves the Poisson equation

εs∆Veff = q(n − C(x)),

where C(x) = −(εs/q)Vext(x) is the doping concentration if Vext is generated by ions of

charge +q in the semiconductor. This concept can be generalized to any space dimen-

sion. The initial-value problem (5.26), (5.30) (together with (5.28)) is called the quantum

Vlasov-Poisson problem.

The presented quantum Vlasov equation models the motion of an electron ensemble

in a vacuum under the influence of long-range interactions. However, the electrons are

moving in a crystal whose influence needs to be taken into account. Including a lattice

potential into the Schrödinger equation, making a Bloch decomposition (see Theorem 2.5),

and letting the length scale of the Brillouin zone to infinity, it can be shown [2, 55] that

the resulting equation equals

∂tw + v(k) · ∇xw − q

m
θ[Veff ]w = 0, x, k ∈ R

d, t > 0, (5.31)

together with equations (5.27) and (5.28) and initial conditions for w. Here, v(k) =

∇kE(k)/~ is the group velocity, E(k) the band structure, and k the wave vector which

has been extended to the whole space by the limiting procedure.
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A second generalization of the quantum Vlasov equation is given by the inclusion

of short-range interactions modeled by scattering events of particles. The quantum me-

chanical modeling of collisions of electrons (with phonons, for instance) is a very difficult

task, and there is no complete theory up to now. The phenomenological approach used in

Section 3.3 cannot be used here since the notion of particle trajectories or characteristics

does not make sense in this quantum mechanical framework. On the other hand, most of

the collision models derived in the literature are highly complicated and numerically too

expensive [18, 31]. A simple approach is to formulate the so-called quantum Boltzmann

equation

∂tw + v · ∇xw − q

m
θ[Veff ]w = Q(w), x, v ∈ R

d, t > 0, (5.32)

by adding a heuristic collision term to the right-hande side of the quantum Vlasov equation

(5.26) or of its energy-band version (5.31). In numerical studies, often one of the following

collision operators are used (assuming the energy-band version of the quantum Boltzmann

equation)

• the relaxation-time or BGK model [59]

Q(w) =
1

τ

(
n

n0

w0 − w

)
,

where

n(x, t) =

∫

Rd

w(x, k, t) dk, n0(x, t) =

∫

Rd

w0(x, k, t) dk,

and w0 is the distribution function of the quantum mechanical thermal equilibrium,

defined, for instance in the mixed state, by the thermal equilibrium density matrix

%0(r, s) =
∑

j

f(λj)ψj(r)ψj(s),

where (λj, ψj) are eigenvalue-eigenfunction pairs of the quantum Hamiltonian, and

f(λ) is the Fermi-Dirac distribution;

• the Caldeira-Leggett model [16]

Q(w) =
1

τ0

divk

(
m∗kBT

~2
∇kw + kw

)
, (5.33)

where τ0 denotes the relaxation time, T the lattice temperature and m∗ the effective

electron mass.

The Caldeira-Leggett model has the disadvantage that the positivity of the density

matrix is not preserved under temporal evolution. In [17] the approach of Caldeira and

Leggett has been improved by deriving the Fokker-Planck operator

Q(w) =
1

τ0

divk

(
m∗kBT

~2
∇kw + kw

)
+

1

τ0

divx

(
Ω~

6πkBT
∇kw +

~2

12m∗kBT
∇xw

)
,
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where Ω is the cut-off frequency modeling the interaction of the electrons with the phonons

of the crystal (see [17] for details). This collision operator preserves the posivitiy of the

density matrix.

A summary of the kinetic models derived in Chapter 3 and this chapter is presented

in Figure 5.1. Notice that for each model, there is an energy-band version in the (x, k, t)

variables, which reduces to a model in the (x, v, t) variables in the parabolic band approx-

imation via v = v(k) = ~k/m∗.

quantum Boltzmann equation Boltzmann equation

quantum Vlasov equation Vlasov equation

quantum Liouville equation Liouville equation

no collisionsno collisions

no two-particle interactionsno two-particle interactions

“~ → 0”

“~ → 0”

“~ → 0”

Figure 5.1: Hierarchy of classical and quantum kinetic models.

5.4 Open quantum systems

Up to now, we have only considered closed quantum systems. In a closed system, all el-

ements and their interactions are completely known. On the other hand, open quantum

systems are characterized by the fact that elements of the system interact with an envi-

ronment but not all interactions are known precisely. As an example of an open system we

consider the one-dimensional stationary Schrödinger equation with some potential V (x),

− ~2

2m∗
ψ′′ − qV (x)ψ = Eψ in (0, L), (5.34)

where m∗ is the effective mass which is assumed, for simplicity, to be constant. It is con-

venient to scale the Schrödinger equation. Choosing the reference length L, the reference

potential kBT/q, and the reference energy kBT and introducing the scaled variables

x = Lxs, V =
kBT

q
Vs, E = (kBT )Es,

we obtain from (5.34), after omitting the index s,

−ε2

2
ψ′′ − V (x)ψ = Eψ, x ∈ (0, 1), (5.35)
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where

ε =
~√

m∗L2kBT

is the scaled Planck constant.

Equation (5.35) is an eigenvector-eigenvalue problem. For its solution we need to

specify boundary conditions. Since we do not know the wave function at the boundary or

outside of the interval, this constitutes an open system. In order to solve it, we have to

specify what happens with the electron wave outside of the interval. We assume: Electron

waves are injected at x = 0; they exit the interval at x = L or they are reflected by the

potential at x = 0 (Figure 5.2). We solve the problem (5.35) by extending the potential

to the whole line,

V (x) = V (0) for x < 0, V (x) = V (1) for x > 1, (5.36)

and solve (5.35) for x ∈ R. Since the potential is constant in {x < 0} and {x > 1},
respectively, we expect that the solutions are plane waves in these intervals. This motivates

the following ansatz. Let first p > 0. Then we define

ψp(x) =

{
eipx/ε + r(p)e−ipx/ε : x < 0

t(p)eip+(p)(x−1)/ε : x > 1,
(5.37)

where p+(p) has to be determined. This ansatz means that a wave with amplitude one

is coming from −∞ (since p > 0) and is either transmitted to +∞ with amplitude t(p)

or it is reflected by the potential and travels back to −∞ with amplitude r(p). Inserting

(5.37) into the scaled Schrödinger equation (5.35) yields for x < 0

(E + V (0))ψp = −ε2

2
ψ′′

p =
p2

2
eipx/ε +

p2

2
r(p)e−ipx/ε =

p2

2
ψp

and thus

Ep = E =
p2

2
− V (0);

for x > 1 we obtain

(Ep + V (1))ψp = −ε2

2
ψ′′

p =
p2

+(p)

2
ψp

and

p+(p) =
√

2(Ep + V (1)) =
√

p2 + 2(V (1) − V (0)).

We take the positive root since the wave travels to +∞ and hence, p+(p) > 0 is required.

For the case p < 0 we make an analogous ansatz:

ψp(x) =

{
t(p)e−ip−(p)x/ε : x < 0

e−ip(x−1)/ε + r(p)eip(x−1)/ε : x > 1,
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injected
electrons electrons

electrons
reflected

transmitted

0 L x

p > 0

Figure 5.2: Electrons with p > 0 are injected at x = 0 and are reflected at x = 0 or

transmitted at x = L.

where again p−(p) is unknown. This ansatz models a wave coming from +∞ and being

either transmitted to −∞ or reflected at x = 1 and traveling back to +∞. Inserting this

ansatz into (5.35) gives, after a similar computation as above,

Ep = E =
p2

2
− V (1), p−(p) =

√
p2 − 2(V (1) − V (0)).

Assuming that the wave function ψp is continuous in R, this allows to specify the

boundary conditions for ψp at x = 0 and x = 1. Indeed, for p > 0 and x < 0, x → 0 there

holds:

εψ′
p(0) = ip(1 − r(p)) and ipψp(0) = ip(1 + r(p)),

so

εψ′
p(0) + ipψp(0) = 2ip.

At x > 1, x → 1, we infer

εψ′
p(1) = ip+(p)t(p) = ip+(p)ψp(1).

For p < 0 we obtain

εψ′
p(1) − ipψp(1) = −ip(1 − r(p)) − ip(1 + r(p)) = −2ip,

εψ′
p(0) = −ip−(p)t(p) = −ip−(p)ψp(0).

We have shown the following result.

Lemma 5.5 Let V (x), x ∈ (0, 1), be a given potential extended to R by (5.36). Then the

solution of the eigenvalue problem

−ε2

2
ψ′′ − V (x)ψ = Eψ, x ∈ R,
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can be written as

p > 0 : Ep = p2

2
− V (0), ψp(x) =

{
eipx/ε + r(p)e−ipx/ε : x ≤ 0

t(p)eip+(p)(x−1)/ε : x ≥ 1,
(5.38)

p < 0 : Ep = p2

2
− V (1), ψp(x) =

{
t(p)e−ip−(p)x/ε : x ≤ 0

e−ip(x−1)/ε + r(p)eip(x−1)/ε : x ≥ 1,
(5.39)

where

p±(p) =
√

p2 ± 2(V (1) − V (0)),

and in the interval (0, 1) ψp is the solution of

−ε2

2
ψ′′

p − V (x)ψp = Epψp, x ∈ (0, 1)

εψ′
p(0) + ipψp(0) = 2ip, εψ′

p(1) = ip+(p)ψp(1) for p > 0, (5.40)

−εψ′
p(1) + ipψp(1) = 2ip, εψ′

p(0) = −ip−(p)ψp(0) for p < 0, (5.41)

where Ep is given as above. The reflection and transmission amplitudes r(p) and t(p) are

determined by

p > 0 : r(p) = 1
2

(
ψp(0) + iε

p
ψ′

p(0)
)

, t(p) = ψp(1), (5.42)

p < 0 : r(p) = 1
2

(
ψp(1) − iε

p
ψ′

p(1)
)

, t(p) = ψp(0). (5.43)

The boundary conditions (5.40)–(5.41) are called the Lent-Kirkner boundary condi-

tions [41].

Proof: It remains to show the formulas (5.42)–(5.43). In fact, they follow immediately

from (5.40) and (5.41). For instance, for p > 0, we have from the first equation in (5.40)

iε

p
ψ′

p(0) = ψp(0) − 2

and hence, by (5.38),

1

2

(
ψp(0) +

iε

p
ψ′

p(0)

)
= ψp(0) − 1 = r(p), ψp(1) = t(p).

In a similar way, (5.41) and (5.39) imply (5.43). ¤

The unscaled macroscopic electron and current densities are given by

n(x) =

∫

R

f(p)|ψp(x)|2 dp

J(x) =
q~

m∗

∫

R

f(p)Im (ψp(x)ψp(x)) dp,
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where f(p) describes the statistics of the mixed states. In Lemma 2.20 we have derived

the following formula:

f(p) =
m∗kBT

2π2~3
ln

(
1 + e(−p2/2m∗+EF )/kBT

)
,

where EF is the Fermi energy.
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6 Quantum Fluid Models

6.1 Zero-temperature quantum hydrodynamic equations

We consider a single electron in a vacuum. The evolution of the particle is described by

the Schrödinger equation

i~∂tψ = − ~2

2m
∆ψ − qV (x, t)ψ, x ∈ R

d, t > 0,

ψ(x, 0) = ψI(x), x ∈ R
d. (6.1)

First we scale the equations by introducing reference values for the time, length, and

potential,

t = τts, x = Lxs, V = UVs.

We assume that the kinetic energy is of the same order as the electric energy,

m

(
L

τ

)2

= qU.

Then the scaled Schrödinger equation becomes (omitting the index “s”)

iε∂tψ = −ε2

2
∆ψ − V ψ, x ∈ R

d, t > 0, (6.2)

where

ε =
~/τ

m(L/τ)2
=

~τ

mL2

is the scaled Planck constant.

In order to derive a fluid-type equation, we asume that the initial wave function is

given by the WKB (Wentzel, Kramers, Brillouin) state

ψI =
√

nI exp(iSI/ε), (6.3)

where nI(x) ≥ 0, SI(x) ∈ R are some functions. We claim that the zero-temperature

quantum hydrodynamic equations

∂tn − divJ = 0, (6.4)

∂tJ − div

(
J ⊗ J

n

)
+ n∇V +

ε2

2
n∇

(
∆
√

n√
n

)
= 0, x ∈ R

d, t > 0 (6.5)

n(x, 0) = nI(x), J(x, 0) = JI(x), x ∈ R
d, (6.6)

are formally equivalent to the Schrödinger equation (6.2) in the sense of the following

theorem.
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Theorem 6.1 (1) Let ψ be a solution of (6.1)–(6.2) with initial datum (6.3). Then

n = |ψ|2, J = −εIm (ψ∇ψ) solve (6.4)–(6.6) with initial data

nI = |ψI |2, JI = −nI∇SI (6.7)

as long as n > 0 in Rd.

(2) Let (n, S) be a solution of

∂tn+div(n∇S) = 0, ∂tS+
1

2
|∇S|2−V − ε2

2

∆
√

n√
n

= 0, x ∈ R
d, t > 0, (6.8)

n(x, 0) = nI(x), S(x, 0) = SI(x), x ∈ R
d,

such that n > 0 in Rd, t > 0. then ψ =
√

n exp(iS/ε) solves (6.1)–(6.2) with initial

datum (6.3).

Notice that (6.8) implies (6.4)–(6.5). Indeed, setting J = −n∇S, we obtain imme-

diately (6.4), and differentiation of the second equation in (6.8) with respect to x and

multiplication with n yields

n∇V +
ε2

2
n∇∆

√
n√

n
= n∂t∇S +

1

2
n∇|∇S|2

= ∂t(n∇S) − divJ · ∇S +
1

2
n∇|∇S|2

= −∂tJ + div

(
J ⊗ J

n

)
,

since, with the Hessian D2S,

1

2
n∇|∇S|2 = n(D2S)∇S = div(n∇S ⊗∇S) − div(n∇S)∇S

= div

(
J ⊗ J

n

)
+ divJ · ∇S.

Proof of Theorem 6.1: (1) We can write the complex-valued wave function ψ as ψ =√
n exp(iS/ε), where n = |ψ|2 and S is some phase function. Then

J = −εIm (ψ∇ψ) = −ε Im

(√
n∇

√
n +

i

ε
n∇S

)
= −n∇S.

Thus, n and S satisfy the initial conditions (6.7). It remains to show that (n, J) solves

(6.8) since this implies (6.4)–(6.5).

Inserting the expression ψ =
√

n exp(iS/ε) into (6.2) gives, after division of exp(iS/ε),

iε

2

∂tn√
n
−
√

n∂tS = −ε2

2

(
∆
√

n +
2i

ε
∇
√

n · ∇S +
i

ε

√
n∆S −

√
n

ε2
|∇S|2

)
−
√

nV.
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The imaginary part of this equation equals

∂tn = −2
√

n∇
√

n · ∇S − n∆S = −div(n∇S),

which is the first equation in (6.8). The real part of the above equation reads

∂tS =
ε2

2

∆
√

n√
n

− 1

2
|∇S|2 + V,

which is the second equation in (6.8).

(2) Differentiation of ψ =
√

n exp(iS/ε) gives, using (6.8),

iε∂tψ +
ε2

2
∆ψ = eiS/ε

(
iε

∂tn

2
√

n
−

√
n∂tS +

ε2

2
∆
√

n + iε∇
√

n · ∇S

+
iε

2

√
n∆S −

√
n

2
|∇S|2

)

= eiS/ε

(
−iε

2

div(n∇S)√
n

+ iε∇
√

n · ∇S +
iε

2

√
n∆S −

√
nV

)

= −
√

n eiS/εV = −V ψ. ¤

The system (6.4)–(6.5) is the quantum analogue of the classical pressureless Euler

equations of gas dynamics. Notice that the above derivation requires an irrational initial

velocity J/n (since curl (J/n) = −curl (∇S) = 0).

The quantum term can be interpreted either as a quantum self-potential term with

the so-called Bohm potential ∆
√

n/
√

n or as a non-diagonal pressure tensor

P =
ε2

4
n(∇⊗∇) log n

since divP = (ε2/2)n∇(∆
√

n/
√

n).

6.2 Quantum hydrodynamics and the Schrödinger equation

The quantum hydrodynamic model of the previous section is derived for a single particle

and therefore, it does not contain a temperature term. In order to include temperature,

many-particle systems need to be studied. We assume that the considered electron ensem-

ble is represented by a mixed state (see Section 5.1). A mixed quantum state consists of

a sequence of single states with occupation probability λk ≥ 0, k ∈ N, for the k-th state

described by the Schrödinger equations

iε∂tψk = −ε2

2
∆ψk − V ψk, x ∈ R

d, t > 0, (6.9)

ψk(x, 0) = ψI,k(x), x ∈ R
d. (6.10)
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The occupation probabilities clearly satisfy
∑∞

k=1 λk = 1, i.e, the probability of finding

the electron ensemble in any of the quantum states is one.

Define the single-particle particle and current densities of the k-th state as in the

previous subsection as

nk = |ψk|2, Jk = −ε Im (ψk∇ψk), k ∈ N.

We claim that the total carrier density n and current density J of the mixed state, given

by

n =
∞∑

k=1

λknk, J =
∞∑

k=1

λkJk, (6.11)

is a solution of the quantum hydrodynamic equations with temperature tensor:

∂tn − divJ = 0, (6.12)

∂tJ − div

(
J ⊗ J

n
+ nθ

)
+ n∇V +

ε2

2
n∇

(
∆
√

n√
n

)
= 0, x ∈ R

d, t > 0, (6.13)

with initial conditions

n(·, 0) =
∞∑

k=1

λk|ψI,k|2, J(·, 0) = −ε

∞∑

k=1

λk Im (ψI,k∇ψI,k), in R
d, (6.14)

where θ ∈ Rd×d is the temperature tensor defined below (see (6.15)).

Theorem 6.2 Let ψk be a solution of (6.9)–(6.10) for all k ∈ N. Then (n, J), defined in

(6.11), solves (6.12)–(6.14), where

θ = θc + θos (6.15)

and the current temperature θc and osmotic temperature θos are given by

θc =
∞∑

k=1

λk
nk

n
(uc,k − uc) ⊗ (uc,k − uc), (6.16)

θos =
∞∑

k=1

λk
nk

n
(uos,k − uos) ⊗ (uos,k − uos), (6.17)

and

uc = −J

n
, uc,k = −Jk

nk

, uos =
ε

2
∇ ln n, uos,k =

ε

2
∇ ln nk (6.18)

are the “current” and “osmotic” velocities, respectively.

The notion “osmotic” comes from the fact that the quantum term can be written as

ε2

2
n∇

(
∆
√

n√
n

)
= divP with P =

ε2

4
n(∇⊗∇) ln n,

and P can be interpreted as a non-diagonal pressure tensor.
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Proof: Theorem 6.1 shows that (nk, Jk) solves the system of equations

∂tnk − divJk = 0,

∂tJk − div

(
Jk ⊗ Jk

nk

)
+ nk∇V +

ε2

2
nk∇

(
∆
√

nk√
nk

)
= 0, x ∈ R

d

nk(·, 0) = |ψI,k|2, Jk(·, 0) = −ε Im (ψI,k∇ψI,k).

Multiplication of the above equations by λk and summation over k yields

∂tn − divJ = 0,

∂tJ −
∞∑

k=1

λkdiv

(
Jk ⊗ Jk

nk

)
+ n∇V +

ε2

2

∞∑

k=1

λknk∇
(

∆
√

nk√
nk

)
= 0. (6.19)

We rewrite the second and fourth term of the second equation. Using (6.16) and (6.18)

we obtain
∞∑

k=1

λkdiv

(
Jk ⊗ Jk

nk

)
(6.20)

=
∞∑

k=1

λkdiv(nkuc,k ⊗ uc,k)

=
∞∑

k=1

λkdiv (nk(uc,k − uc) ⊗ (uc,k − uc) + 2nkuc,k ⊗ uc) − div(nuc ⊗ uc)

= div(nθc) +
∞∑

k=1

div

(
2λk

Jk ⊗ J

n

)
− div

(
J ⊗ J

n

)

= div(nθc) + div

(
J ⊗ J

n

)
. (6.21)

Furthermore, employing (6.17) and (6.18),

∞∑

k=1

λknk∇
(

∆
√

nk√
nk

)
=

1

2

∞∑

k=1

λkdiv

(
(∇⊗∇)nk −

∇nk ⊗∇nk

nk

)

=
1

2

∞∑

k=1

λkdiv

[
(∇⊗∇)nk +

∇n ⊗∇n

n2
− 2

∇n ⊗∇nk

n

−nk

(∇nk

nk

− ∇n

n

)
⊗

(∇nk

nk

− ∇n

n

) ]

=
1

2
div

(
(∇⊗∇)n − ∇n ⊗∇n

n

)
+ div(nθos)

= n∇
(

∆
√

n√
n

)
+ div(nθos). (6.22)
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Putting (6.21) and (6.22) into (6.19) gives (6.13). ¤

The temperature tensor cannot be expressed in terms of the particle and current den-

sities without further assumptions, and as in the derivation of the classical hydrodynamic

model (see Section 4.2), we need a closure condition to obtain a closed set of equations.

In the literature, the following conditions have been used:

• Derive an evolution equation for the temperature tensor and close the corresponding

equation (we do not consider this approach here since we derive a temperature

equation in Section 6.3).

• Assume that the temperature tensor is diagonal with equal entries on the diagonal,

θ = T · Id ,

where T is a scalar temperature and Id ∈ Rd×d is the identity matrix. Usually,

the temperature T is a constant (isothermal case) but also a nonlinear temperature

T (n) = T0n
α−1 for some α > 1 can be considered (isentropic case).

The second choice implies that the (classical) pressure nθ becomes

nθ = T0n
α · Id ,

with α = 1 in the isothermal case and α > 1 in the isentropic case.

6.3 Quantum hydrodynamics and the Wigner equation

The quantum hydrodynamic model of the previous section does not include any collisional

effects. In fact, the Schrödinger equation only models ballistic quantum transport. In

order to include scattering phenomena, we use the Wigner equation of Section 5.3 with

the Caldeira-Leggett collision operator (see (5.32)–(5.33)):

∂tw +
~k

m∗
· ∇xw +

q

m∗
θ[V ]w =

1

τ0

divk

(
kw +

m∗kBT0

~2
∇kw

)
, t > 0, (6.23)

w(x, k, 0) = wI(x, k), x, k ∈ R
d,

where we recall the definition of the pseudodifferential operator θ[V ],

(θ[V ]w)(x, k, t) =
i

(2π)d

∫

Rd

∫

Rd

m∗

~

[
V

(
x +

η

2
, t

)
− V

(
x − η

2
, t

)]

×w(x, k′, t)ei(k−k′)·η dk′ dη,
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and m∗ is the effective electron mass. According to (5.31) we have assumed a parabolic

energy band E(k) = ~2|k|2/2m∗, implying

v(k) =
1

~
∇kE(k) =

~k

m∗
.

First we scale the so-called Wigner-Fokker-Planck equation (6.23). For this we intro-

duce reference values for the time τ , the length L, and the potential U by requiring that

kBT0 = m∗

(
L

τ

)2

and m∗

(
L

τ

)2

= qU.

This means that we consider a scaling in which thermal, kinetic, and electric energy are

of the same order. Then the scaling

ts =
t

τ
, x − s =

x

L
, ks =

~τ

m∗L
k, Vs = (xs, ts) =

V (x, t)

U

leads, after some elementary computations, to the following dimensionless equations (omit-

ting the index “s”):

∂tw + k · ∇xw + θ[V ]w = divk(kw) + ∆kw, t > 0, (6.24)

w(x, k, 0) = wI(x, k) x, k ∈ R
d,

with the scaled operator

(θ[V ]w)(x, k, t) =
i

(2π)d

∫

Rd

∫

Rd

1

ε

[
V

(
x +

ε

2
η, t

)
− V

(
x − ε

2
η, t

)]

×w(x, k′, t)ei(k−k′)·η dk′ dη.

The parameter

ε =
~/τ

m∗(L/τ)2

denotes the scaled Planck constant.

In order to derive macroscopic equations from (6.24) we apply the moment method as

in Section 4.2. We define similarly as in the classical case the electron and current density

by

n(x, t) =

∫

Rd

w(x, k, t) dk, J(x, t) = −
∫

Rd

w(x, k, t)k dk,

and we set

〈f(k)〉 =

∫

Rd

w(x, k, t)f(k) dk

for any function f . Then n = 〈1〉 and J = −〈k〉.
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Lemma 6.3 The first moment equations corresponding to (6.24) are as follows:

∂tn − divxJ = 0, (6.25)

∂tJ − divx〈k ⊗ k〉 + n∇xV = −J, (6.26)

∂t〈
1

2
|k|2〉 + divx〈

1

2
k|k|2〉 + ∇xV · J = −〈|k|2〉 + dn, (6.27)

where x ∈ Rd, t > 0. The initial conditions are given by

n(x, 0) =

∫

Rd

wI(x, k) dk,

J(x, 0) = −
∫

Rd

wI(x, k)k dk,

〈1
2
|k|2〉(x, 0) =

1

2

∫

Rd

wI(x, k)|k|2 dk, x ∈ R
d.

Proof: First we integrate (6.24) over Rd with respect to k:

∂t〈1〉 + divx〈k〉 +

∫

Rd

θ[V ]w dk =

∫

Rd

divk(kw + ∇kw) dk = 0. (6.28)

For the evaluation of the integral on the left-hand side we recall the Fourier transform

φ̂(x, η, t) =
1

(2π)d/2

∫

Rd

φ(x, k, t)e−ik·η dk

with inverse

φ(x, k, t) =
1

(2π)d/2

∫

Rd

φ̂(x, η, t)eik·η dη.

Integrating the last equation over Rd with respect to k gives the formula

φ̂(x, 0, t) =
1

(2π)d

∫

Rd

∫

Rd

φ̂(x, η, t)eik·η dη dk. (6.29)

With this expression we compute

∫

Rd

θ[V ]w dk =
i

(2π)d/2

∫

Rd

∫

Rd

1

ε

[
V (x +

ε

2
η, t) − V (x − ε

2
η, t)

]
(6.30)

×ŵ(x, η, t)eik·η dη dk

= (2π)d/2 i

ε

[
V (x +

ε

2
η, t) − V (x − ε

2
η, t)

]

η=0
ŵ(x, 0, t)

= 0. (6.31)

Therefore, (6.28) equals (6.25).
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Now we multiply (6.24) with kj and integrate over Rd with respect to k. We compute

first, integrating by parts,

∫

Rd

divk(kw + ∇kw)kj dk = −
∫

Rd

(kw + ∇kw) · ∇kkj dk

= −
∫

Rd

(
kjw +

∂w

∂kj

)
dk = −〈kj〉 = Jj

and, using (6.29),

∫

Rd

θ[V ]wkj dk (6.32)

=
i

(2π)d/2

∫

Rd

∫

Rd

1

ε

[
V (x +

ε

2
η, t) − V (x − ε

2
η, t)

]
ŵ(x, η, t)(−i)

∂

∂ηj

eik·η dη dk

= −(2π)d/2 1

ε

∂

∂ηj

[
V (x +

ε

2
η, t) − V (x − ε

2
η, t)

]

η=0
ŵ(x, 0, t)

−(2π)d/2 1

ε

[
V (x +

ε

2
η, t) − V (x − ε

2
η, t)

]

η=0

∂ŵ

∂ηj

(x, 0, t)

= −1

2

[
∂V

∂xj

(x +
ε

2
η, t) +

∂V

∂xj

(x − ε

2
η, t)

]

η=0

∫

Rd

w(x, k, t) dk

= − ∂V

∂xj

n(x, t). (6.33)

Thus

∂t〈kj〉 + divx〈kjk〉 − n
∂V

∂xj

= Jj.

This equals (6.26).

Finally, we multiply (6.24) with 1
2
|k|2 and integrate over k ∈ Rd. Again, we first

compute the collision and electric-force terms. We obtain, integrating by parts,

1

2

∫

Rd

divk(kw + ∇kw)|k|2 dw = −
∫

Rd

(kw + ∇kw) · k dk

=

∫

Rd

(−w|k|2 + wdivkk) dk = −〈|k|2〉 + dn
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and, with the notation δV (x, η, t) = [V (x + εη/2, t) − V (x− εη/2, t)]/ε and using (6.29),

1

2

∫

Rd

θ[V ]w|k|2 dk =
i

2(2π)d/2

∫

Rd

∫

Rd

δV (x, η, t)ŵ(x, η, t)(−∆η)e
ik·η dη dk

=
−i

2(2π)d/2

∫

Rd

∫

Rd

∆η(δV · ŵ)(x, η, t)eik·η dη dk

= − i

2
(2π)d/2∆η(δV · ŵ)(x, 0, t)

= − i

2
(2π)d/2

(
∆ηδV (x, 0, t)ŵ(x, 0, t) + 2∇ηδV (x, 0, t) · ∇ηŵ(x, 0, t)

+δV (x, 0, t)∆ηŵ(x, 0, t)

)

= −∇xV · 〈k〉 = ∇xV · J,

since

δV (x, 0, t) = 0,

∇ηδV (x, 0, t) =
1

2

[
∇xV (x +

ε

2
η, t) + ∇xV (x − ε

2
η, t)

]

η=0
= ∇xV,

5∆ηδV (x, 0, t) =
ε

4

[
∆xV (x +

ε

2
η, t) − ∆xV (x − ε

2
η, t)

]

η=0
= 0,

∇ηŵ(x, 0, t) =
1

(2π)d/2

∫

Rd

w(x, k, t)∇ηe
−iη·k dk

∣∣∣∣
η=0

= − i

(2π)d/2
〈k〉.

Thus, (6.27) is shown. ¤

The system of moment equations (6.25)–(6.27) has to be closed. As in the case of

classical kinetic theory, we achieve the closure by assuming that the Wigner function w

is close to a wave vector displaced equilibrium density,

w(x, k, t) = weq(x, k − u(x, t), t),

similar to (4.43), where weq is assumed to be given by

weq(x, k, t) = A(x, t)e(−|k|2/2+V )/T (x,t)

[
1 +

ε2

8T (x, t)2
∆xV +

ε2

24T (x, t)3
|∇xV |2

− ε2

24T (x, t)3

d∑

j,`=1

kjk`
∂2V

∂xj∂x`

+ O(ε4)

]
, (6.34)

and the functions u(x, t) and T (x, t), later interpreted as the electron group velocity and

the electron temperature, have to be determined. Notice that the equilibrium density weq

reduces in the classical case ε → 0 to the classical Maxwellian,

wcl
eq(x, k, t) = A(x, t)ne−|k|2/2T ,
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since n = eV/T in classical thermal equilibrium. The first moments with respect to weq are

computed in the following lemma.

Lemma 6.4 The first moments corresponding to (6.34) are

n = 〈1〉 = B(x, t)eV/T

(
1 +

ε2

12T 2
∆xV +

ε2

24T 3
|∇xV |2

)
+ O(ε4), (6.35)

J = −〈k〉 = −nu, (6.36)

〈k ⊗ k〉 = nu ⊗ u + nT Id − ε2

12T
n(∇⊗∇)V + O(ε4), (6.37)

〈k|k|2〉 = nu|u|2 +

(
dT − ε2

12T
∆xV

)
nu + 2

(
T Id − ε2

12T
(∇⊗∇)V

)
nu + O(ε4),

(6.38)

where

B(x, t) = A(x, t)(2πT )d/2,

Id is the identiy matrix of Rd×d and (∇⊗∇)V the Hessian of V .

Proof: The symmetry of weq with respect to k implies that all odd order moments of weq

vanish. Therefore,

〈1〉 =

∫

Rd

weq(x, k − u(x, t), t) dk =

∫

Rd

weq(x, η, t) dη,

〈k〉 =

∫

Rd

(η + u)weq(x, η, t) dη = nu,

〈k ⊗ k〉 =

∫

Rd

(η + u) ⊗ (η + u)weq(x, η, t) dη = nu ⊗ u +

∫

Rd

η ⊗ η weq dη, (6.39)

〈k|k|2〉 = nu|u|2 + u

∫

Rd

|η|2weq dη + 2

(∫

Rd

η ⊗ η weqdη

)
u. (6.40)

We derive now an O(ε2) approximation for n. Since
∫

Rd

e(−|η|2/2+V )/T dη = T d/2eV/T

∫

Rd

e−|z|2/2 dz = (2πT )d/2eV/T ,
∫

Rd

ηjη`e
(−|η|2/2+V )/T dη = T d/2+1eV/T

∫

Rd

zjz`e
−|z|2/2 dz

= (2πT )d/2TeV/T Id ,

we obtain

n = BeV/T

(
1 +

ε2

8T 2
∆xV +

ε2

24T 3
|∇xV |2 − ε2

24T 3

d∑

j,`=1

∂2V

∂xj∂x`

δj`

)
+ O(ε4)

= BeV/T

(
1 +

ε2

12T 2
∆xV +

ε2

24T 3
|∇xV |2

)
+ O(ε4). (6.41)
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The computation of the integrals on the right-hand sides of (6.39)–(6.40) requires the

evaluation of
∫

Rd

ηjη`ηmηne
−|η|2/2T dη = T d/2+2

∫

Rd

zjz`zmzne−|z|2/2 dz

= T d/2+2α(j, `,m, n),

where

α(j, `,m, n) = (2π)d/2





3 : j = ` = m = n

1 : j = ` 6= m = n or j = m 6= ` = n or j = n 6= ` = m

0 : else.

This yields

∫

Rd

ηjη`weqdη = BeV/T

[
T

(
1 +

ε2

8T 2
∆xV +

ε2

24T 2
|∇xV |2

)
dj`

− ε2

24T 3

d∑

m,n=1

T 2α(j, `,m, n)
∂2V

∂xm∂xn

]
+ O(ε4).

A simple computation shows that

d∑

m,n=1

α(j, `,m, n)
∂2V

∂xm∂xn

= 2
∂2V

∂xj∂x`

+ ∆xV δj`.

Hence
∫

Rd

ηjη`weqdη = BeV/T

[(
T +

ε2

12T
∆xV +

ε2

24T 2
|∇xV |2

)
dj`

− ε2

12T

∂2V

∂xj∂x`

]
+ O(ε4). (6.42)

We substitute the following expressions, derived from (6.41),

BeV/T

(
T +

ε2

12T
∆xV +

ε2

24T 2
|∇xV |2

)
= nT + O(ε4),

BeV/T = n + O(ε2),

into (6.42) yielding

∫

Rd

ηjη`weqdη = nTδj` −
ε2

12T
n

∂2V

∂xj∂x`

+ O(ε4).

Putting this into (6.39) and (6.40) gives the remaining formulas (6.37) and (6.38). ¤
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We wish to replace the second derivatives of the electrostatic potential in (6.37) and

(6.38) by (derivatives of) the electron density. From the Taylor expansion log(x + δ) =

log x + O(δ) and the formula (6.35), written as

n = B(x, t)eV/T + O(ε2),

we obtain

ln n = ln(B(x, t)eV/T ) + O(ε2)

and therefore
∂2 ln n

∂xj∂x`

=
∂2

∂xj∂x`

(
ln B(x, t) +

V

T

)
+ O(ε2).

Our main assumption is that B(x, t) and T (x, t) are slowly varying with respect to x,

compared to spatial variations of V (x, t) such that we can write

∂2 ln n

∂xj∂x`

=
1

T

∂2V

∂xj∂x`

+ O(ε2). (6.43)

Lemma 6.5 Under the assumption (6.43) the second and third moments corresponding

to (6.34) are

〈k ⊗ k〉 =
J ⊗ J

n
+ nT Id − ε2

12
n(∇⊗∇) ln n + O(ε4),

〈k|k|2〉 = −J |J |2
n2

−
(

dT − ε2

12
∆x ln n

)
J − 2

(
T Id − ε2

12
(∇⊗∇) ln n

)
J + O(ε4).

Proof: The lemma immediately follows from (6.37)–(6.38) and (6.43) using J = −nu. ¤

Now we can combine Lemmas 6.3 and 6.5 to achieve our main result.

Theorem 6.6 The first moment equations corresponding to (6.24) with the closure con-

dition (6.34) and the assumption (6.43) are given by, up to order O(ε4),

∂tn − divJ = 0, (6.44)

∂tJ − div
J ⊗ J

n
−∇(nT ) + n∇V +

ε2

6
n∇

(
∆
√

n√
n

)
= −J, (6.45)

∂te − div

(
(e − P )

J

n

)
+ ∇V · J = −2

(
e − d

2
n

)
, (6.46)

where

e =
|J |2
2n

+
d

2
nT − ε2

24
n∆ ln n,

P = −nT Id +
ε2

12
n(∇⊗∇) ln n

are the energy density and the stress tensor, respectively.
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Equations (6.44)–(6.46) are solved for x ∈ Rd, t > 0, supplemented with the initial

condtions

n(·, 0) = nI , J(·, 0) = JI , e(·, 0) = eI in R
d.

Proof: A simple computation shows that

div (n(∇⊗∇) ln n) = 2n∇
(

∆
√

n√
n

)
,

which proves (6.45). Equation (6.46) follows from (6.27) and Lemma 6.5. ¤

Equations (6.44)–(6.46) are called the quantum hydrodynamic equations. The above

energy density is the sum of the kinetic energy, |J |2/2n = n|u|2/2, thermal energy,

(d/2)nT , and quantum energy, −(ε2/24)n∆ ln n. The stress tensor consists of a classi-

cal part, −nT Id , and a quantum part, (ε2/12)n(∇⊗∇) ln n. It allows to write (6.45) in

the more compact form

∂tJ − div

(
J ⊗ J

n
+ P

)
+ n∇V = −J.

We have used the formulation (6.45) since it allows to interpret the quantum term as a

force term with the self-interacting potential ∆
√

n/
√

n, which is also called the Bohm

potential.

The terms on the right-hand sides of (6.45) and (6.46) are called the momentum and

energy relaxation terms, respectively. Neglecting all forces in the equations, we obtain

∂tJ = −J, ∂te = −2

(
e − d

2
n

)
.

The solution to this system satisfies

J(t) → 0, e(t) → d

2
n,

i.e., the current density vanishes and the energy relaxes to the thermal energy (with

constant temperature T = 1). We notice that for constant temperature, equations (6.44)–

(6.45) give the quantum hydrodynamic model from Section 6.2 if θ = T .

Finally, we rewrite the quantum hydrodynamic equations in unscaled form:

∂tn − 1

q
divJ = 0,

∂tJ − 1

q
div

(
J ⊗ J

n

)
− qkB

m∗
∇(nT ) +

q2

m∗
n∇V +

q~2

6(m∗)2
n∇

(
∆
√

n√
n

)
= −J

τ
,

∂te −
1

q
div

(
(e − P )

J

n

)
+ J · ∇V = −2

τ

(
e − d

2
nT0

)
,
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where now

e = m∗ |J |2
2n

+
d

2
nkBT − ~2

24m∗
∆ ln n,

P = −nkBT Id +
~2

12m∗
n(∇⊗∇) ln n.

6.4 Derivation of the quantum drift-diffusion equations

In this section we derive a quantum analogue of the classical drift-diffusion equations from

a Wigner-Boltzmann model (i.e. the Wigner equation including a collision operator). Our

main assumption is that collisions are dominant, similar to the situation of Section 4.1.

We proceed as in [25] with the scaled Wigner equation

∂tw + k · ∇xw + θ[V ]w = Q(w), t > 0, (6.47)

w(x, k, 0) = wI(x, k), x, k ∈ R
d (6.48)

(see (6.24)), recalling the definition of the pseudodifferential operator θ[V ],

(θ[V ]w)(x, k, t) =
i

(2π)d

∫

Rd

∫

Rd

δV (x, η, t)w(x, k′, t)ei(k−k′)·η dk′ dη,

where

δV (x, η, t) =
1

ε

[
V (x +

ε

2
η, t) − V (x − ε

2
η, t)

]
.

The collision operator Q(w) is assumed to be of relaxation type, i.e.

Q(w) = M [w] − w, (6.49)

where M [w] is a quantum analogue of the Maxwellian exp(A(x, t) − |k|2/2) for some

function A(x, t). The quantum Maxwellian M [w] is assumed to minimize the quantum

entropy, under the constraint of given particle density.

More precisely, similar to Section 4.2 we introduce the quantum entropy

H(w) =

∫

Rd

∫

Rd

w

(
Ln w − 1 +

|k|2
2

− V (x)

)
dx dk,

where here and in the following we omit the time variable which only acts as a parameter

and where the “quantum logarithm” is defined by

Ln w = W (ln W−1(w)).

In this definition, W is the Wigner transform

(W (%))(x, k) =
1

(2π)d

∫

Rd

%
(
x +

ε

2
η, x − ε

2
η
)

eiη·k dη
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and W−1 its inverse, the so-called Weyl quantization,

(W−1(w))φ(x) =

∫

Rd

∫

Rd

w

(
x + y

2
, k

)
φ(y)eik·(x−y)/ε dk dy,

where %(x, x′) is a density matrix and w(x, k) a function. The logarithm ln is defined in

the sense of operator theory.

The quantum logarithm has the following properties.

Lemma 6.7 (1) The inverse of the quantum logarithm Ln is given by the so-called

quantum exponential Exp, defined by

Exp w = W (exp W−1(w)) for suitable functions w(x, k).

(2) The functionals Ln and Exp are (Fréchet) differentiable and

d

dw
Ln w =

1

w
,

d

dw
Exp w = Exp w.

Proof: (1) Formally, it holds

Ln(Exp w) = W
(
exp W−1

(
W

(
ln W−1(w)

)))
= W

(
exp(ln W−1(w))

)

= W (W−1(w)) = w.

(2) Left to the reader. ¤

Lemma 6.8 The solution of the constrained minimization problem

H(w∗) = min

{
H(w) :

∫
w(x, k) dk = n(x) for all x

}
,

for given electron density n(x), if it exists, is

w∗ = Exp(A(x) − |k|2/2),

where the constant A(x) is fixed by the constraint

∫

Rd

w∗(x, k) dk = n(x).

We assume that the above constraint fixes A(x) uniquely.

Proof: We use Lagrange multipliers and define

F (w, λ) = H(w) +

∫

Rd

λ(x)

(∫

Rd

w(x, k) dk − n(x)

)
dx.
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By Lemma 6.7 (2),

(
d

dw
H(w)

)
(u) =

∫

Rd

∫

Rd

(
Ln w +

|k|2
2

− V (x)

)
u(x, k) dx dk.

Furthermore, (
d

dw

∫

Rd

w dk

)
(g) =

∫

Rd

g(k) dk.

Therefore, we obtain the necessary condition for an extremum

0 =

(
d

dw
F (w∗, λ∗)

)
(u) =

∫

Rd

∫

Rd

(
Ln w∗ +

|k|2
2

− V (x) + λ∗(x)

)
u(x, k) dx dk

for all functions u(x, k). This implies that

Ln w∗ +
|k|2
2

− V (x) + λ∗(x) = 0

or

w∗ = Exp(A(x) − |k|2/2) for A(x) = V (x) − λ∗(x),

which shows the lemma. ¤

Definition 6.9 The quantum Maxwellian is defined by

M [w] = Exp(A(x) − |k|2/2)

and A(x) is determined through

∫

Rd

M [w] dk =

∫

Rd

w dk.

With this definition, the relaxation-time Wigner model (6.47)–(6.49) is well defined.

In order to derive the quantum drift-diffusion model, we consider the case of dominant

collisions and large time, i.e., we rescale the equation (6.47) by replacing

t by t/δ and Q(w) by Q(w)/δ.

This yields

δ ∂twδ + k · ∇xwδ + θ[V ]wδ = Q(wδ) =
1

δ
(M [wδ] − wδ), t > 0, (6.50)

wδ(x, k, 0) = wI(x, k), x, k ∈ R
d. (6.51)

Now we perform the limit δ → 0.
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Theorem 6.10 Let wδ be a solution of (6.50)–(6.51). Then, formally, wδ → w0 as δ → 0,

where w0 = Exp(A − |k|2/2) and A(x, t) is a solution of

∂tn − divJ = 0, J = divP − n∇V, t > 0 (6.52)

n(x, 0) = nI(x), x ∈ R
d, (6.53)

where

n =

∫

Rd

Exp

(
A − |k|2

2

)
dk, (6.54)

P =

∫

Rd

k ⊗ k Exp

(
A − |k|2

2

)
dk, (6.55)

and the initial datum is given by

nI =

∫

Rd

wI dk.

Proof: Performing the (formal) limit δ → 0 in (6.50) directly, we obtain w0 = M [w0]. In

order to derive higher-order corrections, we apply the so-called Chapman-Enskog method

first used in classical kinetic theory [20, 29]. For this, we define the first-order correction

w
(1)
δ =

1

δ
(wδ − M [wδ]) or wδ = M [wδ] + δw

(1)
δ .

Denote by w(1) the limit of w
(1)
δ . Since, as δ → 0,

w
(1)
δ = −Q(wδ) = −δ∂twδ − (k · ∇xwδ + θ[V ]wδ) → −(k · ∇xw0 + θ[V ]w0),

we infer

w(1) = −(k · ∇xw0 + θ[V ]w0). (6.56)

We claim that in the (formal) limit δ → 0,

∂t

∫

Rd

w0 dk + divx

∫

Rd

w(1)k dk +

∫

Rd

θ[V ]w(1) dk = 0. (6.57)

To see this we integrate the rescaled Wigner equation (6.50) with respect to k ∈ Rd,

δ∂t

∫

Rd

wδ dk + divx

∫

Rd

wδk dk +

∫

Rd

θ[V ]wδ dk =

∫

Rd

Q(wδ) dk, (6.58)

and manipulate this equation term by term. By definition, M [wδ] and wδ have the same

(zeroth-order) moments, yielding

∫

Rd

Q(wδ) dk =
1

δ

∫

Rd

(M [wδ] − wδ) dk = 0.
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The function k 7→ (θ[V ]M [wδ])(x, k) is odd since, transforming η 7→ −η, k′ 7→ −k′,

(θ[V ]M [wδ])(x,−k) =
i

(2π)d/2

∫

R2d

δV (x, η)Exp

(
A − |k′|2

2

)
eiη·(−k−k′) dη dk′

=
−i

(2π)d/2

∫

R2d

δV (x, η)Exp

(
A − |k′|2

2

)
eiη·(k−k′) dη dk′

= −(θ[V ]M [wδ])(x, k),

using δV (x,−η) = −δV (x, η). This implies that the integral over θ[V ]M [wδ] vanishes and

therefore,

∫

Rd

θ[V ]wδ dk =

∫

Rd

θ[V ](M [wδ] + δw
(1)
δ ) dk = δ

∫

Rd

θ[V ]w
(1)
δ dk.

Since also k 7→ M [wδ](x, k)k is odd,

∫

Rd

wδk dk = δ

∫

Rd

w
(1)
δ k dk.

Thus (6.57) follows from (6.58) after division by δ.

Setting n =
∫

w0 dk and using the expression (6.56) in (6.57) we obtain

∂tn − divx

∫

Rd

(k · ∇xw0 + θ[V ]w0)k dk +

∫

Rd

θ[V ]w(1) dk = 0.

In Section 6.3 we have derived the following formulas (see (6.31) and (6.33)):

∫

Rd

θ[V ]w dk = 0 for all functions w,
∫

Rd

θ[V ]w0k dk = −n∇xV for all functions w0 such that n =
∫

w0 dk.

This gives

∂tn − divx

∫

Rd

divx(k ⊗ k)w0 dk + divx(n∇Vx) = 0,

and hence the conclusion. ¤

The initial-value problem (6.52)–(6.55) can be considered as a generalized quantum

drift-diffusion equation. The drift current is given by n∇V and P is a quantum pressure

tensor. In the classical case, P = nδij yielding the drift-diffusion equations of Section 4.1.

In general, P is a nonlocal operator involving A(x) which relates to n through (6.54)–

(6.55). The usual quantum drift-diffusion model is obtained from (6.52)–(6.55) as a O(ε4)

approximation.
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Theorem 6.11 Let (n, J) be a solution of the generalized quantum drift-diffusion equa-

tions (6.52)–(6.55). Then, formally, J = J0 + O(ε4) and (n, J0) solves

∂tn − divJ0 = 0, J0 = ∇n + n∇V +
ε2

6
n∇

(
∆
√

n√
n

)
, t > 0, (6.59)

n(x, 0) = nI(x), x ∈ R
d. (6.60)

The system (6.59)–(6.60) is called the quantum drift-diffusion model. For the proof of

Theorem 6.11 we need the following results. It holds

∫

Rd

e−|k|2/2 dk = (2π)d/2, (6.61)
∫

Rd

kikje
−|k|2/2 dk = (2π)d/2δij, (6.62)

∫

Rd

kikjk`kme−|k|2/2 dk = (2π)d/2 (δijδ`m + δi`δjm + δimδj`) . (6.63)

Lemma 6.12 The following (formal) expansion holds:

Exp

(
A − |k|2

2

)
= exp

(
A − |k|2

2

)[
1 +

ε2

8

(
∆A +

1

3
|∇A|2 − 1

3
k>D2Ak

)]
+ O(ε4),

where D2A denotes the Hessian of A.

The technical proof uses heavily pseudo-differential calculus and is therefore omitted.

We refer to [25, Lemma 5.6] for details of the proof.

Proof of Theorem 6.11: First we develop the electron density in powers of ε2. By (6.54),

Lemma 6.12, and (6.61)–(6.62),

n = eA

[
1 +

ε2

8

(
∆A +

1

3
|∇A|2

)]∫

Rd

e−|k|2/2 dk − ε2

24
eA

∑

i,j

∂2
ijA

∫

Rd

kikje
−|k|2/2 dk + O(ε4)

= (2π)d/2eA

[
1 +

ε2

8

(
∆A +

1

3
|∇A|2

)
− ε2

24
∆A

]
+ O(ε4)

= (2π)d/2eA

[
1 +

ε2

12

(
∆A +

1

2
|∇A|2

)]
+ O(ε4), (6.64)

where ∂i abbreviates the partial derivative ∂/∂xi. In particular,

n = (2π)d/2eA + O(ε2). (6.65)
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Next we develop the quantum pressure in powers of ε2. Using (6.55), Lemma 6.12, and

(6.62)–(6.63),

Pij = eA

[
1 +

ε2

8

(
∆A +

1

3
|∇A|2

)]∫

Rd

kikje
−|k|2/2 dk

− ε2

24
eA

∑

`,m

∂2
`mA

∫

Rd

kikjk`kme−|k|2/2 dk + O(ε4)

= (2π)d/2eA

[
1 +

ε2

8

(
∆A +

1

3
|∇A|2

)]
δij −

ε2

24
(2π)d/2eA

(
∆Aδij + 2∂2

ijA
)

+ O(ε4)

= (2π)d/2eA

[
1 +

ε2

12

(
∆A +

1

2
|∇A|2

)]
δij −

ε2

12
(2π)d/2eA∂2

ijA + O(ε4).

We employ the developments (6.64) and (6.65) to obtain

Pij = nδij −
ε2n

12
∂2

ijA + O(ε4).

Thus, using ∇n = n∇A + +O(ε2), which follows immediately from (6.65),

(divP )j =
∑

i

∂iPij = ∂jn − ε2

12

∑

i

(
∂in∂2

ijA + n∂3
iijA

)
+ O(ε4)

= ∂jn − ε2

12

∑

i

n∂j

(
1

2
(∂iA)2 + ∂iiA

)
+ O(ε4).

Hence,

divP = ∇n − ε2

12
n∇

(
∆A +

1

2
|∇A|2

)
+ O(ε4).

Finally, we relate A and n using (6.65) or

∇A =
∇n

n
+ O(ε2),

from which we conclude

∆A +
1

2
|∇A|2 =

∆n

n
− |∇n|2

n2
+

1

2

∣∣∣∣
∇n

n

∣∣∣∣
2

+ O(ε2) =
∆n

n
− |∇n|2

2n2
+ O(ε2)

= 2
∆
√

n√
n

+ O(ε2).

Therefore,

J = divP − n∇V = ∇n − n∇V − ε2

2
n∇

(
∆
√

n√
n

)
+ O(ε4),

and the conclusion follows. ¤
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Sitzungsberichte Akad. Wiss. Wien 66 (1872), 275-370. Translation: Further studies

on the thermal equilibrium of gas molecules. In: S. Brush (ed.). Kinetic Theory, Vol.

2. Pergamon Press, Oxford (1966), 88-174.

157



[14] M. Born and H. Green. A General Kinetic Theory of Fluids. Cambridge University

Press, Cambridge, 1949.

[15] F. Bufler and A. Schenk. Halbleitertransporttheorie und Monte-Carlo-

Bauelementsimulation. Lecture Notes, ETH Zürich, Switzerland, 2002.
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