BLOW-UP, CRITICAL EXPONENTS AND ASYMPTOTIC
SPECTRA FOR NONLINEAR HYPERBOLIC EQUATIONS

V.A. GALAKTIONOV AND S.I. POHOZAEV

ABSTRACT. We prove nonexistence results for the Cauchy problem for the abstract hy-
perbolic equation in a Banach space X,
uge = f'(u), t>0; u(0) =ug, u:(0) =uy,

where f : X — R is a C'-function. Several applications to the second and higher-
order hyperbolic equations with local and nonlocal nonlinearities are presented. We also
describe an approach to Kato’s and John’s critical exponents for the semilinear equations
ut = Au+b(x,t)|ul?, p > 1, which are responsible for phenomena of stability, unstability,
blow-up and asymptotic behaviour.

We construct countable spectra of different asymptotic patterns of self-similar and
non self-similar types for global and blow-up solutions for the autonomous equation
ug = Au + |u|P~u in different parameter ranges.

1. Introduction

We consider some aspects of nonexistence, global existence and asymptotic behaviour
of solutions of the Cauchy problem for the quasilinear second-order hyperbolic equations
and equations of higher order. The list of equations to be studied includes the classical
semilinear equation

(1.1) Uy = Au+ [ulP~tu, p>1,

and the corresponding 2m-th order one

(1.2) Uy = —(=A)"u+ |ulP tu, m>1, p>1,

as well as the quasilinear second-order equation with the p-Laplacian operator
(1.3) uy = D(|Du|" ' Du) + |ulP"'u, ¢>0, p>1,

and the higher-order one. We also consider higher-order Kirchhoff-type equations with a
nonlocal nonlinearity

q
(1.4) Uy = — </ |Dmu|2) (=A)™u+ |ulPlu, m>1, ¢>0, p>1.
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The paper consists of two parts, where Part I (Sections 2 - 4) is devoted to general global
nonexistence (blow-up) results for the above equations and critical exponents, while in
Part IT (Sections 5 - 8) we study a detailed structure and present a classification of global
and blow-up asymptotic patterns for the semilinear equation (1.1).

In Section 2 we prove a general abstract nonexistence theorem to be applied in Section
3 to several equations listed above. In Section 4 using an energy approach, we derive
Kato’s and John’s critical exponents for the non-autonomous semilinear equation

(1.5) Uy = Au+b(z,t)|ul’, xR t>0.

In Sections 5 and 6 we consider globally decaying very singular self-similar solutions of
the semilinear equation (1.1) of the form

iz, t) = t0h(n), n=a/t,

where the function € solves a semilinear degenerate elliptic equation inside and outside
the light cone Si(t) = {|z| = t}. We prove existence of a countable spectrum of such
self-similar solutions to equation (1.1) in By = {|z| < t} in the parameter range

l1<p<pr=(N+3)/(N-1).

In the range

p1<p<ps=(N+2)/(N-2),
where pg is the critical Sobolev exponent for the elliptic operator Au + |u[P~lu, we prove
existence of continuous weak self-similar solutions defined everywhere in RY x R,. These
solutions are invertible and the functions u,(x, —t) describe finite time blow-up as ¢t — —0
(the so-called nonlinear blow-up patterns).

In Section 7 we describe another countable spectrum of blow-up patterns for (1.1).
These solutions are not self-similar and are constructed by matching involving structures
on the stable subspace of the linearized rescaled self-similar operator in the inner region
and self-similar solutions of a nonlinear second-order ordinary differential equation in the
intermediate region. The third outer region then reveals a discrete spectrum of asymp-
totics of final-time profiles u(x, —0) near singular points. In the final Section 8 we briefly
discuss some common features of the general structures of singular blow-up spectra for
nonlinear parabolic and hyperbolic equations.

PART I: GLOBAL NONEXISTENCE AND CRITICAL EXPONENTS

2. Abstract global existence and nonexistence results

The first general nonexistence result for abstract semilinear hyperbolic equations in a
Hilbert space was presented in [27] on the basis of a concavity technique applied also for
some types of quasilinear wave equations [29]. Several generalizations of such an approach
are well-known, see a survey [28] and some more recent results in [38], [36], [37].

In this section we prove a general nonexistence result for a nonlinear hyperbolic equation

of divergent structure. Let H be a real Hilbert space with the inner product (-,-) and
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the norm || - ||. Given a C!-function f: H — R with the Fréchet derivative f': D — H,
D C H being the domain of f’, we consider the “hyperbolic” equation

(2.1) ug = f'(u), t>0,
with the initial data
<22) ’LL(O) = Ug € D, U,t(()) =1U; € H.

An appropriate concept of the solution then follows from the necessary identities and
inequalities we will use later on. These assumptions can be verified in particular examples
to be considered in the next sections. We thus assume that the problem is solvable locally
in time, and our main goal is to prove that under certain hypotheses, the solutions cannot
be extended globally in time.

Consider the following functionals:

(2.3) E(t) =27 u()|* = f(u(t)) and G(t) = [u(t)|

From equation (2.1) we have that

(2.4) E't)=0 = 27Y u* — f(u) = E(0) = Ej.

On the other hand, there hold

(2.5) G'=2(u,u), G" =2l + 2(u, uer) = 2| + 2(u, f'(w)).
We assume that there exists a real constant A > 2 such that

(2.6) (u, f'(w)) = Af(u) 20, weD,

and assume that the initial data satisfy

(2.7) E, = E(0) <0.

Then, using (2.4) and (2.6), one obtains

(2.8) G" > 2||we|]* + 2227 H|we||* — Eo) = (2 + N)|Jug|* = 2AEo > (2 + \)|Jugl?, t > 0.

On the other hand, from the first identity (2.5) by the Cauchy-Bunyakovskii-Schwarz
inequality we conclude that

(2.9) (G)* < lulP*lluel* = 4G |u||* = [Jue]l* > (G')*/4G.

Then (2.8) implies the following ordinary differential inequality (an ODI in short) for the
function G(t):

(2.10) G"(t) > (2+ N)(G)%(t) /4G (), t>0.

The existence/nonexistence conclusions are straightforward.
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2.1. Global existence: a priori uniform bound. Assume now that

(2.11) G'(0) = 2(u(0),u(0)) = 2(ug, u1) < 0.
Integrating inequality (2.10) in the form G"/(G")? > (2 + \)/4G(t), we obtain
(2.12) G'W) < @O) -2+ /\)/4]/0 dr/G(7) <0,

so that G'(t) = 2{u(t), u(t)) < 0 for all ¢ > 0. We thus arrive at the following a priori
bound on the solution.

Lemma 2.1. Assume that (2.6), (2.7) and (2.11) hold. Then ||u(t)|| is strictly decreasing
and is uniformly bounded: ||u(t)| < ||u(0)|| fort > 0.

Proof. Integrating (2.10) in the form G”/G" < (2 + X\)G'/4G, we obtain G'(t)/G'(0) <
[G(t)/G(0)]@/% Integrating once more yields the following estimate from above:

(2.13) @Il < lluoll [ + (A = 2)|Folt/4] >, Fy = 2(ug, w)/[luol® > 0.

2.2. Global nonexistence. If
(214) GI<O) = 2<U0, U,1> > 0,

then (2.10) implies that G’(t) > 0 for all ¢ > 0 and integrating it twice as above, we arrive
at

G(t) > G(0)[1 — (A — 2)Fyt 4] +/*2)
Under the above hypotheses on the local existence of the solutions, we obtain the following
global nonexistence result.

Lemma 2.2. Let (2.6) and (2.7) be satisfied and (2.14) hold. Then the solution blows up
(in the sense that G(t) = ||u(t)||* becomes unbounded) on the finite interval (0,T), with
T =4/(\—2)F,.

3. Applications

3.1. Higher-order semilinear hyperbolic equation. Consider in Rf“ =R xR,
the following 2m-th order hyperbolic equation:

(3.1) ug = f'(u) = —(=A)"u+ |ulP tu, m>1, p>1,

where

1 1
fw =5 [10maP+ s [l ) == [ipma+ [ e
Then (2.6) takes the form

(s (0} = M) = (/2= 1) [ ID™uP + (1= M+ 1) [ up™
4



Setting A = p+ 1, we deduce that
(u, £(w)) = (p-+ 1)1 (w) = [+ /2 =1 [ Pl > 0
and Lemma 2.2 establishes nonexistence (blow-up) for equation (3.1).

3.2. Second-order quasilinear hyperbolic equation. Consider now in Ri”’l the
quasilinear equation with the p-Laplacian operator

(3.2) uy = D(|Du|* 'Du) + [ulPtu, ¢>0, p>1.

Then
f == [1Dur s [l ) == [+ [,

and (2.6) reads
(u, £(w) = M) = WG+ )= 1] [ 1Dum 4 =M+ 1) [Pt >0,

if A > 2 satisfies the inequalities A > ¢+ 1, A < p + 1, which mean that Lemma 2.2
applies if p > q.

3.3. Higher-order quasilinear equations. The above two examples admit a natural
generalization to the higher-order quasilinear hyperbolic equation

(33) 1=~ 3 (~1)D*(aa(@)|Duft D) + 3 (1) D (55 @) Dul Do),
la|<m BI<k

where p > 1, ¢ > 0 and a = («y,...,an), 8 = (b4, ..., Bn) denote multiindices, |a| =
a;+ ... +ay, |Bl = ﬁl + ...+ Bn. We have

/Z%umw — [ Tttt

lal<m 1BI<k
') = = [ Y aal@ Dt + [ 3 bu(e) D%up
|a|<m |BI<k
Consider the main hypothesis (2.6):

(u, /() — Af(u) = /Z%|mw1

|a|<m

(3.4) +(1_F / S by () [DPuf .

B<k
Assume that both differential forms in (3.3) are nonnegatively defined:

(3.5) D aa(@)[l >0, ) bs(x)lgsT > 0.

|a|<m |B81<k



It then follows from (3.4) that the nonexistence Lemma 2.2 applies provided \ satisfies
A>qg+1and A < p+1. This gives the same condition p > ¢. Note that the nonexistence
result remains valid without any positivity-like hypothesis on the first operator on the
right-hand side of (3.3) if we choose A = ¢+ 1 > 2 provided that p > ¢ > 1. If p=¢ > 1,
then setting A = ¢ + 1, we obtain nonexistence without any restriction on the both
operators in (3.3).

3.4. Kirchhoff equations with nonlocal nonlinearities. Consider the second-order
hyperbolic equation with nonlocal nonlinearity

(3.6) Uy = a (/ \Du\2> Au+ h(u), (x,t) € RYT

with sufficiently smooth real valued functions a and h satisfying some necessary hypothe-
ses. It is a generalized Kirchhoff equation. Here

u)= 14 (/ |Du|2) +/H(u)

A(s) = /0 Ca(r)dr, H(s) = /O h(r)dr.

In this case (2.6) takes the form

(u, (w)) = () = =a( [ 1DuP) [ 1Du?+ [ twpu+ JAC[ [Duf)o
(3.7) —)\/H(u): [ /|Du| —a/|Du| /|Du|2] / h(u)u — NH ().

Therefore, if for some A > 2 the right-hand side of (3.7) is nonnegative, the nonexistence
theorem similar to Lemma 2.2 is valid. Such a result admits a natural extension to
nonlocal higher-order hyperbolic equations.

where

5. Higher-order Kirchhoff-type equations. Consider, for instance, a higher-order
Kirchhoff-type equation of the form

q
(3.8) Uy = — (/ \Dmu\2) (=A)™u+ [uftu, m>1, ¢>0, p>1,
where

a(s) = 57, A(s) = (¢ +1)7's™" (8=/|Dmu|2); H(u) = (p+1)7" [u"*,

s =~pig+ 0 ( [10mr) s e [

The main inequality reads (cf. (3.7))

(u, () — M () = [(A2(g + 1)) — 1] / Dmu)H 4 (1 A (p+ 1)) / a1 > 0.
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Therefore, we impose the following assumptions:
(3.9) A>2 A>2(q+1), A<p+1.

Such a constant A exists and the corresponding nonexistence result applies to equation
(3.8) provided that p > 2¢ + 1.

4. On an approach to critical exponents

We now study global nonexistence for the non-autonomous semilinear hyperbolic equa-
tion

(41)  uy=Au+b(x, )’ in RY™:  u(0,2) = ug(z), u(0,2) =ui(z) in RY,

with the exponent p > 1, where b € L2 (RY*!), b > 0, is a given function. We study the

loc

properties of solutions of (4.1) from the class C2_(RY™") with initial data uy € C2(RM)

loc

and u; € Cj(RY). We impose the following condition:

(4.2) /RN uy(z)dx > 0.

We assume that initial data are compactly supported in the ball of radius R: supp uy,
suppu; C {|z| < R}. Let us introduce the functions

p—1 p—1
(4.3) B(t) = < / bl—P’dx) , Bi(t)= ( / bl—P’dx> :
|z| <R+t t—R<|z|<R+t

where 1/p+1/p’ = 1. Supposing that both functions are well-defined for ¢ > 0, we assume
that there exist exponents «, # € R such that

(4.4) limsup B(t)/t* < oo, limsup Bi(t)/t* < co.
t—o0

t—o0
4.1. Nonexistence in the three dimensional case. We first prove the following result.
Theorem 4.1. Let N = 3 and
(4.5) a<(p+2-p0)(p-1)+2.
Then the mazimal existence time T of the solution to (4.1) is finite.

Proof. 1t consists of three steps.
Step 1: an energy ordinary differential inequality. This step is true in RY. Consider
the energy-like functional

B(t) = /R ule, )

Since by assumptions supp u(t) C {|z| < R+ t}, we have that

B(t) = / R



is a C2-function on (0, 7). Integrating (4.1) over RY, we obtain

(4.6) E = / blulPdz.
|z| <R+t

By the Holder inequality,
1/p ) 1/p'
‘/ u(z,t)dx / blu|Pdx (/ bt? dx) .
|| <R+t |z <R+t |z| <R+t
p

/ blulPdz > B(#) ‘ / w(z,t)ds| = B0 EP (1),
jal<Rtt <Rt

Finally, we arrive at the second-order ordinary differential inequality (ODI)

<

Therefore

(4.7) E(t) > B™'(t)EP(t), t>0; E'(0)>0.

In the case b = 1 this inequality leads to Kato’s critical exponent pg = (N +1)/(N — 1)
(= 2 for N = 3) [22], so that any orbit {E(t)} of (4.7) with 1 < p < px blows up in finite
time.

Step 2: a lower energy estimate. We need an extra estimate on E(t) from below. We
now consider the linear Cauchy problem with the same initial data (N = 3)

(4.8) vy = Av in RYT 0(0,2) = uo(z), v(0,2) = ui(z).
By the positivity property of the fundamental solution in dimension N = 3,
Fy(z,t) = (2m) 6(t* — [a[*) 2 0 (t>0),

where § denotes Dirac’s delta function, it follows that

(4.9) u(x,t) > v(z,t) in R
Hence
(4.10) E(t) =/ u(z,t)dx 2/ v(x,t)dx.
|z| <R+t |z| <R+t
On the other hand, by the Huyghens Principle for N = 3 we have that for t > R
(4.11) / v(z,t)dz =/ v(z,t)dz.
|z| <R+t t—R< || <R+t

It then follows from (4.9) and (4.10) that
1/p
/ v(z,t)dx < / u(z,t)dr < (/ b|u\p)
t—R<|a| <R+ t—R<|a| <R+t t—R<|a| <R+t

A VP 1/p N P
(/ b) g(/ b|u|p) (/ b) |
t—R<|z[ <R+t le| <R+t t—R<|z|<R+t
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This means that

p
(4.12) / bluP > (/ v) By (t).
|z| <R+t t—R<|z[ <R+t

We need a lower energy estimate on v. Integrating (4.8) over R3 we deduce that the
corresponding energy functional

Ey(t) :/ U(x,t)dxz/ UE/ v, t> R,
RV |2z|<t+R t—R<|z[<t+R

satisfies
Ey=0, t>0; E0) :/ Uy = ag, Ey(0) :/ up = ay,
R? R®
and hence Ey(t) = ag + a;t. We have a; > 0 by (4.2), and (4.12) takes the form
(4.13) / bz, )ul? > (a0 + art)? B~ (1),
|z| <R+t

Then (4.6) implies that E(t) > (ap+ait)? By ' (t), and integrating yields the lower estimate
t
(4.14) E(t) > ap+ a1t + Ho(t), Ho(t) = / (t —7)(ap + ay7)P B, H(1)dr.
0
Step 3: analysis of the ODI. Finally, for large times, we arrive at the ODI for the
energy orbits {E(t), ¢ > 0} with an extra lower bound (a constraint)
(4.15) E > B Yt)EP, E(t) > Hy(t), t>R (a; > 0).
Under hypotheses (4.4) we derive the system (¢ > 0 is a constant)
(4.16) E(t) > ct™EP(t), E(t) > ct P72 > 1.

Integrating the ODI, one can see that under condition (4.5) the energy functional E(t)
blows up in finite time. See Lemma 4 in [45]. Observe also that the corresponding ODE
E(t) = ct ®EP(t) is the classical Emden-Fowler equation. By a standard transformation
it reduces to a first-order ODE. Its phase-plane indicates the above blow-up condition.
This completes the proof of the theorem.

U

4.2. Examples for N = 3. Time-dependent operators. Consider equation (4.1), where
b(z,t)=ct’, t>1, 1>0,c>0.
Then function (4.3) satisfies

p—1
B(t) = (/ (ctl)l—”’> = ¢ (R + )3~ D¢,
|z| <R+t

so that & = 3(p — 1) — [. Similarly, B;(t) given by (4.4) is such that

Bi(t) < cy(R+ 1)V — g=2(p—1)—1.
9



The inequality (4.5) on the exponents reads 3(p—1) -l < (p+2+1—-2p+2)(p—1) + 2,
which is equivalent to the quadratic one p? — (2 +1)p — 1 < 0. This gives the following
blow-up interval (the subcritical range):

(4.17) 1<p<pe=1+1/2+[1+1/2)*+1]"%

In the autonomous case [ = 0 and p, = 1 + v/2 gives John’s critical exponent [21].
Spatially non-autonomous operators. Consider the hyperbolic equation (4.1) with b(z, t)
depending on the spatial variable:

(4.18) uy = Au+ clzF|lulf, k< N(p—-1)=3(p—-1) (c>0).

Then

p—1
B(t)=¢ (/||<R |x|k(1_p’)) =c(R+t)* a=3(p—-1)—k,
x| <R+t

p—1
Bi(t) =c3 </ |x|k(1p)>
t—R<|z|<R+t

N-1 \ p-1
([ Homs) =l YR - - P < R

where = (N—-1)(p—1)—k=2(p—1)—k. From (4.5),3(p—1) -k < (p+2+k—2p+
2)(p — 1) 4+ 2, which is equivalent to the following quadratic inequality on the exponent
p: p® — (2+ k)p — 1 < 0, we derive the subcritical blow-up range

(4.19) 1<p<pe=1+k/2+[1+Ek/2°+1]"* (k<3(p—1)).

If k = 0, this coincides with John’s exponent p, = 1 + /2 [21].

4.3. Critical blow-up exponents for N > 3. We consider the Cauchy problem (4.1)
in dimensions N > 3. We will use some estimates from [45]. We set

m=(N—-5)/2 if Nisodd; m= (N —4)/2 if N is even,
and define for ¢ > R
i t
(4.20) F(t) :/ (t—s)m/ u(z, s) deds = F 2/ (t — s)m/ Uy dxds.
t—R RV t—-R RN
Then equation (4.1) implies that

(4.21) F(t) = /tR(t —s)™ /RN b(z, s)|u(z, s)P dzds.
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Since supp u(t) C S(t) = {|z| < t + R}, by the Hélder 1nequahty we obtain

/ / (t — s)™u(z, s) dzds
5(t)
1/p'
/ / $)™b1 7 dads

1/p

t — 5)™b|lulP dzds

t 1/p

< (t — s)"blu|Pdxds

t—R J 5(t)
1/p'
(4.22) x R™/P < / / bP dacds) :
t—R J 5(t)

Denoting

t . p—1
(4.23) B(t) = R~ (/ b (x, s)d:cds) ;

t—R J 5(t)
we have

t
- / / (t = 5)™b(z, $)|ulPdzds > B~ () FP(2),
t—R J S(t)
and (4.21) gives the ODI
(4.24) F(t)> B '(t)FP(t), t> R.

In order to derive a lower estimate on G(t) we consider the linear problem (4.8). By
Lemma 5 in [45] we have (cf. (4.9))

(4.25) /0 (t — s)"u(z, s)ds > /0 (t —s)™v(z, s)ds,

and hence
i t
/ (t— s)m/ u(z, s)dzds > / (t— s)m/ v(z, s)dzds.
0 |z >t 0 || >t

Since supports of both solutions u(-,¢) and v(-,t) are contained in the ball S(t), we
conclude that for ¢ > R

t t t t
/uds:/ uds, /’UdS:/ v ds.
0 t—R 0 t—R

Then from the last inequality

(4.26) /th(t —s)™ /|z|>tu(x, s)dzds > ljR(t —s)™ /|I|>tv(:1:, s)dzds = H(t).

We now apply Lemma 6 in [45].

Lemma 4.1. Assume that

(4.27) / 2" Lup(x)dz > 0, / " Luy (2)dz > 0,
RN RN
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where n = 0 if N is odd and n = 1/2 if N is even. Then there ezists a constant C > 0
such that fort>1

(4.28) H(t) > C(R+t)N-1/2,
In view of (4.22) and (4.25), by the Holder inequality we derive that

t
C(R+ 1N < H(p) < / (t— )™ / w(z, 5)dzds
t—R |z| >t

t ¢ 1/p
= / (t — s)m/ u(z, s)drds < Bll/p(t) (/ (t — s)m/ u(z, s)dxds) ,
t—R t<|e|<t+R t—R S(1)

t p—1
(4.29) B (t) = R™~Y) (/ / b (x,s)da:ds) .
t—R Ji<|a|<t+R
Hence,
(4.30) G(t) > CPBY(t)(R + t)V—Dp/2,

It then follows from (4.21) that F'(t) > C? By L (t)(R+t)(N=Y?/2_ Integrating this inequality,
we arrive at the lower bound

i
(4.31) F(t)> A+ Bt + CP/ (t —7)(R+ )N -VP2B 1 (1)dr.
0

We now assume that there exist exponents «, 3 such that (4.4) hold. Then (4.24) and
(4.31) form the system

(4.32) F(t) > Cit7@FP(t), F(t) > Cot P2+ IN=Up/2 457,
We suppose also that
(4.33) —B+2+ (N —-1)p/2> 1.

Then the linear term A+ Bt in (4.31) is negligible for large times. Using Lemma 4 in [45]
on the global nonexistence for ODIs like (4.32), we arrive at the following result.

Theorem 4.2. Let for N > 3 initial data satisfy (4.27). Assume (4.33) and
(4.34) a<[-B+2+(N—-1)p/2(p—1)+2
hold. Then the mazimal ezistence time T of the solutions to (4.1) is finite.
4.4. Examples for N > 3. Time-dependent operators. Consider

uy = Au+ct'lulP, 1<1/(p' —1).
Then for ¢t > R

t p—1
t—R J S(¢)

<Cr(IR+ Nt W=Dyt < Cpt®, a=N(p-1)—1,
12



where Cr denotes different positive constants depending on R. Estimating B (t), we get

t p—1
Bi(t) < Cg ( / / sl@’l)dxds) < Cgt?,
t—R Ji<|z|<t+R

where 3 = (N —1)(p— 1) — [. Then (4.33) and (4.34) yield
(N=1)(p—1) =1 <1+(N—-1)p/2
Np-1)—-I<[N-1p2+2-(N-1FE-1)+l]Fp-1)+2,

ie,p<2(N+1)/(N—1)and

(4.35) (N-1)p*— (N+1+2)p—-2<0.

Since the positive root of this quadratic trinomial satisfies the first bound, we arrive at a
single condition (4.35) of blow-up in the Cauchy problem. For the autonomous equation
with [ = 0 we obtain the same critical exponent as in [45].

Spatially non-autonomous operators. Consider

uy = Au+ clz|F|lulf, k< N(p—1)=N/({p —1),
where for ¢t > R

t p—1
B(t) < Cg </ / \x|k(”'1)dxds> < Cgrt®, a= N(p—1) -k,
t—R J 5(t)
—1

t P
Bi(t) < Cn (/ / |x|_k(p'_1)dxds) <Cptf, B=(N-1)(p—1)—k
t—R Jt<|z|<t+R

From (4.33), (4.34) we obtain the conditions
(N-1)(p—1)—k<(N-1)p/2+1,
Nip—-1)—k<[N-1)p/2+2—(N-1)(p—1)+ k] (p—1)+2.

fl<p<2(N+k)/(N-1),k<N(p—1)and (N—1)p* — (N +1+2k)p—2 <0, then
the solution of the Cauchy problem blows up in finite time.
One can see that the above results apply to hyperbolic inequalities u;; > Au-+b(zx, t)|ul?.

PART 1I: ASYMPTOTIC BEHAVIOUR AND SPECTRA

5. On spectra of asymptotic patterns

We now begin to study the asymptotic behaviour of global and blow-up solutions of
the autonomous semilinear equation

(5.1) uy = Au+ f(u) in RYT
where f(u) is a homogeneous nonlinearity of order p > 1:
either f(u) = |[ulP or f(u)=|ulP'u, p>1.

Particular similarity solutions often represent different types of asymptotic patterns as t —

oo. It is well-known in the parabolic asymptotic theory (see references to Chapt. 2 and
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4 in [44]), the construction of similarity solutions generated by nonlinear eigenfunctions
(solutions of nonlinear elliptic equations) is a necessary step for general understanding
of asymptotic properties of the nonlinear evolution problem under consideration. It is
important that nonexistence or finiteness of the nonlinear spectrum of such similarity
patterns usually means that the rest of the patterns are not self-similar and should be
constructed by a matching with a spectrum of linearized patterns. Such a transition
between nonlinear and linear spectra of patterns is well understood in the blow-up analysis
for quasilinear parabolic equations, see [13], [7] and references therein.

In Sections 6 and 6 we will present a construction of different finite and countable
spectra of similarity patterns as well as of a countable spectrum of linearized blow-up
patterns in Section 7. There are many important results on the asymptotic behaviour
of global and blow-up solutions of such semilinear wave equations, see e.g. references
presented below and in the book [1]. In view of the finite propagation along straight
characteristics, such asymptotic hyperbolic problems are more definite and exhibit less
sensitivity than similar parabolic ones for semilinear heat equations

(5.2) ur = Au+ f(u).

In particular, equation (5.1) is invariant under the reflection ¢ — —t, so that the as-
ymptotic similarity patterns as ¢t — oo are somehow essentially the same as those which
blow-up in finite time, £ — —0. Obviously, this is not the case for the parabolic equations
(5.2), where the stable patterns as ¢ — oo and t — —0 are entirely different. Moreover,
for the hyperbolic equations in the normal form, the problems on formation of singular-
ities and singular blow-up surfaces can be covered by classical approaches based on the
Cauchy-Kovalevskaya Theorem, see a general singularity classification in [25] or on p. 6 in
[1]. Obviously, these ideas are not applicable to the parabolic equations (5.2), not normal
in the time variable.

Nevertheless, regardless their good properties and extra advantages of the analysis, a
detailed description of the spectra of the asymptotic patterns for the semilinear hyperbolic
equations is still not available. Viewing (5.1) as a standard nonlinear evolution equation
admitting a symmetry group of scalings, we present an approach to constructing of its
asymptotic patterns, based on the same general principles as for the evolution parabolic
PDEs like (5.2).

On the other hand, the similarity analysis is related to the question on the stability of
the trivial stationary solution u = 0 which is unstable in the range

1<p<p.=[N+1+(N>+10N +7)"%/2(N —1).

Moreover, solutions with arbitrarily small initial data blow-up in finite time and is stable
in the supercritical range p > p.. It is known that for equation (5.1) with f = |u[P
in the stability supercritical range p > p., there exists another critical exponent p; =
(N +3)/(N —1) > p,., and there hold:

(i) For p > p; the asymptotic behaviour of small global solutions as ¢ — oo is described
by the linear equation

uy = Au,
14



with certain initial data, so that the nonlinear term |u|? is negligible for large times. See
[31] where a complete list of related references on the preceeding results and a historical
survey are presented.

(i) If p. < p < p1, then the global solvability for small initial data takes place in the
weighted Strichartz functional classes [17].

In what follows, we show that in different parameters ranges the global self-similar
structures play an important role for classes of both global (this section) and blow-up
(see the next section) solutions of semilinear hyperbolic equations.

5.1. Self-similar structures. Let us fix the subscritical Sobolev range, 1 < p < pg.
As a first step in the asymptotic analysis, we consider the following global self-similar
solutions of equation (5.1):
(5.3) u (x,t) =t7%0(n), n==z/t, a=2/(p—1) >0,
where the function 6 solves the following elliptic (stationary) equation:
(5.4) AG=A0-V(VO-n) - n—(1+2a)VO-n—a(l+a)d=—f(0), ncR".
Using the identity

V(VO-n)-n= Zgnmjninj + Vo -n,
the linear operator is written down in the(ff))rm
(5.5) AG=A0 = Opymin —2(1+a)V0-n—a(l+ a)f.

(4.9)

We begin with the first properties of A and 6.

Proposition 5.1. The quadratic form of the linear operator (5.5) satisfies

(5.6) Ba(z,2) = Z((Sij —ming)ziz; > |27 (1 = [nf?),
(4,9)
so that A is uniformly elliptic on any compact subset from the unit ball B.

Proof. By the Cauchy-Bunyakovskii-Schwarz inequality we have Ba (z,2) = |z|?—(2-n)? >
[2[*(1 = [nf?). O

Proposition 5.2. Let there exist a sufficiently reqular, compactly supported solution 0 of
equation (5.8). Then

(5.7) supp f = B;.

Proof. Let suppf C {|n| < c}. Then supp u.(z,t) C {|z| < ct}, and passing to the limit

t — 40 in (5.3), we see that supp u.(z,+0) = {0}, i.e., the initial data for u,(z,t) are

concentrated at the origin, whence the result by the characteristic propagation. On the

other hand, the equality in (5.7) follows by the strong Maximum Principle applied to

equation (5.4), which is uniformly elliptic in any domain bounded away from the unit

sphere S; = {|n| = 1}. O
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Let us look for a solution 6 of the elliptic equation (5.8) with the radially symmetric
support B;. This suggests to consider this problem in the radial setting, where 6 depends
on the single radial variable £ = |n|. Then (5.4) reduces to the ODE

N-1
§

We impose a standard symmetry condition at the origin #'(0) = 0 (a natural functional
restriction for the radial setting of the Laplacian operator). The linear operator A degen-
erates on the sphere £ = |n| = 1 which is the light cone {|z| = t} for the linear hyperbolic
equation. In the global sense, we are looking for a weak solution () of (5.8) in Ry,
which, in particular, is continuous at the degeneracy point & = 1.

It is already known that in the critical and supecritical Sobolev ranges, p > pg, nontrivial
self-similar solutions with finite-energy (f(6) = |0|P~'0)

(5.8) AB=(1-6)0"+ 0 =21+ ) —a(l+a)f =—f(0), £#1.

1 1 1
E(0) = 51120/(p = 1) + €013+ 19113 — —= 1191151
2 2 p+1

do not exist. See the results in the paper [23], where a detailed asymptotic analysis of
the ODE (5.8) at the critical points as well as other local and global properties of the
solutions are available. We will use some of the results from [23] in our construction of
nontrivial solutions in the subcritical Sobolev range.

5.2. The first spatially flat similarity pattern. Let f(§) = |#|P~'0. One can see that
equation (5.4) or (5.8) admits a constant solution

(5.9) bi(n) = e = a(l+ )PV = [2(p+ 1)/ (p — 1)°]/E7D.
This profile gives the first self-similar pattern

(5.10) uy(z,t) =t %,.

Obviously, the piece-wise pattern

51(77) = {C*, |77| < 1; 0’ |77| > 1}’

has a strong discontinuity on S; and i (z,t) = t~*6;(n) is not a proper weak solution of
the semilinear hyperbolic equation in the sense that it does not satisfy the corresponding
integral equation given by the D’Alambert-Poisson-Kirchhoff formulae. In order to choose
a proper solution of hyperbolic equations with a prior: known singularity propagation,
the concept of the wave front set in the microlocal analysis applies, see Chapt. 8 in [20].
On the other hand, such a discontinuous solution #%; cannot be obtained as a limit of a
sequence of global regular solutions {u.} obtained by a suitable truncation of the equation,
u = lim._,o u., with continuous (truncated) initial data wge,u1. — ug,u; as € — 0 in a
certain metric (say, in L'). Such an extended semigroup theory is quite natural in singular

(blow-up) parabolic problems, see [16], Sect. 3 and references therein.
16



5.3. Very singular self-similar solution (VSS). Assuming that a compactly sup-
ported continuous profile § exists and integrating (5.3) over RY (or Bj), we obtain that

E*<t) = /I;N u*(x;t)dx = t'YC*’ C* = /I;N e(n)dn’

where v = —2/(p — 1) + N. Therefore, if v < 0, i.e., 1 <p < pr =1+ 2/N, and ¢, # 0,
then u, is a very singular solution in the sense that it satisfies non-integrable initial data:
as t — 40, u,(z,t) = uwo(z) € L'(RY). On the other hand, in the critical case p = pr we
have u.o = ¢,0(z). In a similar way, one can treat the type of singularity of the derivative:

Uy (1, 1) = —t7* (b + VO - 7),
so that u.(z,t) — wu.(zr) € LL (RY) as t — +0 provided that —a — 1+ N > 0,

loc
ie, p > pxk = (N+1)/(N—1) > pp, where pg is Kato’s critical exponent [22]. If
P = pk, then u,; = ¢16(x), ¢; # 0. In the second supercritical range, p > pg, self-similar
solutions u, # 0 satisfy the trivial initial conditions u,y = 0 = u,; in D'(RY) or L'(RY),
a nonuniqueness of the solution in a natural sense. It is curious that the exponent pg
coincides with the critical Fujita exponent [11] for the semilinear parabolic equation

(5.11) uy=Au+u?, p>1,

where pr determines the subcritical range p < pr and the supercritical one p > pp of
unstability and stability of the trivial stationary solution u = 0, see Chapt. 4 in [44] and
an extended list of references therein.

5.4. Properties of the linear operator in the radial setting. In order to construct
asymptotic patterns for the semilinear wave equation, we need some analysis of the linear
and linearized degenerate elliptic operators. We begin with the properties of the radial
linear operator (5.8) in the unit ball B; = {|n| < 1} which is identified with the interval
¢ € By =[0,1) for sufficiently smooth even functions. Its Sturm-Liouville form

(5.12) Ac = ~(d/d)(ad/dg) = o{1 + a)oI],

with the positive coefficients on (0,1),

(5.13) p(€) = V1= €2 >0, alg) =¥ (1— ) >0,
(5.14) v=a—-(N-1)/2=2/(p—1)— (N -1)/2,

where v > 0 for 1 < p < p; and v = 0 if p = p;. Operator A, is symmetric in the
weighted class C(‘)’;(Bl) of symmetric functions with compact support in By, —A, > 0 is
semibounded below and admits a unique Friedrichs extension [4], which is a self-adjoint
operator in the weighted Hilbert space L2(B;) of even functions.

Let us study the spectrum of the linear operator. As usual for the radial setting of the
Laplacian, the left-hand singular end point £ = 0 is in the limit-point case for N > 4.
Indeed, since p ~ a ~ £V~ as € — 0, we have two possible expansions of the solutions
near the singularity: 6; ~ 1, 6 ~ £*~", and obviously 6, € L> and 6, ¢ L2 provided
that N > 4. For N = 2 and N = 3 we need to impose a natural condition of boundednes
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at the origin or, which is equivalent, we assume that ¥ 20(£) — 0 as £ — 0. In the one-
dimensional case N = 1 the origin is not a singular point, where we put the symmetry
condition #'(0) = 0.

We next put £ =sin(: I =[0,7/2) — B;. Then

(5.15) A= %{(d/d&) (7d/de) — a1 + a)al),
where
(5.16) p(¢) =sin" "' Ccos*(, p=1+2v=2a—(N-2)

(n > 0if p < pg). A, is symmetric and semibounded in C§2(I) and its self-adjoint
extension in LZ(I) has the domain H3([)

Consider the right-hand singular end point £ = 1, i.e., ( = 7/2. We use the repre-
sentation (5.15). Similar to the analysis at & = 0, using a standard procedure from the
theory of ODEs, see the books [3] or [30], we have to study the asymptotics of two linearly
independent solutions near this singular point. Setting for convenience s = 7/2 — { and
using the expansion of the coefficients p ~ s*, we have that in the first approximation

1
~ —[(s*Y")
AY 3“[(8 Y+ ...
Therefore, any solution of the eigenvalue problem

(5.17) AY =-)\Y

can exhibit the following two linearly independent expansions as s — 0: Y; ~ 1 and
Yy ~ s'7#. We have that Y € L2 if p < p= (N +1)/(N —3) > pg, and Y3 ¢ L? provided
that p > 3, ie., p < py = (N+5)/(N+1) < p;. In this case the end point & = 1 is in
the limit-point case and we arrive at the following result, cf. [30].

Proposition 5.3. (i) For p € (1,ps] the self-adjoint operator A, has a purely discrete
countable spectrum of real simple eigenvalues

(5.18) o(Ay) ={ e =2k(2k+1+4+20)+a(l+a), k=0,1,2,...},

the corresponding eigenfunctions vy, are 2k-th order polynomials, and {1 }r>o form an
orthonormal basis in the weighted space Lf,(Bl) of symmetric functions.

(ii) If p € (p2, p1], then & =1 is in the limit-circle case, and the properties in (i) remain
valid in the domain D(A,) of symmetric functions satisfying the extra boundary condition
as & — 1

(5.19) (1-6)6(6) =0 (v>0), [In(1-¢)[7'6(¢) =0 (v=0).
(#ii) If p > p1, then the discrete spectrum (5.18) exists under the condition

(5.20) W, ' are bounded as & — 1.
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Proof. For any A € R, the symmetric solutions of equation (5.17) with analytic coefficients
in By are given by Kummer’s series [3]

Y(€) =) Cout™.
k=0

Substituting into the equation, we obtain a typical recursion on the expansion coefficients

(521) 02k+2 - AkCQk, k - ]_, 2, ceey
where
2k(2k+1+2a)+a(l+a)— A a 1
Ay = —1+%50(2), &
- 2(k + 1)(2k + N) TR\ T

and a; = (2a — N — 1)/2. It then follows that this series converges uniformly on any
interval [0, 1—¢] bounded away from 1 and is not uniformly converging on [0, 1]. Moreover,
we have that at the end point & = 1, for k > 1, there holds Cy, = O(k™!) with no sign
changes if p # po and Cy, = 1+ O(k™2) if p = po. Hence, the series diverges at £ = 1
unless A = A\ so that A; = 0 for all j > k. The corresponding eigenfunctions 1)) are 2k-th
order polynomials

¢k<§) = Ck(l + CL1§2 + ...+ ak§2k).

These eigenfunctions are defined inside the rescaled light cone {£ < 1} but also outside,
for £ > 1, so that {¢} are polynomial eigenfunctions of the eigenvalue problem posed
in the complement {£ > 1} and therefore these are global eigenfunctions in R, . In both
cases (ii) and (iii) extra boundary conditions at the degeneracy point £ = 1 follow from
the above asymptotic analysis. Similar to the classical Hermite polynomials, the higher
order term (&) ~ £2* gives the spectrum (5.18). The rest of the analysis is standard for
self-adjoint second-order ordinary differential operators [30]. 0

The first two { g, ¥} pairs are:
M =al+a), P(§)=co>0,
M=2(3+20) +a(l+a), ¥i(§)=all - (2a+3)¢%/N].
Here ¢y, cq, ..., ¢k, ... denote normalization constants.

5.5. Internal variational problem for f = |ulP: the first pattern. Let f(0) = |0/P.

Consider the following functional:
1 1 1
(5.22) Flo) = -1 / ()W)~ Sa(l +a) / o+ —— [ plopo.

2 p+1

We will study its conditional critical points on the unit sphere in the Hilbert space of
real-valued functions

(0. = {os bl = [+ [ <o),
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naturally endowed with the corresponding inner product. This functional changes sign, is
not uniform and the corresponding operator of the Euler equation A, = F' is non-coercive.
In order to apply the fibering method [41], [42], we need some embedding estimates.

Proposition 5.4. The embedding H! C Lﬁ*’l 1s compact if and only if
(5.23) l1<p<ps=(N+2)/(N-2), and

(5.24) l<p<1l+4+2/vy,v>0 (pe(1l,00)if v=0).

Proof. The first condition (5.23) is indeed coming from the standard analysis of the oper-
ator in a small neighbourhood of the origin £ = 0 and it is the same as for the semilinear
elliptic operator A+ |0|P, see [39], so that pg is the Sobolev critical exponent. The second
one (5.24) is derived in a similar way by using the expansions of the coefficients a and p
for £ =~ 1. U

Substituting v > 0 given in (5.14) into (5.24) one can see that it is always true provided
v>0,i.e,p <p; <ps. Thus, 1 < p < p; is necessary and sufficient condition for compact
embedding of the functional spaces. We then apply the fibering method proposed in [40],
see also a detailed description in [42], and prove the following result.

Theorem 5.1. Let p € (1,p1]. Then equation (5.23) admits a weak solution 0, €
HL((0,1)), which is a bounded continuous function on [0,1], positive on [0,1).

As usual, the positivity property follows from the variational statement of the elliptic
(ODE) problem. One can expect that Theorem 5.1 establishes existence of the constant
weak solution #; given in (5.9).

5.6. On a countable spectrum of internal self-similar patterns. It is essential
that Theorem 5.1 establishes existence of a single nonnegative self-similar profile (6;) for
the hyperbolic equation (5.1) and, in general, the corresponding elliptic ODE (5.8) with
non-monotone nonlinearity |#|P admits no other nontrivial solutions, see examples in [42].
Consider the hyperbolic equation with the monotone nonlinear term

(5.25) Uy = Au+ [ufP ' in RYT

Looking for the same self-similar solutions (5.3), we arrive at the ODE

(526) A0 =(1—e0"+ > Lo _ 9201+ a)fe - a(l+a)) = —|oP~0, €€ (0,1),

3
with quite similar functional setting. Several results remain valid for such a new equa-
tion. Nevertheless, there exists an important difference. Namely, in the corresponding
functional
(527)  F()=—= /a(f)(v')Q it /UQ + 1 [t pe H

2 2 p + 1 bl a’
the last potential is homogeneous and nonnegative and both linear and nonlinear oper-
ators are monotone. Using the fibering method, we reduce the problem to the study of

conditional critical points of a homogeneous nonnegative functional on the unit sphere
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and the Lyusternik-Shnirel’'man theory applies, see [41]. We then arrive at the following
result.

Theorem 5.2. For p € (1,py1], (5.26) admits a countable spectrum of weak self-similar
solutions {0k (€), k = 1,2, ...}, where § = 0, € H!((0,1)) satisfy
||0k||a — 00, k — oc.

As usual for such ODEs, the first solution 6, = ¢, is positive in the non-degeneracy
domain (0, 1) unlike the other profiles ;(£) which change sign exactly k times in (0, 1).
We do not know if the parameter range p € (1,p;] the above internal patterns can be
extended beyond the cone B; in a proper weak sense. In fact, due to the singularity

behaviour of the solutions near S; to be described below, we suspect that in general such
an extension is not possible.

5.7. Example: nonexistence of a VSS. The similarity VSS were first constructed for
the semilinear parabolic equation with absorption

uy = Au— |ulPlu, 1<p<1+2/N,
see [14], [6] and related references in Chapt. 2 in [44]. For a similar hyperbolic equation
(5.28) Uy = Au — |uP~u,

such a construction of the symmetric VSS (5.3) leads to the stationary equation
1

(5.29) A0 — 1070 = = [(ad) — a(l + a)pf] — 0P~ = 0,
p

with a monotone operator. Therefore, it admits a unique solution § = 0 in H], and we
arrive at the nonexistence result.

Proposition 5.5. The semilinear hyperbolic equation (5.28) with p € (1,p;] does not
admit a nontrivial weak VSS.

6. Nonlinear self-similar patterns for p; < p < pg
In the parameter range
(6.1) p=(N+3)/(N=-1)<p<ps=(N+2)/(N-2)

the embedding is not compact and the variational methods do not apply. In order to
construct global weak continuous solutions 6(§) we will use a shooting procedure.

6.1. Construction inside the light cone. We need some local properties of the solu-
tions of the ODE (5.8) near the singularity point & = 1. The asymptotic expansion shows
how dramatically the singularity formation changes when p passes through the critical
exponent p;. Such local solvability results can be proved by Bahach’s Contraction Princi-
ple applied to the equivalent integral equation, see also [23] where the proofs of a variety

of asymptotic and global results are presented.
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Proposition 6.1. Let f(0) = |0|P710 and denote G(0) = f(0) —a(1+a)d. (i) [f1<p<
1 then (5.26) admits the singular behaviour

(6.2) 0(8) = (C+o(1))(1 =€), £—=1-0,
where, for1 <p<ps=(N+1)/(N—1)
w=—1/(p=1), "1 =[2f(p—1)— N+1]/(p—1)>0,

and, for p3 < p < p1, C € R is arbitrary and w = —v = (N — 1)/2 — a < 0. For any
0o € R there exists a unique solution with a regular (analytic) expansion as & — 1 —0
(corresponding to C =0 in (6.2))

(6.3) 6(€) = Or(€) = Oy +v0(1 — €) + Go(1 — £)2 + ..
W= G00)/20+v), S =v v+ N —G(6:)G(0) /A1 +v).

(i) If py <p <py=(N+1)/(N —3) > pg, then all the orbits are bounded near £ = 1,
and for any fivred o = 0(1) € R, as & - 1 -0,

(6.4) 0(§) = 0r(&) +[CA =& +..],

where the reqular expansion O is as given in (6.3) and the term in square brackets describes
a rational bundle with the exponent 0 < —v < 1 and arbitrary C € R.

It follows from (ii) that in this parameter range, the point £ = 1 is a removable sin-
gularity and the orbits pass through it staying uniformly bounded and continuous. The
result in (i) shows that it is not the case for p < p;. We now prove the main result of this
section.

Theorem 6.1. Let p; < p < ps. Then there exists a smooth solution 6*(§) > 0 of the
ODE (5.8) on (0,1) satisfying (6*)'(0) = 0 and 0*(1) = 0. The extension 0*(£) = 0 for
& > 1 determines a continuous weak solution of (5.8) in Ry.

Proof. Given arbitrary value p € R, denote by 6,() the unique local in £ > 0 solution of
(5.8) satisfying 6,,(0) = p. Since the behaviour of 8, for ;x> 1 near the origin is governed
by the elliptic operator Af + 6P in the subcritical range p < pg, by a standard scaling
argument (see e.g. p. 188 in [44]) we conclude that

(6.5) 6,(¢) vanishes on (0,1) if x> 1.

The function 6,(£) depends continuously on g on any interval [0,1 — €], ¢ > 0, where
equation (5.8) is not degenerate. On the other hand, since £ = 1 is a removable singularity
and all the orbits stay continuous at the singularity, by a standard argument we conclude
that such a continuous dependence is available on the closed interval [0, 1].

Consider now ¢, for u =~ c, + 0 where such a behaviour is described by the linearized
equation, 6,(§) = c. + (1 — ¢.)Y(§). To the first approximation, Y solves the linear
equation

(Ar+pa(l+a))Y =0, £€>0; Y(0)=1, Y'(0)=0,
cf. [44], p. 191. By Proposition 5.3 we have that the first two eigenvalues of the self-
adjoint operator A,+pa(1+a)l satisty Ao = —(p—1)a(1+a) < 0and A\, = 4p/(p—1) >0
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(see the next section where we study this spectrum in detail). Therefore Y has a unique
zero on (0,1). By the continuous dependence, this means that

(6.6) 0,(1) >c,£0 as p—c. FO0.

It follows from (6.5) and (6.6) that there exists a u* > ¢, such that 6,.(1) = 0. Then
6* = 6, has the behaviour (6.4), 6, = 0, near the singularity and the trivial extension for
& > 1 gives a weak solution of (5.8). O

In order to complete the analysis of the orbits in By, we note that if u — 0 then the
linearized operator is A, with the positive spectrum, see Proposition 5.3. Therefore, for
any sufficiently small |p| # 0 the function 6,(§) does not change sign in (0,1). Combining
the above asymptotic properties and using the continuous dependence, we prove the
following result which will be used later on for a suitable nontrivial extension of the
solutions outside the light cone {£ > 1}.

Proposition 6.2. Let f(0) = |0]P7'0 and p1 < p < ps. Given arbitrary 6, € R there
exists a solution (&) of (5.8) such that 0(1) = 6.

Proof. We use a shooting argument with respect to the parameter C' in (6.4). Due to
well-known singularity properties of the radial elliptic operator Af + |0|P~16 as &€ — 0, we
have that 6¢(§) = +oo as & = 0 for C' > 1 and 0¢(§) - —o0 as & — 0 for C <« —1.
By the continuous dependence on C, for some C*, O¢+(§) is a bounded solution, hence
satisfying the symmetry condition at the origin. ]

In particular, there exists a positive solutions # such that 6(1) = ¢, and 6(0) € (0, c,).
Extending it by ¢, in the supplement £ > 1, we obtain a nontrivial (not entirely flat) weak
similarity solution 4i(z,t) = t~*@(z/t) describing a weak singularity propagation on the
light cone {|z| = t}.

6.2. Construction outside the light cone. We now briefly discuss possible types of
nontrivial extension of the solutions 6 outside the light cone {£& > 1}. We consider the
ODE (5.8) in (1, 00) in the parameter range p; < p < ps. The singularity end point £ =1
is removable as in Proposition 6.1, (ii), and we have to study the end point £ = co. The
linearized operator is A,.. One can see that the homogeneous linearized equation A,Y =0
admits two different types of solutions (see also [23])

YVi(6) =€+, Y(=€ BN 4

It is important that the initial traces of both self-similar solutions uy(x,t) = t=*Y (§) =
7Y, (€) + ... as t — +0 are quite different:

Uy (z,40) = |z|~2®V u_(2,40) =0, = > 0.

Similar to Proposition 5.3 one can obtain the discrete point spectrum of A, written down
in the symmetric form

(6.7) A= %{(d/dgxad/dg) +a(1 +a)pll,
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with the positive coefficients on (1,00), p(§) = €V 12 —1)", a(€) = V12— 1)1, and
the same exponent v = a— (N —1)/2 > 0. One can see that Y_ € L? and Y, ¢ L so that
the singular end point & = oo is in the limit-point case for A,. Therefore, its Friedrich
extension is a self-adjoint operator with a discrete spectrum

(6.8) M =2k(2k+1+20) —a(l+a), k=0,1,2,...,

so that \g = —a(1+«a) < 0. Using a similar shooting technique and considering solutions
0c (&) of (5.8) with the asymptotic behaviour corresponding to Y~ (§) € L2:

0c(§) = CY_(§) +0(Y-(§)), &—o0; CE€R,

we conclude that for all sufficiently small |C'| # 0 the function (&) is not monotone and
has at least one zero for & > 1. On the other hand, if C' > 1, by a suitable scaling, we
obtain that solution ¢ is governed by the ODE operator —£20" — 2(1 + «)¢0’¢ + |0P~10
so that O¢ blows up at a finite £ — £¢ + 0, where £ — 0o as C' — oo with the singular
behaviour given by the monotone operator —£260"” + |9[P~16. Therefore, by a standard
continuity argument, there exists a C, (say, positive) such that the solution 0* = ¢, is
monotone and does not blow-up. Hence, it is a bounded continuous solution defined for
any £ > 1. Such a construction is quite similar to that for quasilinear heat equations, see
p. 193 in [44] and necessary references to Chapt. 4. Fixing 6y = 6*(1), by Proposition 6.2
we can extend it inside the light cone B; and arrive at a global weak solution 6* in R,.
Recall that the corresponding self-similar solution u.(x,t) satisfies u.(x,+0) = 0, z # 0.

We note that, due to the properties of the spectrum (6.8), for p sufficiently close to
140 (i.e., @ > 1), the linearized solution Y (§) can exhibit more than one zero and in fact
an arbitrarily large number of zeros. By a similar continuity argument, we conclude that
outside the light cone there exists a finite spectrum of nonmonotone self-similar patterns.
Unfortunately, a weak continuation of such solutions inside the light cone is not always
possible. Anyway, the continuation result in Proposition 6.2 is valid for p € (p1,ps) and
both critical exponent p;,ps — 1+ 0 as N — oco. Therefore, we can guarantee existence
of an arbitrarily large finite number M = M (N) of such non-monotone bounded patterns
in RY ™ provided that N > 1.

More self-similar profiles in R, can be constructed if we use the shooting argument, for
the two-parametric family of solutions of (5.8) with the asymptotic expansion

Oc,(§) = C_Y_(§) + C1Yi(§) + ..., &—o0; CL€eR.

We do not study such (highly unstable) self-similar patterns and will concentrate on the
analysis of another countable spectrum of blow-up patterns.

7. Linearized countable spectra of blow-up patterns

We now consider blow-up solutions of the semilinear hyperbolic equation (5.1). In the
hyperbolic equations any blow-up singularity propagates with finite speed and forms a
smooth blow-up surface in R¥*!. Therefore, blow-up solutions admit a natural extension

beyond blow-up singularity, and blow-up is always incomplete, unlike the semilinear and
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quasilinear parabolic equations, where the problem of continuation beyond blow-up is
mathematically consistent. See [16] and references therein.

7.1. Self-similar occurrence of blow-up. The phenomena of the propagation of blow-
up singularities and properties of blow-up surfaces for equations like (5.1) are well-known,
see [8], [9], [25] and Chapt. 3 in [1]. Locally, the blow-up propagation is self-similar, see
a comment below. As we have pointed out, the phenomenon of the occurrence of blow-up
singularities from uniformly bounded solutions for semilinear wave equations is also an
important question of the general theory of nonlinear evolutions equations and a detailed
description remained an open question.

Let us impose a necessary restriction on the geometry of the occurrence of blow-up. We

always assume that the solution blows up first time at t = —0 at the origin z = 0, so that
it is uniformly bounded on any subset RY x [~1, —¢], € > 0. Our main goal is to describe
possible spectra of blow-up patterns near the point x = 0, ¢ = —0. For simplicity, we

assume that the blow-up behaviour is radially symmetric, a typical blow-up assumption
which makes it possible to study the blow-up singularity by using eigenfunctions and
matching procedures based on an ODE analysis instead of the more general and technically
more involved elliptic one for non-symmetric blow-up. Nevertheless, we expect that,
similar to the parabolic problems, the blow-up behaviour can be considered as a symmetric
one in the first approximation.

Using the invariant reflection transformation ¢ — —t, we have that the blow-up self-
similar solutions

(71) u*(x, t) = <_t)_a9<n)’ n= $/(—t),
are governed by the same continuous profiles 6 satisfying the elliptic equation (5.4) or its
radial restriction (5.8). Therefore, the existence results inside the (artificial) light cone
{|n|] < 1} on the global self-similar solutions in Theorems 5.1, 5.2 and in Section 6 coincide
with those for the blow-up solutions.

We will establish that the first blow-up pattern

(7.2) uy(z,t) = (—t)" 2P Ve,

inside £ < 1 and outside, £ > 1, of the light cone, to the first approximation describes a
generic occurrence of blow-up singularity from bounded symmetric initial data. Below,
we show how to derive a refined countable spectrum of different positive patterns for this
semilinear wave equation by using a linearization and a nonlinear matching procedure.

7.2. A comment on self-similar blow-up propagation. One can see that the sym-
metric ODE (5.8) admits an exact singular solution in the open supplement {|n| > 1} of
the unit ball:

(7.3)  Os(n)=Cs(In? - 1);/* V>0, CF'=2N-1-2/(p—1)]/(p-1),

where s — oo as |n| — +1. It follows that such a singular solution exists in the
supercritical range p > p; = (N + 3)/(IN — 1). The corresponding self-similar solution

US(iE,t) = t72/(p71)05 [(|3;|/t)2 _ 1} 11/(1’*1)
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is known to describe a generic propagation of blow-up singularities on the moving sphere
{|z| = t}, see the general results in [8] and [9].

7.3. Countable spectrum of linearized patterns in the inner region. We recall
that a countable subset of similarity blow-up patterns (7.1), constructed in Theorem 5.2
for the monotone nonlinear term, is composed from the profiles 6, (§) changing sign for
any k > 2, so that these solutions tend to o0 as ¢ — —0. Such single point non-
uniform blow-up is expected to be highly unstable. In order to construct a spectrum of
new positive patterns, we first consider the linearized problem describing possible types
of approaching as t — —0 of the evolution orbit u(z,t) to the first pattern (7.2). We then
introduce the corresponding rescaled variables by setting

(7.4) u(z,t) = (=t)"%g(&,7), 7=—In(—t) > o0 ast — —0,
where the rescaled solution g solves the semilinear hyperbolic equation
(7.5) Pg = gor + (14 20)g- + 29:¢6 = Arg + f(9),

where, as usual, f(g) = |g|? or f(g) = |g[P"'g. We assume that g(-,7) — 6:(-) = c.
as 7 — oo uniformly on compact subsets. We next perform a standard linearization in
equation (7.5) by setting

(76) g(ga T) = Cx + Y(ga 7—):
where Y solves the perturbed equation
(7.7) PY =C,Y +D(Y), C,=A,+pa(l+a)l,

where the perturbation term D is quadratic: D(Y) = O(Y?) as Y — 0. Let us remind
that by Proposition 5.3, the linear operator on the right-hand side of (7.7) admits a
self-similar Friedrichs extension with the discrete spectrum

(7.8) o(C)={ =M —pa(l+a), k=0,1,2,..}.

In the domain in H3 operator C, admits a one-dimensional unstable subspace E*(0), no
centre subspace and a stable one E*(0) = (E*(0))* of codimension 1. Indeed,

So=—(p—Da(l+a) = -2p+1)/(p—1) <0,

M =20B+2a)—(p—1a(l+a)=4p/(p—1) > 0.

C. is a self-adjoint (sectorial) operator and C,~' is a compact integral operator in Lf,.
We apply a formal stable manifold approach which is well established for a wide class of
abstract nonlinear evolution equations of parabolic type, see [32] and references therein.
By the above asymptotic analysis in {£ < 1} and in {£ > 1}, the set of eigenfunctions
of C, and of similar operators is complete in Lf,, taking into account that the nonlinear
perturbation D is actually quadratic in Lf, on the exponential orbits, we may conclude

that all possible bounded orbits behave in accordance with the structure of the stable
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manifold tangent to E°, so that in the inner region there exists a countable subset of
essentially different patterns with the behaviour as 7 — oo driven by the eigenfunctions:

(7.9) Yi(€,7) = Ce ™7 (&) + o(e™™T)  (C = const # 0),

uniformly on any compact subset in £&. The completeness of the spectrum of such asymp-
totic expansion assumes that solutions cannot decay to zero faster than exponentially. We
note that such a problem was considered in [18] in connection with Morse-Smale systems
generated by parabolic equations. It is important that the approach in [18], Sect. 3,
contains the operator and semigroup statements applied to more general equations and
uses general Agmon’s estimates. Though (7.6) is a second-order evolution equations, we
expect that such an approach can be applied to the present equation which is a quadratic
perturbation of a smooth flow associated with an (analytic) semigroup generated by the
self-adjoint operator C,.

Substituting (7.9) into equation (7.7) and keeping the main exponential terms, we arrive
at the following eigenvalue problem:

(7.10) Cror = iz — 11 +2a)dp — 2 HE,

in the space of bounded sufficiently smooth symmetric functions. Here we see both linear,
w, and quadratic, p?, dependence on the eigenvalue iy, which influences the functional
setting including boundary conditions (the weight function in the symmetric representa-
tion depends on iy as well). In general, this leads to a quadratic operator pencil, see [33].
For the ordinary differential operators such eigenvalue problem are well-known, see e.g.
Sect. 2 in [35]. Let us state the result.

Proposition 7.1. For p > 1, the eigenvalue problem (7.10) in R, admits two spectra
{# >0 of analytic eigenfunctions (2k-th order polynomials) corresponding to the eigen-
values

(7.11) pp =2k—1, pf=2k+2(p+1)/(p—-1), k=0,1,2,...
Proof. As in the proof of Proposition 5.3, using Kummer’s series in the construction of
analytic solutions, we arrive at the recursion (5.21) with the coefficient

22k + 1+ 20 —2u)+ (p— Dol +a) — p? + p(l + 2a)
B 2(k +1)(2k + N)

The truncation condition of the series implies the following quadratic equation on the
eigenvalues p = pg:

(7.13) p? — (1 +2a+4k) — (p— Da(l + ) + 2k(2k + 1 + 2a) = 0,
whence the result. The 2k-th order polynomials ¢ (£) are well-defined for all € > 0. O

(7.12) Ay

The positive eigenvalues

(7.14) pi >0, k=0,1,2,..; p, >0, k=1,2,...,
correspond to the stable manifold of the origin for the nonlinear operator on the right-
hand side of (7.7). There exists a single negative eigenvalue y, = —1 with ¢, = const

27



describing a certain linear instability. Obviously, this one-dimensional unstable manifold
is due to the time translational invariance of the semilinear equation (corresponds to
shifting of the blow-up time). Thus, the first blow-up pattern 6; = ¢, is stable in the
linear approximation.

7.4. Unstability of the uniform global pattern. It follows from the above linearized
analysis that the uniform profile #; = c, studied in the previous section is entirely unstable
in the class of global solutions defined for all ¢ > 0. Indeed, introducing the rescaled
variables (cf. (7.4))

(7.15) u(z,t) =t 1), &=z/t, T=Int,
we arrive at the equation (cf. (7.5))
(7.16) Pg=grr — (1+20a)9, — 29-¢§ = Arg + f(9),

where linear operators containing the first-order derivative d/dr change sign. Via lin-
earization (7.6) this leads to the eigenvalue problem (cf. (7.10))

(7.17) Cror = i + (1 + 20)dr, + 2pu i,
and to the following quadratic equation for the eigenvalues (cf. (7.13)):
(7.18) 2+ pu(l+ 20+ 4k) — (p— Da(l + ) + 2k(2k + 1 + 2a) = 0,

with the opposite sign in the second term. This implies that all ,uf < 0 (unstability)
except the single one u; > 0 describing the trivial stability of the self-similar behaviour
as t — oo under the time-translation ¢t +— ¢ + T'.

7.5. Transition to the intermediate ODE region: a perturbed dynamical sys-
tem. In order to extend expansion (7.9), which is C*°-smooth and analytic at the light
cone {£ = 1}, into the nonlinear intermediate region to be specified later on, we use the
fact that each eigenfunction ¢, (&) is a polynomial of the order 2k so that for & > 1, the
first term in (7.9) written in the form

(7.19)
Vi(€,7) = Ce ™™ g (€) + ... = Cere ™ TE%* 4 = Cep(e P 1+ . = Con¢® + ...,

where By = ug/2k and ¢, denote the normalization constants, suggests rescaling ( =
e Pe7¢. Then equation (7.5) for the rescaled function h((,7) = g(CeP*7, T) reduces to the
following perturbed one:

(7.20) Ph — 2B4h, ¢ = Dyh + f(h) + e 2P"Ach,
with the linear operator
(7.21) Dyh = — (B — 1)?heeC® + (B — D[2(1 + ) — Bi]he¢ — a(l + a)h.

It is important that in these rescaled variables, on sufficiently smooth evolution orbits,

the Laplace operator Awu in the hyperbolic equation reduces to an exponentially small
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perturbation that is negligible as 7 — oo (¢ — —0). In fact, in the first approximation,
in the intermediate region the smooth global flow is governed by the second-order ODE

(7.22) Uy = [uP" u.

As above, we first study the corresponding elliptic (stationary) equation obtained by
the passage to the limit 7 — oo in (7.20) under the natural regularity assumptions on
smooth compact orbits:

(7.23) DiH + f(H) = 0.

The function H is the rescaled self-similar solution of the ODE (7.22). In the radial case,
it is Euler’s equation with a nonlinear term. Setting y = In (, we arrive at the autonomous
second-order ODE

(7.24) (B —1)*H"— (B, —1)(2a+1)H +a(l+a)H - f(H) =0, yecR.

It reduces to a first-order ODE and a standard phase-plane analysis applies. It admits a
one-parameter family of profiles

(7.25) Hp(C) = c,(14 D¢)" @0y =1/(1 — By),

where D € R, is a parameter. We now choose the appropriate pairs {u; , %, } correspond-
ing to the occurrence of blow-up from bounded classical solutions. Then 8y = p, /2k =
1—1/2k < 1, and (7.25) gives a monotone decreasing function Hp({) — 0 as { — oo.
This makes it possible to match such a localized blow-up behaviour with smooth bounded
flow beyond the blow-up set. Substituting [ into (7.25), we get the profiles

(7.26) Hp(¢) =c.(1+ DCQk)*Q/(pfl)_
The matching condition of (7.26) as ¢ — 0 and (7.19) takes the form D = —21%(,

2 cx

This uniquely chosen profile Hp(() gives the desired behaviour of the solution in the
intermediate region.

7.6. On equivalent parabolic intermediate flow. The explicit self-similar solution
(7.27) (e, ) = (1) Hp(0),
of the ODE (7.22) also satisfies the first-order ODE (obtained multiplying by wu; and
integrating)
(7.28) u = a, V2, =1/2/(p+1).
Integrating again gives the solution

u(@,t) = (=t)"*c.[1 + D(z)/(=t)]7>/7Y,

and choosing the constant of integration D(z) = Dz"* gives the similarity profile (7.25)
and solution (7.27). The first-order ODE (7.28) implies that the leading structure of the

intermediate ODE region for the semilinear hyperbolic equation under consideration is
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essentially the same as for the parabolic heat equation (cf. (5.11) with the exponent p
replaced by (p+1)/2)

(7.29) uy = Au + a, u®T/2,
where the Laplacian Awu is known to be negligible near the blow-up time.

7.7. Transition to the outer region, a spectrum of final-time profiles. We now
extend the behaviour in the intermediate ODE region into the outer region where 0 <
x| < 1. We use the asymptotic behaviour of Hp(¢) as ¢ — oo. Such type of extension is
well established for a wide class of quasilinear second-order heat equations, see Sect. 8 in
[15] and references therein. It follows from (7.26) that

Hp(¢) = e, D7HP DR L 00, k=1,2,....

Since ¢ = (—t)P*¢ = (—t)P*!|z| we then obtain, passing to the limit t+ — —0, that the
asymptotic behaviour in the outer region inherits (by extension) the behaviour in the
neighbour intermediate one:

u(z,t) = (=) *Hp(¢)(L + 0(1)) = (=)@, D™HE=D (=) )7/ 4

where the exponent of (—t) vanishes, —a — 4k(8, — 1)/(p — 1) = 0, so that u(z, —0) =
c, D72/(P=1) || =4k/(P=1) 1 The countable set

(7.30) {|lz|7®%/C-D k=1,2,..}

determines possible types of asymptotics of final-time profiles near a single singular point.
Than k = 1 corresponds to the stable (generic) blow-up pattern, while for k£ = 2, 3, ... such
final-time profiles correspond to more flat unstable blow-up, when the orbit blowing-up
at x = 0, t = —0 originates an analytic blow-up surface on the {z,t¢}-plane with the
local behaviour of the type t = ¥y (x) = ag + bpx?* + ..., ag,by > 0, with x = 0 being a
local minimum. Such a discretization is not a straightforward consequence of the general
description of the singularity formation available in [25], p. 1891 or in [1], p. 6.

8. Comparison of spectra of singular blow-up patterns for parabolic and
hyperbolic equations

The results in Section 7 show that the main concepts of the three-region matching con-
struction (with a specific asymptotic solution structure in each of them) of the countable
spectra of blow-up patterns remain similar for semilinear evolution equations of different
types including:

(i) the second-order reaction-diffusion equation (5.11), see [2], [5], [10], [19], [34], [46],
[47], and references in [44], Chapt. 4,

(ii) the higher-order semilinear parabolic equation u; = —(—A)™u + |u|?, m > 1 [12],

(iii) the semilinear hyperbolic equation (1.1).

On the other hand, for the essentially quasilinear equations like u; = V- (|Vu|*"1Vu) +
uP (or +e*), o > 0, or with the porous medium diffusion operator Au°*! replacing the
p-Laplacian, the first finite or infinite number (depending on ¢ > 0) of patterns can

be entirely self-similar and then a two-region matching applies. If a finite number of
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such essentially nonlinear similarity patterns exist, the rest of patterns is constructed by
linearization and step by step extension via a similar three-region matching. In this case
we observe a transitional behaviour between nonlinear and linear spectra when of the
exponent ¢ > 0 passes through the critical values {0y, £ = 1,2,...}; see [13], [7] and
Chapt. 4 in [44].

The above results reveal some common features of the microstructural discretization of
singular asymptotics of different infinite-dimensional dynamical systems, a phenomenon
which play a fundamental role in the theory of self-organization of dissipative and other
structures, see e.g. [26] and references therein. Actually, such countable spectra are one
of the most important property of the nonlinear evolution equations, a property occurring
near singularity for rather arbitrary initial data. These essentially exhaust internal self-
organizing microstructural (“turbulent”) properties of nonlinear evolution systems under
consideration.
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