Übungen zur Funktionentheorie Blatt 2

Die Lösungen sind abzugeben am Donnerstag, 12.05.2011, in den Briefkästen auf F4. Gemeinsame Abgabe in Zweiterteams ist zulässig, solange jede/r der Beteiligten jede Lösung auf überzeugende Weise präsentieren kann.

- 1. Sei $f : \mathbb{C} \to \mathbb{C}$ eine ganze Funktion. Zeigen Sie, daß dann auch $h = h(z) := \overline{f(\overline{z})}$ eine ganze Funktion ist.
- 2. Sei Ω ein konvexes Gebiet in \mathbb{C} , und sei dort f eine holomorphe Funktion mit stetiger Ableitung f', für die wir $\Re f'(z) \neq 0$ überall in Ω voraussetzen. Zeigen Sie, daß dann f injektiv ist.
- 3. Bestimmen Sie für folgende Funktionen die Potenzreihen am Entwicklungspunkt $z_0 = 0$:

$$f_1 = f_1(z) := \frac{1}{z^2 + 4}, \qquad f_2 = f_2(z) := \frac{1}{(1 - z^2)(z + i)}, \qquad f_3 = f_3(z) := \sin(z^2 - 1).$$

Arbeiten Sie ökonomisch und elegant. Das Aufgabenziel besteht nicht im Kampfrechnen.

- 4. Gegeben sei eine Kurve Γ mit einer Parametrisierung $\gamma = \gamma(t) = (1+t^2) \exp(2\pi it)$, für $t \in [-1,1]$. Berechnen Sie die Umlaufzahl um $z_0 := 0$ durch Auswerten des Integrals $\frac{1}{2\pi i} \int_{\Gamma} z^{-1} dz$. Skizzieren Sie die Kurve Γ und tragen Sie in jede Zusammenhangskomponente die entsprechende Umlaufzahl ein.
- 5. Es sei Ln der Hauptteil des komplexen Logarithmus, definiert auf der geschlitzten Ebene $\mathbb{C} \setminus (-\infty, 0]$. Sei $a \in \mathbb{C} \setminus \{0\}$.
 - (a) Zeigen Sie: die Funktion $z \mapsto z^a := \exp(a \operatorname{Ln} z)$ ist in der genannten geschlitzten Ebene holomorph, und es ist dort $(z^a)' = az^{a-1}$.
 - (b) Bestimmen Sie Real- und Imaginärteile der folgenden Zahlen:

$$i^{i}$$
, $(2+i)^{i}$, $(\operatorname{Ln} i)^{i}$.

(c) Diskutieren Sie:

$$2 = \exp(\operatorname{Ln} 2) = \exp\left(2\pi i \frac{\operatorname{Ln} 2}{2\pi i}\right) = \left(\exp(2\pi i)\right)^{\frac{\operatorname{Ln} 2}{2\pi i}} = 1^{\frac{\operatorname{Ln} 2}{2\pi i}} = 1.$$