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Introduction

Let us consider the differential operator of order m

P (x, t,Dx, Dt) = Dm
t +

∑

j+|α|≤m,j<m
aj,α(x, t)D

α
xD

j
t ,

where we adopted the usual notation Dt = −i∂t, Dx = −i∇x. This operator P
is called hyperbolic in the direction t if the roots τj = τj(x, t, ξ) of the equation

τm +
∑

j+|α|=m,j<m
aj,α(x, t)ξ

ατ j = 0

are real for all x, t, ξ. The operator P is called strictly hyperbolic in the direction
t, if the roots τj are real and distinct for ξ ∈ Rn \ {0}. If P is hyperbolic, but
not (necessarily) strictly hyperbolic, it is called weakly hyperbolic.

The hyperbolicity is a necessary condition for C∞ well–posedness of the Cauchy
problem (see [Lax57], [Miz61]). Well–posedness (with respect to chosen topo-
logical spaces for the data, right–hand side and the solution) of a Cauchy
problem means, as usual, the existence, uniqueness and continuous depen-
dence (in the topologies of the given spaces) of the solution. However, the
hyperbolicity does not guarantee the well–posedness in, e.g., C∞ or Sobolev
spaces. A sufficient condition for the well–posedness in C∞ and in Sobolev
spaces is the strict hyperbolicity, see [Pet38], [Ler54] and [Gar57].

Therefore it is a natural goal to find classes of weakly hyperbolic Cauchy
problems which are C∞ well–posed.

In the weakly hyperbolic case, new phenomena occur which may prevent the
well–posedness. These phenomena are the following:

Oscillations in the coefficients with respect to time

• Colombini and Spagnolo [CS82] constructed a function a(t) ≥ 0
from C∞, smooth data u0(x), u1(x) and a number T > 0 with the
property that the solution u = u(x, t) of

utt − a(t)uxx = 0, u(x, 0) = u0(x), ut(x, 0) = u1(x)

5



6 INTRODUCTION

belongs to C∞([0, T ), C∞(R)), but not to C([0, T ],D′(R)). This
coefficient a(t) is positive for t < T , oscillating for t → T − 0 and
identical to zero for t > T .

• Let b(t) be a positive, 1-periodic, smooth and non–constant func-
tion. In [Tar95] it was proved that the Cauchy problem

utt − exp(−2t−α)b(t−1)2uxx = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x)

is C∞ well–posed if and only if α ≥ 1/2.

The influence of lower order terms

• Gevrey [Gev13] proved that the Cauchy problem for the equation

utt − ux = 0

is well–posed in Gevrey spaces if and only if the Gevrey exponent
does not exceed 2. Especially, this Cauchy problem is not well–
posed in C∞.

• In [IP74] it was shown that necessary conditions for the C∞ well–
posedness of

vtt − t2lvxx + tkvx = 0, l, k ∈ N0, (0.0.1)

utt − x2nuxx + xmux = 0, n,m ∈ N0, (0.0.2)

are k ≥ l − 1 and m ≥ n. The sufficiency of these conditions was
proved in [Ole70].

• If one wants to study well–posedness in Sobolev spaces, one has
to spend attention to another phenomenon, which occurs in the
border case k = l− 1 of the C∞ well–posedness: the loss of Sobolev
regularity. Qi Min-You [Qi58] showed by an explicit representation
of the solution to the Cauchy problem

utt − t2uxx = aux, (0.0.3)

u(x, 0) = ϕ(x), ut(x, 0) = 0, a = 4n+ 1, n ∈ N,

that u(., t) ∈ Hs−n if ϕ ∈ Hs. Let us describe this phenomenon
in another way. Let us be given a datum function ϕ(x) with high
Sobolev smoothness s� 1. Then a number a exists with the prop-
erty that there is no classical solution of (0.0.3). The solution only
exists in spaces of distribution.
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There are different ways to exclude the phenomenon of oscillations and to
restrict the influence of the lower order terms. We take the equation

utt − a(x, t)uxx + b(x, t)ux + d(x, t)ut + e(x, t)u = f(x, t)

as a model problem. Let us first consider the oscillations.

• One may assume the nonlocal condition

∫ T

0

|a′(τ)|
a(τ) + ε

dτ ≤ C| ln ε|, 0 < ε ≤ ε0

for the coefficient a = a(t), see [CJS83], [DR98a].

• It may be presumed that a = a(t) with a analytic, see [Spa88], [CJS83],
[D’A95].

• If the degeneracy occurs for t = 0 only, we may assume ([Ole70])

0 ≤ C(a(x, t) + ∂ta(x, t)), t ≥ 0.

• We can suppose that the Levi conditions of C∞ type a(x, t) =
a0(x, t)σ(x)2λ(t)2 hold with smooth a0(x, t) ≥ α > 0, λ(0) = 0,
λ′(t) > 0 (t > 0). The degeneration appears at the points (x0, t0) with
σ(x0)λ(t0) = 0. Assumptions of this type were made, e.g., in [Ner66],
[Yag78], [RY93], [Yag96], [Yag97b], [Yag97a] and [DR97], [DR98b]. We
will take this idea and generalise it to quasilinear higher order equations
in higher dimensions.

Let us consider the lower order terms. Conditions which restrict the influence
of these terms are called Levi conditions. The following Levi conditions have
been used widely in the past:

• If the degeneracy occurs for t = 0 only, then we may take the condition

Btb(x, t)2 ≤ Aa(x, t) + ∂ta(x, t), t ≥ 0 (0.0.4)

from [Ole70]; A and B are some positive constants. This Levi condition
is sharp in the case of finite degeneracy: if one takes a(x, t) = x2nt2l

and b(x, t) = xmtk, this condition implies m ≥ n, k ≥ l − 1. These
are exactly the necessary and sufficient conditions from Ivrii, Petkov and
Oleinik. However, this condition is not sharp in the case of infinite time
degeneracy. It exists an explicit representation of the solutions to

utt − e−
2
t
1

t4
uxx + ke−

1
t

1

t4
ux = 0, t ≥ 0, k = const, (0.0.5)
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see [Ale84], which implies that the Cauchy problem for this equation
is C∞ well–posed. Yet, the coefficients from this equation do not sat-
isfy (0.0.4).

• If one wants to include more general degenerations, one may assume the
rather general conditions

b(x, t)2 ≤ Ca(x, t),

at(x, t) ≤ Ca(x, t) or at(x, t) ≥ −Ca(x, t),

or, similarly,

Bb(x, t)2 ≤ Aa(x, t) + at(x, t), A, B > 0,

compare [Man96], [MT96], [D’A94b]. However, this condition is not
sharp.

• It can be presumed a(x, t) = a0(x, t)σ(x)2λ(t)2 with a0(x, t) ≥ α > 0
and |b(x, t)| ≤ C|σ(x)|λ′(t). This Levi condition is sharp for finitely and
infinitely degenerated λ, cf. (0.0.1) and (0.0.5). We will follow this way
and generalise these conditions to the higher order case.

Let us have a look at the main results of this Ph.D. thesis. We consider the
Cauchy problem

Dm
t u+

∑

j+|α|=m,j<m
aj,α(x, t, {Dβ

xck,β(x, t)D
k
t u})λ(t)|α|Dα

xD
j
t (σ(x)|α|u)

= f(x, t, {Dβ
xck,β(x, t)D

k
t u}), k + |β| ≤ m− 1, m ≥ 2,

u(x, 0) = ϕ0(x), . . . , D
m−1
t u(x, 0) = ϕm−1(x)

for (x, t) ∈ M × [0, T ]; M is an n-dimensional torus. The functions ck,β =
ck,β(x, t) are weight functions which describe the Levi conditions.

Let the data belong to Sobolev spaces. We will find a local solution which
suffers from a loss of Sobolev regularity as motivated by the Qi Min-You Ex-
ample.

The methods for proving this result are a unification of ideas taken from [Tay91]
who studied quasilinear strictly hyperbolic equations and [KY98] who studied
quasilinear weakly hyperbolic equations with time degeneracy.

We will also give a criterion for the possible blow–up. Let aj,α and f be defined
on some set M × [0, T ] × K; K ⊂ Rn0 is bounded. Then a blow–up cannot
happen as long as the Zygmund norm ‖.‖C1

∗
of certain (m−1)th order weighted

derivatives of u is bounded and the arguments of aj,α and f do not intersect
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the set M× [0, T ]×∂K. We point out that we take the same comparison space
(C1

∗ ) as in the strictly hyperbolic theory, see [Tay91].

In order to show the local existence of solutions to quasilinear equations with
spatial and time degeneracy, we will linearise the equation and apply a fixed
point argument. In this step we need the so–called strictly hyperbolic type prop-
erty for the linearised equations, (see [RY99]). Let L be a weakly hyperbolic
linear operator of order 2 (for simplicity) with time degeneracy. We consider

Lu = f(x, t), u(x, 0) = Dtu(x, 0) = 0

and say that the strictly hyperbolic type property is fulfilled if for some suitably
chosen Banach space B the relation f ∈ B implies

λ′

λ
u,
λ′

λ
ut, σλ

′ux ∈ B,
∥∥∥∥
λ′

λ
u

∥∥∥∥
B

+

∥∥∥∥
λ′

λ
ut

∥∥∥∥
B

+ ‖σλ′ux‖B ≤ C ‖f‖B .

This property holds in the strictly hyperbolic theory with B = C ([0, T ], H s),
σ(x) = 1 and λ(t) = 1 + t. If such a strictly hyperbolic type property holds
for the linear problem, one can mostly construct a sequence of approximate
solutions of the quasilinear problem in the usual way. This sequence will
converge to a solution for small times.

In Chapter 2 we present and prove some properties of pseudodifferential opera-
tors with limited smoothness. Results about smoothing operators, commutator
estimates, adjoint operators and compositions of operators are given. These
results base on [Tay91] and serve as a tool for the investigations in the following
two chapters.

Quasilinear equations with pure spatial degeneracy on a torus are studied in
Chapter 3. We prove energy estimates, an existence result and a blow–up
criterion. Additionally, the stability of global solutions and the life–span are
studied. A more detailed introduction into these results can be found at the
beginning of that chapter.

Chapter 4 is devoted to equations with spatial and time degeneracy. We
approximate such equations by equations with pure spatial degeneracy, apply
the results of the previous chapter and prove the local existence of a solution.
For a comprehensive presentation the reader is referred to the beginning of
Chapter 4.

In Chapter 5 we describe domains of dependence for quasilinear weakly hyper-
bolic equations with spatial degeneracy. Geometrically spoken, these domains
can be described by the condition that the principal part of the operator be
hyperbolic at each point of the boundary of the domain in the normal direc-
tion of the boundary. Since the coefficients of the principal part depend on
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the solution, the domain of dependence for the solution will be dependent on
the solution itself. The properties of existence, uniqueness and C∞ regularity
of solutions are studied. A more comprehensive presentation of these results
can be found at the beginning of Chapter 5.

Finally, in Chapter 6 the propagation of singularities for semilinear weakly
hyperbolic equations is studied. We take a semilinear equation whose solu-
tion suffers from the loss of regularity, cf. the Example of Qi Min–You. We
construct function spaces for the data, the right–hand side and the solution in
such a way that the strictly hyperbolic type property holds and that we regain
the known loss of regularity in the cases in which we know an explicit repre-
sentation of the solution to the linear problem. In other words, this general
description of the behaviour of the solutions is sharp in these special cases.
Using these newly defined spaces we are able to show that the solution to the
semilinear problem and the solution of a suitably linearised problem belong to
the same space and that their difference belongs to a space of higher regularity.
This result can be interpreted in the way that the singular supports of these
two solutions coincide, modulo certain weaker singularities.

A general theory for weakly hyperbolic differential equations of higher order
and in higher dimensions is presented in the case that sharp Levi conditions are
satisfied. The equations to be studied also cover the case of strict hyperbolicity.
For these equations the following problems are studied:

Local existence in Sobolev spaces The Cauchy problems to quasilinear
weakly hyperbolic operators with spatial and time degeneracy are proved
to have a local solution in Sobolev spaces. Due to the sharp Levi condi-
tions, the solution suffers from a loss of Sobolev regularity. The results of
this Ph.D. thesis coincide with the known results for the strictly hyper-
bolic case if the operator is strictly hyperbolic, see e.g. [Dio62], [Tay91].

Blow–up criterion We will prove that a blow–up of the solution in high
order Sobolev spaces is only possible if the C1

∗ Zygmund norm of certain
weighted derivatives (up to the order m − 1) of the solution blows up.
This is exactly the same criterion as in the strictly hyperbolic case, see
[Tay91].

Local existence in C∞ That blow–up criterion leads to the local existence
of solutions in C∞ immediately.

Stability of solutions and life–span of solutions Let us be given a solu-
tion of a quasilinear weakly hyperbolic Cauchy problem which persists up
to some time T > 0. We consider an additional Cauchy problem which
has perturbed data, right–hand side and coefficients. Then the solution
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of this perturbed problem persists up to T and differs from the first so-
lution by an arbitrary small value (in certain norms), if the perturbation
is sufficiently small (in certain norms). This stability of solutions leads
to an estimate of the life–span immediately. The continuous dependence
of the solution from the data and right–hand side also means, that the
quasilinear weakly hyperbolic Cauchy problem is well–posed in Sobolev
classes. For the strictly hyperbolic case, see e.g. [Pet38], [Ler54], [Dio62]
and [Gar57].

Domains of dependence In this Ph.D. thesis domains of dependence for
quasilinear weakly hyperbolic operators will be defined and studied.
These domains will be used to prove the C∞ regularity. Our concept of
domains of dependence extends the concept of [AM84] from the strictly
hyperbolic to the weakly hyperbolic case.

Propagation of singularities The singular support of the solution to a
semilinear wave equation and the singular support of the solution to a
suitably linearised wave equation coincide, modulo weaker singularities;
see, e.g. [Rau79]. A similar result will be proved in the weakly hyperbolic
case. However, since the Levi conditions are sharp, the solutions of both
Cauchy problems suffer from a loss of Sobolev regularity in comparison
with the initial data. This is a severe difficulty because the loss of reg-
ularity makes it impossible to prove even the existence of a solution to
the semilinear problem by the standard iteration approach. As far as it
is known, there are no results in the literature stating that the solution
to the semilinear and the linearised problem at least belong to the same
space. In this Ph.D. thesis a concept will be introduced which seems to
be quite new. Generalising ideas of [RY99], function spaces (adjusted to
the hyperbolic operator) will be defined and studied. These spaces gener-
alise the classes of Sobolev spaces. We will show that both the solutions
belong to the same space and that the difference of the solutions has a
higher regularity. In other words, the singular supports of the solutions
coincide, modulo weaker singularities. These spaces turn out to exactly
describe the loss of regularity in all examples of operators for which we
know an explicit representation of the solution.

This thesis was written when I was a student and an employee at the Faculty
of Mathematics and Computer Sciences of the Freiberg University of Mining
and Technology. I am very grateful to the staff of Freiberg University for the
excellent working conditions and the pleasant working climate. I would like
to express my thanks to the Studienstiftung des deutschen Volkes for financial
support.
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Chapter 1

Notations

Let M be a closed smooth compact n-dimensional manifold or M = R
n.

By Ck(M) = Ck
b (M), k ∈ N0, we denote the set of bounded and continuous

functions whose derivatives up to the order k are bounded and continuous.
The norm of this space is given by

‖u‖Ck
b (M) := sup

x∈M

∑

|α|≤k
|Dα

xu(x)|.

Here the standard multi index notation is used:

x = (x1, . . . , xn) ∈M, α = (α1, . . . , αn) ∈ N
n,

Dα
x = Dα1

x1
. . .Dαn

xn
, Dxj

= −i ∂
∂xj

, i2 = −1.

The Hölder spaces Cs
b (M), s ∈ R+, are defined in a similar way.

We write Lip1(M) for the space of Lipschitz continuous functions defined in M .
The symbols D′, E ′, S and S ′ denote the usual topological spaces of distribu-
tions, distributions with compact support, Schwartz functions and temperate
distributions.

By 〈.〉 we denote a function from C∞(Rn) with 〈ξ〉 ≥ C1 > 0 for all ξ ∈ R
n

and 〈ξ〉 = |ξ| for |ξ| ≥ C2 > 0. Then positive constants c, C exist with

c〈ξ〉 ≤ (1 + |ξ|2)1/2 ≤ C〈ξ〉 ∀ξ ∈ R
n.

The pseudodifferential operator 〈D〉 with symbol 〈ξ〉 can be used to define the
Sobolev spaces Hs,p(M) by

Hs,p(M) := 〈D〉−sLp(M).

13



14 CHAPTER 1. NOTATIONS

A thorough representation of the theory of pseudodifferential operators can be
found in [Hör85]. We write Hs,2(M) =: Hs(M) in the case of p = 2. If s = 0,
then we get the usual L2 space with scalar product (., .):

H0(M) = L2(M), ‖u‖L2 =
√

(u, u).

The function 〈.〉 and its constants C1, C2, C, c can be chosen in such a way
that

∥∥Dβ
xu
∥∥
L2

≤
∥∥〈D〉|β|u

∥∥
L2

∀|β| ≥ 0, ∀u ∈ C∞
0 (M),

‖u‖Hs ≤ ‖u‖Hs+1 ∀s ≥ 0, ∀u ∈ Hs+1(M).

Let Sm1,0 be the set of symbols p(x, ξ) ∈ C∞(M × Rn) with

|Dα
xD

β
ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−|β| ∀(x, ξ) ∈ M × R

n

and let OPSm1,0 denote the set of operators with symbols in Sm1,0.

Very often we will employ the so–called Hadamard formula:

f(v(x)) − f(w(x)) =

∫ 1

0

∂sf(w(x) + s(v(x) − w(x))) ds

= (v(x) − w(x))

∫ 1

0

f ′(w(x) + s(v(x) − w(x))) ds

for all functions f ∈ C1. There is a canonical generalisation to the case of
vector valued functions v(x), w(x).



Chapter 2

Pseudodifferential Operators
with Finite Smoothness

2.1 Introduction

In the Chapters 3 and 4 quasilinear hyperbolic equations and their solutions
in Sobolev spaces will be studied. Natural tools for the investigation of such
equations are energy estimates in Sobolev spaces. These energy estimates will
be proved using the theory of pseudodifferential operators. However, since
the coefficients of the principal part of the hyperbolic operator depend on the
solution and its derivatives itself and because the solution will be from some
Sobolev space, the coefficients of this hyperbolic operator will not have C∞

smoothness. Thus, the theory of pseudodifferential operators with symbols of
infinite smoothness seems not to be applicable. For this reason we present
a theory of pseudodifferential operators with symbols of finite smoothness in
this chapter. This theory is taken from [Tay91] and includes results about
mapping properties, commutator estimates, adjoints and compositions. The
proofs in [Tay91] used model operators of special structure. We will give the
proofs for general operators especially taking care of the remainders.

2.2 Definition and Mapping Properties

Definition 2.2.1 (Microlocalisable scale). The set of Banach spaces
{Xs : s ∈∑} is called a microlocalisable scale if the following hold:

• ∑ = [σ0,∞) or
∑

= (σ0,∞), σ0 ∈ R,

• C∞
0 (M) ⊂ Xs ⊂ C0

b (M) ∀s ∈∑,

15
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• Xs ⊂ X t (t < s),

• f ∈ C∞(R), u ∈ Xs =⇒ f(u) ∈ Xs, f maps bounded sets into bounded
sets,

• If m ∈ R, s, s + m ∈ ∑ and P ∈ OPSm1,0, then P maps Xs+m into Xs

continuously.

Example 2.2.2. Xs = Cs
∗(R

n),
∑

= (0,∞). Here Cs
∗ are the Hölder spaces

for s 6∈ N and coincide with the Zygmund spaces for s ∈ N. The Zygmund
spaces Cs

∗ , s ∈ N+, consist of all functions u with the property that

u ∈ Cs−1
b (Rn), sup

x6=y

∑

|α|=s−1

∣∣Dαu(x) − 2(Dαu)
(
x+y

2

)
+Dαu(y)

∣∣
|x− y| <∞.

The continuous embedding Ck
b ⊂ Ck

∗ , k ∈ N
+, holds. More properties of Hölder

spaces and Zygmund spaces can be found in [Tri78].

Example 2.2.3. Xs = Hs,p(M),
∑

= (n/p,∞), 1 < p < ∞. The
Sobolev Embedding Theorem implies Xs ⊂ C0

b (M) for s ∈ Σ.

Definition 2.2.4 (Space of symbols of finite smoothness). The space
XsSm1,0 consists of all symbols p(x, ξ) with

∥∥Dα
ξ p(., ξ)

∥∥
Xs ≤ Cα〈ξ〉m−|α| ∀α ≥ 0.

In other words, for all N ∈ N0 it holds

πmN,Xs(p) := sup
{∥∥Dα

ξ p(., ξ)
∥∥
Xs 〈ξ〉−m+|α| : ξ ∈ R

n, |α| ≤ N
}
<∞.

Definition 2.2.5 (Classical symbols of finite smoothness). We say that
p(x, ξ) ∈ XsSmcl , if p(x, ξ) ∈ XsSm1,0 and

p(x, ξ) ∼
∑

j≥0

χ(ξ)pj(x, ξ)

where pj(x, ξ) are positive homogeneous of degree m−j in ξ and p−∑N−1
j=0 χpj ∈

XsSm−N
1,0 . The function χ ∈ C∞(Rn

ξ ) vanishes in a neighbourhood of 0 and
equals 1 for |ξ| ≥ C > 0.

Definition 2.2.6 (Operators of finite smoothness). Let M = Rn. The
spaces OPXsSm1,0, OPX

sSmcl ,respectively, consist of all operators p(x,D) whose
symbols p(x, ξ) belong to XsSm1,0, X

sSmcl , respectively, and satisfy

(p(x,D)u)(x) = (2π)−n
∫

Rn

eixξp(x, ξ)û(ξ)dξ ∀u ∈ C∞
0 (Rn).
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If M is a smooth closed compact manifold, then the operator p(x,D) is defined
in the following way:

A continuous linear operator P : C∞
0 (M) → D′(M) is called a pseudodiffer-

ential operator of the class OPXsSm1,0 if its Schwartz Kernel is locally Xs–
smooth off the diagonal in M ×M , and if there is a locally finite open cover
of M with sets Ωj, a subordinate partition of unity ϕj and diffeomorphisms
Fj : Ωj → Vj ⊂ Rn that transform the operators ϕkPϕj : C∞(Ωj) → E ′(Ωk)
into pseudodifferential operators in OPXsSm1,0, see [Tay91], Section 0.12.

The following mapping property is cited from [Tay91] (Prop. 2.1.D.).

Proposition 2.2.7. Let p(x,D) ∈ OPCs
bS

m
1,0. Then p(x,D) maps Cr+m

∗ ,
Hr+m,p continuously into Cr

∗ , H
r,p, respectively, if 1 < p <∞ and

−s < r < s.

We point out that this proposition cannot be applied in the cases r = −s or
r = s. The following proposition partially closes this gap. The idea behind this
proposition is to impose stronger conditions on the order of the operator. This
allows to reach the highest smoothness (of the image space) that is gainable
keeping in mind the finite smoothness of the symbol. We will use the proposi-
tion to estimate the remainders of the expansions of classical pseudodifferential
operators with symbols of finite smoothness.

Proposition 2.2.8. Let p(x,D) ∈ OPCs
bS

−N
1,0 , s ∈ N0, N > s0 ≥ s. Then

p(x,D) maps continuously

L2 → Hs, H−s0 → L2.

Proof. The second statement is contained in Proposition 2.2.7, if s > 0. But
sometimes we will need it in the case s = 0. The Proposition 2.2.7 gives no
information in this case.

We choose a partition of unity {ψj(ξ)}∞j=0 in the frequency space with the
following properties:

suppψ0 ⊂ {|ξ| < 2}, suppψj ⊂ {2j−1 < |ξ| < 2j+1}, j > 0,

ψj(ξ) = ψ1(2
1−jξ),

∞∑

j=0

ψj(ξ) = 1,

see [Bon81]. Then we define symbols pj(x, ξ) by the formula pj(x, ξ) =
p(x, ξ)ψj(ξ)〈ξ〉N and see that

p(x, ξ) =
∞∑

j=0

p(x, ξ)ψj(ξ) =
∞∑

j=0

pj(x, ξ)〈ξ〉−N .
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The functions pj(x, ξ) have compact support with respect to ξ, which is located
near |ξ| = 2j for j > 0. If ξ ∈ {2j−1 < |ξ| < 2j+1}, then η := 2−jξ ∈
{1/2 < |η| < 2}. Let {βl(η)}∞l=0 be a basis of L2({1/2 < |η| < 2}), see
Proposition B.0.1. We can write

pj(x, ξ) = pj(x, 2
jη) = p̃j(x, η) =

∞∑

l=0

p̃jl(x)βl(η) =
∞∑

l=0

p̃jl(x)βl(2
−jξ),

p̃jl(x) =

∫

1/2<|η|<2

p̃j(x, η)βl(η) dη =

∫

1/2<|η|<2

pj(x, 2
jη)βl(η) dη.

Due to Proposition B.0.1 we have

‖p̃jl‖Cs
b
≤ Ck〈l〉1−

2
n
k · 22jk

× sup{|Dα
ξD

β
xpj(x, ξ)| : x ∈M, |α| = 2k, |β| ≤ s, ξ ∈ suppψj}.

We estimate the supremum:

|Dα
ξD

β
xpj(x, ξ)| ≤ C

∑

γ≤α
|Dγ

ξD
β
x(p(x, ξ)〈ξ〉N)||Dα−γ

ξ ψj(ξ)|

≤ C
∑

γ≤α
π0
|γ|,C|β|(p(x, ξ)〈ξ〉N)〈ξ〉−γ|Dα−γ

ξ ψ1(2
1−jξ)|

≤ Cπ0
2k,Cs

b
(p(x, ξ)〈ξ〉N)

∑

γ≤α
2−j|γ|2(1−j)(|α|−|γ|)

≤ Cπ−N
2k,Cs

b
(p)2−2jk.

This gives

‖p̃jl‖Cs
b
≤ Ck〈l〉1−

2
n
kπ−N

2k,Cs
b
(p) ∀k ≥ 0.

Now we are in a position to estimate appropriate norms of each summand of

p(x,D)u =
∑

j,l

p̃jl(x)βl(2
−jD)〈D〉−Nu.

For M = Rn and j > 0 it holds

∥∥p̃jl(x)βl(2−jD)〈D〉−Nu
∥∥2

Hs ≤ C ‖p̃jl‖2
Cs

b

∥∥βl(2−jD)〈D〉−Nu
∥∥2

Hs

≤ C ‖p̃jl‖2
Cs

b

∫

2j−1<|ξ|<2j+1

〈ξ〉2(s−N)|βl(2−jξ)|2|û(ξ)|2 dξ

≤ Ck〈l〉4−
4
n
k
(
π−N

2k,Cs
b
(p)
)2

22j(s−N)

∫

2j−1<|ξ|<2j+1

|û(ξ)|2 dξ.
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A similar estimate is true in the case of j = 0. We conclude that

‖p(x,D)u‖Hs ≤
∑

j,l

∥∥p̃jl(x)βl(2−jD)〈D〉−Nu
∥∥
Hs

≤ Ck
∑

j,l

〈l〉2− 2
n
kπ−N

2k,Cs
b
(p)2j(s−N)

(∫

2j−1<|ξ|<2j+1

|û(ξ)|2 dξ
)1/2

≤ Ckπ
−N
2k,Cs

b
(p)
∑

j,l

〈l〉2− 2
n
k2j(s−N) ‖u‖L2

≤ Ckπ
−N
2k,Cs

b
(p) ‖u‖L2 ,

if k > 3n
2

and s < N . On the other hand,
∥∥p̃jl(x)βl(2−jD)〈D〉−Nu

∥∥2

L2
≤ C ‖p̃jl‖2

C0
b

∥∥βl(2−jD)〈D〉−Nu
∥∥2

L2

≤ C ‖p̃jl‖2
Cs

b

∫

2j−1<|ξ|<2j+1

〈ξ〉−2N |βl(2−jξ)|2|û(ξ)|2 dξ

≤ Ck〈l〉4−
4
n
k
(
π−N

2k,Cs
b
(p)
)2

22j(s0−N)

∫

2j−1<|ξ|<2j+1

〈ξ〉−2s0|û(ξ)|2 dξ

≤ Ck〈l〉4−
4
n
k
(
π−N

2k,Cs
b
(p)
)2

22j(s0−N) ‖u‖2
H−s0 .

The same argument as above gives ‖p(x,D)u‖L2 ≤ Cπ−N
2k,Cs

b
(p) ‖u‖H−s0 . The

proof for the case M 6= Rn runs similarly.

Remark 2.2.9. If the Littlewood–Paley–characterisation of the H s,p norm is
applied, then the result of this proposition can be extended to Lp → Hs,p,
H−s0,p → Lp for 1 < p < ∞. We will not follow this line, since our aims
are energy estimates. The natural spaces for such estimates are the spaces L2

and Hs,2 = Hs.

Remark 2.2.10. One can also characterise the Hölder spaces and Zygmund
spaces by the aid of the operators ψk(D) introduced in the proof of the previous
proposition (cf. [Tay91], Appendix A): These spaces consist of all functions u
with

sup
k

2ks ‖ψk(D)u‖L∞ <∞.

In the case of operators with coefficients from Sobolev spaces we have no prob-
lems with the borderline case r = s, cf. Proposition 2.2.7. For the following
proposition see e.g. [Tay91].

Proposition 2.2.11. If p(x, ξ) ∈ HsSm1,0, then p(x,D) maps Hr+m continu-
ously into Hr for

−s < r ≤ s.
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2.3 Special Smoothing Operators

Definition 2.3.1 (Smoothing operator). Let Φ ∈ C∞
0 (Rn) be a real-valued

function with Φ(ξ) = 1 for |ξ| ≤ 1. The operator Jε (0 < ε ≤ 1) is defined by

Jεf(x) = Φ(εD)f(x).

Lemma 2.3.2. The smoothing operator Jε commutes with 〈D〉s, s ∈ R,

[Jε, 〈D〉s] = 0.

Proof. The symbols do not depend on x.

Lemma 2.3.3. The smoothing operators Jε are self-adjoint.

Lemma 2.3.4. If {Xs : s ∈∑} is a microlocalisable scale, then
∥∥Dβ

xJεf
∥∥
Xs ≤ Cβε

−|β| ‖f‖Xs ,

‖f − Jεf‖Xs−t ≤ Cεt ‖f‖Xs , s, s− t ∈
∑

, t ≥ 0.

Proof. See [Tay91], Lemma 1.3 A.

Corollary 2.3.5. Let Xs = Hs,p(M). Then the assertions of the previous
lemma hold for all Hs,p, Hs−t,p, s ∈ R, t ≥ 0.

Proof. For all s ∈ R we have

∥∥Dβ
xJεf

∥∥
Hs,p =

∥∥〈D〉sDβ
xJεf

∥∥
Lp =

∥∥∥〈D〉n
p
+1〈D〉s−n

p
−1Dβ

xJεf
∥∥∥
Lp

=
∥∥∥Dβ

xJε〈D〉s−n
p
−1f
∥∥∥
H

n
p +1,p

≤ Cβε
−|β|

∥∥∥〈D〉s−n
p
−1f
∥∥∥
H

n
p +1,p

= Cβε
−|β|
∥∥∥〈D〉n

p
+1〈D〉s−n

p
−1f
∥∥∥
Lp

= Cβε
−|β| ‖f‖Hs,p .

If s ∈ R and t ≥ 0, then

‖f − Jεf‖Hs−t,p =
∥∥〈D〉s−t(f − Jεf)

∥∥
Lp

=
∥∥∥〈D〉n

p
+1〈D〉s−t−n

p
−1(f − Jεf)

∥∥∥
Lp

=
∥∥∥(I − Jε)〈D〉s−t−n

p
−1f
∥∥∥
H

n
p +1,p

≤ Cεt
∥∥∥〈D〉s−t−n

p
−1f
∥∥∥
H

n
p +1+t,p

= Cεt
∥∥∥〈D〉n

p
+1+t〈D〉s−t−n

p
−1f
∥∥∥
Lp

= Cεt ‖f‖Hs,p .

Lemma 2.3.6. For all 0 < ε ≤ 1 it holds

‖Jε‖C0
b
→C0

b
≤ C.
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Proof. Let u ∈ C∞
0 (Rn). Since û ∈ S, we can write

(Jε(D)u)(x) = (2π)−n
∫
eixξΦε(ξ)û(ξ)dξ =

∫
Φ̌ε(x− y)u(y)dy

= ε−n
∫

Φ̌

(
x− y

ε

)
u(y)dy. (2.3.1)

Here we introduced the notation Φε(ξ) := Φ(εξ). Now we assume u ∈ C0
b (R

n).
Then u ∈ S ′, since u(ϕ) :=

∫
u(x)ϕ(x)dx defines a linear continuous functional

on S. We choose a cut–off function

χ ∈ C∞
0 (Rn), 0 ≤ χ(x) ≤ 1, χ(x) :=

{
1 : |x| ≤ 1,

0 : |x| ≥ 2

and Friedrich’s mollifiers hε(x),

hε(x) = ε−nh
(x
ε

)
, h ∈ C∞

0 (Rn), 0 ≤ h ≤ 1,

∫

Rn

h(x) dx = 1.

They enable us to define functions uk(x) := h1/k(x) ∗ (u(x)χ(x/k)). The Con-
vergence Theorem of Lebesgue gives

uk(ϕ) → u(ϕ) (k → ∞) ∀ϕ ∈ S,
hence uk → u in the topology of S ′. Since uk ∈ C∞

0 , (2.3.1) implies

ak(x) := (Jε(D)uk)(x) = ε−n
∫

Φ̌

(
x− y

ε

)
uk(y)dy.

Due to the Convergence Theorem of Lebesgue, the right–hand side converges
(pointwise) for k → ∞ to

a(x) := ε−n
∫

Φ̌

(
x− y

ε

)
u(y)dy.

From ‖uk‖L∞ ≤ ‖u‖L∞ we deduce that ‖ak‖L∞ ≤ C. The functions ak(x)
define distributions of S ′ in a natural way: ak(ϕ) =

∫
ak(x)ϕ(x)dx. Then the

Convergence Theorem of Lebesgue gives

ak(ϕ) → a(ϕ) (k → ∞) ∀ϕ ∈ S, a(ϕ) :=

∫
a(x)ϕ(x) dx.

This proves that (Jε(D)uk)(x) converges to a(x) in the topology of S ′.

Since pseudodifferential operators are continuous mappings from S ′ into S ′,
we conclude that (Jε(D)uk(x)) converges to (Jε(D)u(x)) in the topology of S ′.
Then it follows that the formula (2.3.1) holds for all functions u from C0

b . The
function Φ̌ belongs to L1. This results in the estimate

|(Jε(D)u)(x)| ≤
∥∥Φ̌
∥∥
L1
‖u‖L∞ .
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2.4 Commutator Estimates

Let us start with the well–known commutator estimates of Coifman–Meyer
and Kato–Ponce,

‖P (fu) − fPu‖Lp ≤ C ‖f‖Lip1 ‖u‖Lp , (2.4.1)

P ∈ OPS1
1,0, 1 < p <∞, u ∈ Lp, f ∈ Lip1,

‖P (fu) − fPu‖Lp ≤ C ‖f‖Lip1 ‖u‖Hs−1,p + C ‖f‖Hs,p ‖u‖L∞ , (2.4.2)

P ∈ OPSs1,0, s > 0, 1 < p <∞,

u ∈ L∞ ∩Hs−1,p, f ∈ Lip1 ∩Hs,p,

see [CM78], [KP88] and [Tay91], Subsection 3.6. In [Tay91] a useful generali-
sation of (2.4.2) was proved, see Proposition 3.6.A:

‖P (fu) − fPu‖Hσ,p

≤ C ‖f‖Lip1 ‖u‖Hs−1+σ,p + C ‖f‖Hs+σ,p ‖u‖L∞ , (2.4.3)

P ∈ OPSs1,0, σ ≥ 0, s > 0, 1 < p <∞,

u ∈ L∞ ∩Hs−1+σ,p, f ∈ Lip1 ∩Hs+σ,p.

We generalise these results to operators with finite smoothness and restrict
ourselves to the case p = 2. By small modifications of the proofs the case
p 6= 2 can be handled. We are not interested in this field since our goals are
energy estimates.

This section is organised as follows. The central results are Proposition 2.4.4
and Proposition 2.4.5, which will be used extensively in the Sections 3.2
and 3.3. In Proposition 2.4.4 classical operators with non–smooth symbols
of order 0 or 1 are studied. In Proposition 2.4.5 arbitrary orders are allowed,
but one operator must have a smooth symbol and the estimate of the commu-
tator is more complicated. A suitable function space Cα

],K0
has to be defined.

In the Sections 3.2 and 3.3 we will pay much attention to the exponents of the
C1
b norms of certain functions. These exponents should not exceed 1. On the

other hand, there are no restrictions on the exponents of C0
b norms. Therefore

it is convenient to have a result about commutators of an operator with C0
b

smooth symbol and a function. Such a result is provided by Proposition 2.4.3.
Later commutators of the form [Jε, p(x,D)] must be estimated and the esti-
mates should be independent of ε. Therefore we provide Lemma 2.4.2. Finally,
the Proposition 2.4.1 is a tool to prove the Propositions 2.4.4 and 2.4.5. Later
it will be used only in Section 2.6. At last, we give a lemma about special
properties of the newly defined spaces Cα

],K0
.

At first we want to make (2.4.1) more precise in the case of p = 2 and operators
of order 0.
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Proposition 2.4.1. If P ∈ OPS0
1,0, then a constant C exists with

‖[P, f ]‖L2→H1 ≤ C ‖f‖Lip1 , ‖[P, f ]‖H−1→L2 ≤ C ‖f‖Lip1 ∀f ∈ Lip1.

Proof. We consider the auxiliary operators

Q1 := 〈D〉 [P, f ] = [〈D〉P, f ] − [〈D〉, f ]P,

Q2 := [P, f ] 〈D〉 = [P 〈D〉, f ] − P [〈D〉, f ] .

From (2.4.1) we conclude that

‖Q1‖L2→L2 ≤ C ‖f‖Lip1 , ‖Q2‖L2→L2 ≤ C ‖f‖Lip1 .

This gives

∥∥〈D〉−1Q1

∥∥
L2→H1 ≤ C ‖f‖Lip1 ,

∥∥Q2〈D〉−1
∥∥
H−1→L2

≤ C ‖f‖Lip1 .

Lemma 2.4.2. Let Jε be the smoothing operator from Definition 2.3.1. Then
the assertions of the previous proposition hold for P = Jε with constants C
independent of ε, 0 < ε ≤ 1.

Proof. The operator Jε has the symbol Φ(εξ) with Φ ∈ C∞
0 (Rn) and Φ(ξ) = 1

for |ξ| ≤ 1. The uniform estimate

|Dα
ξ Φ(εξ)| ≤ Cα〈ξ〉−|α| ∀ε

reveals that the operators Jε(D) belong to OPS0
1,0 with uniformly bounded

norms ‖.‖Ht→Ht for any t ∈ R, see e.g. [Hör85], vol. 3, Chapter XVIII.

Proposition 2.4.3. If P ∈ OPC0
bS

0
cl, then

‖[P, f ]‖H−1→L2 ≤ C ‖f‖Lip1 ∀f ∈ Lip1.

Proof. The condition P ∈ OPC0
bS

0
cl means

p(x, ξ) − χ(ξ)

N−1∑

j=0

pj(x, ξ) ∈ C0
bS

−N
1,0 ,

χ ∈ C∞(Rn), χ(ξ) =

{
0 : |ξ| ≤ C1,

1 : |ξ| ≥ C2 > C1,

pj(x, λξ) = λ−jpj(x, ξ) ∀ξ 6= 0, ∀λ > 0,
∥∥Dα

ξ pj(., ξ)
∥∥
C0

b

≤ Cj,α〈ξ〉−j−|α| ∀|α| ≥ 0, ∀|ξ| ≥ C1.
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We can write

pj(x, ξ) = |ξ|−jpj
(
x,

ξ

|ξ|

)
= |ξ|−j

∞∑

l=0

h(l,n−2)∑

m=1

pjlm(x)Ylm(ξ),

where Ylm are the spherical harmonics, see the Appendix A. A constant C2

exists with

χ(ξ)pj(x, ξ) = 〈ξ〉−j
∞∑

l=0

h(l,n−2)∑

m=1

pjlm(x)Ylm(ξ)

for |ξ| ≥ C2. This shows, by Theorem A.0.3, that

χ(ξ)pj(x, ξ) − 〈ξ〉−j
∞∑

l=0

h(l,n−2)∑

m=1

pjlm(x)Ylm(ξ) ∈ C0
bS

−∞
1,0 , pjlm ∈ C0

b .

Hence we can write

p(x, ξ) =
N−1∑

j=0

∞∑

l=0

h(l,n−2)∑

m=1

pjlm(x)Ylm(ξ)〈ξ〉−j + rN (x, ξ)

with rN (x, ξ) ∈ C0
bS

−N
1,0 . The beginning of Appendix A and Theorem A.0.3

give h(l, n− 2) = O(〈l〉n−2) and the estimate

‖pjlm(x)‖C0
b
≤ C(n, k)〈l〉−2k sup

{∥∥∥Dβ
ξ pj(., ξ)

∥∥∥
C0

b

: |β| ≤ 2k, |ξ| = 1

}

for all k ≥ 0. This implies that

( h(l,n−2)∑

m=1

‖pjlm(x)‖C0
b

)

l

is a rapidly decreasing sequence in l. The commutator [P, f ] can be written in
the form

[P, f ] =
N−1∑

j=0

∞∑

l=0

h(l,n−2)∑

m=1

[
pjlm(x)Ylm(D)〈D〉−j, f

]
+ [rN (x,D), f ] .

Proposition 2.4.1 leads to
∥∥[pjlm(x)Ylm(D)〈D〉−j, f

]
u
∥∥
L2

=
∥∥pjlm(x)

[
Ylm(D)〈D〉−j, f

]
u
∥∥
L2

≤ C ‖pjlm‖C0
b

∥∥[Ylm(D)〈D〉−j, f
]
u
∥∥
L2

≤ CM〈l〉−M ‖u‖H−1 ∀M > 0.
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From Proposition 2.2.8 with s = 0, s0 = 1 and N > 1 we conclude that

‖[rN(x,D), f ]u‖L2 ≤ ‖rN(x,D)(fu)‖L2 + ‖frN(x,D)u‖L2
≤ C ‖fu‖H−1 + C ‖f‖C0

b
‖rN(x,D)u‖L2

≤ C ‖f‖Lip1 ‖u‖H−1 .

The proposition is proved.

The following proposition is one of the central results of this section.

Proposition 2.4.4. Let a(x,D) ∈ OPC1
bS

α
cl, b(x,D) ∈ OPC1

bS
β
cl with α, β ∈

{0, 1}. Then it holds (with some N)

‖[a(x,D), b(x,D)]‖Hα+β−1→L2

≤ C

(
N−1∑

j=0

πα−j
N,C1

b

(aj) + πα−N
N,C1

b

(ra,N)

)(
N−1∑

j=0

πβ−j
N,C1

b

(bj) + πβ−N
N,C1

b

(rb,N)

)
,

where aj, bj are the homogeneous components of the expansions of a, b with
remainders ra,N , rb,N , respectively. If α = β = 0, then we additionally have

‖[a(x,D), b(x,D)]‖L2→H1

≤ C

(
N−1∑

j=0

πα−j
N,C1

b

(aj) + πα−N
N,C1

b

(ra,N)

)(
N−1∑

j=0

πβ−j
N,C1

b

(bj) + πβ−N
N,C1

b

(rb,N)

)
.

Proof. Similar to the proof of Proposition 2.4.3 we can write

a(x, ξ) =
N−1∑

j=0

∞∑

l=0

h(l,n−2)∑

m=1

ajlm(x)Ylm(ξ)〈ξ〉α−j + ra,N (x, ξ),

b(x, ξ) =

N−1∑

j=0

∞∑

l=0

h(l,n−2)∑

m=1

bjlm(x)Ylm(ξ)〈ξ〉β−j + rb,N(x, ξ),

ra,N(x, ξ) ∈ C1
bS

α−N
1,0 , rb,N(x, ξ) ∈ C1

bS
β−N
1,0 .

Consequently, the commutator [a(x,D), b(x,D)] can be written as

[a(x,D), b(x,D)]

=
∑

j,l,m

∑

i,p,q

[
ajlm(x)Ylm(D)〈D〉α−j, bipq(x)Ypq(D)〈D〉β−i

]

+
∑

j,l,m

[
ajlm(x)Ylm(D)〈D〉α−j, rb,N(x,D)

]

+
∑

i,p,q

[
ra,N(x,D), bipq(x)Ypq(D)〈D〉β−i

]
+ ra,N(x,D)rb,N(x,D).
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We denote the four commutators by I1, I2, I3, I4, neglecting the dependence
on j, l,m, i, p, q for a moment. The commutator I1 satisfies

I1 = ajlm(x)Ylm(D)〈D〉−j [〈D〉α, bipq(x)]Ypq(D)〈D〉β−i

+ ajlm(x)
[
Ylm(D)〈D〉−j, bipq(x)

]
Ypq(D)〈D〉α+β−i

+ bipq(x)
[
ajlm(x), Ypq(D)〈D〉β−i

]
Ylm(D)〈D〉α−j.

From (2.4.1) and Proposition 2.4.1 it can be deduced that

‖I1‖Hα+β−1→L2 ≤ Cl,p ‖ajlm‖Lip1 ‖bipq‖Lip1
≤ CM〈l〉−M〈i〉−Mπα−j

N(M),C1
b

(aj)π
β−i
N(M),C1

b

(bi) ∀M > 0.

If α = β = 0, then we additionally have

‖I1‖L2→H1 ≤ Cl,p ‖ajlm‖Lip1 ‖bipq‖Lip1
≤ CM〈l〉−M〈i〉−Mπα−j

N(M),C1
b

(aj)π
β−i
N(M),C1

b

(bi),

see Proposition 2.4.1. The commutator I2 allows the representation

I2 =ajlm(x)Ylm(D)〈D〉α−jrb,N(x,D)

− rb,N(x,D)ajlm(x)Ylm(D)〈D〉α−j.

Proposition 2.2.8 gives the continuity of

rb,N(x,D) : L2 → H1, rb,N(x,D) : H−1 → L2.

Hence we conclude that

‖I2‖Hα+β−1→L2 ≤ CM〈l〉−Mπα−j
N(M),C1

b

(aj)π
β−N
N(M),C1

b

(rb,N),

‖I2‖L2→H1 ≤ CM〈l〉−Mπα−j
N(M),C1

b

(aj)π
β−N
N(M),C1

b

(rb,N) (α = β = 0).

The commutator I3 can be estimated in the same way and the estimate of
I4 is trivial. Summing up and choosing M sufficiently large we complete the
proof.

Now we want to show a generalisation of (2.4.2), replacing f ∈ Lip1 ∩Hs by
A(x,D) ∈ OPC1

bS
α
cl ∩ OPHs0Sαcl with s0 > n/2, α ∈ N0. Here we run into a

problem, since the operator P from OPSs1,0 does not map Cs
b (M) into C0

b (M).

For this reason we introduce the space Cα
],K0

of all functions u satisfying
〈D〉αYlm(D)u ∈ C0

b for all l, m and with the property that

sup
l,m

〈l〉−K0 ‖〈D〉αYlm(D)u‖C0
b
<∞.
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The constant K0 is fixed in such a manner that

‖Ylm(D)u‖C0
b
≤ C〈l〉K0 ‖u‖C0

b
∀u ∈ S.

The use of this definition is the property that

B ∈ OPSαcl =⇒ B : Cα
],K0

→ C0
b ⊂ L∞.

The embedding

Cα+δ
b ⊂ Cα

],K0
(2.4.4)

is continuous for any positive δ, see [Tay91], p.126. We have the (set–
theoretical) inclusions

Cα
],K0

⊂ Cα
b ⊂ Cα

∗ .

Proposition 2.4.5. Let P ∈ OPSs1,0, A(x,D) ∈ OPC1
bS

α
cl ∩ OPHs0Sαcl with

s0 > n/2, 0 < s ≤ s0, α ∈ N0 and K ≥ K0. Then it holds

‖[P,A(x,D)] u‖L2 ≤ C

(
N−1∑

j=0

πα−j
N,C1

b

(aj) + πα−N
N,C1

b

(rN)

)
‖u‖Hs+α−1

+ CK

(
N−1∑

j=0

π−j
N,Hs(aj) + πα−NN,Hs(rN)

)
‖u‖Cα

],K

with some constant N and the terms aj, rN from the asymptotic expansion of
the classical operator A.

Proof. The assumptions imply that

A(x, ξ) =

N−1∑

j=0

aj(x, ξ) + rN(x, ξ), rN(x, ξ) ∈ C1
bS

α−N
cl ∩Hs0Sα−Ncl ,

aj(x, ξ) =
∑

l,m

ajlm(x)Ylm(ξ)〈ξ〉α−j,

( h(l,n−2)∑

m=1

‖ajlm‖C1
b

+ ‖ajlm‖Hs

)

l

is a rapidly decreasing sequence in l.

Then the commutator [P,A] can be split into parts:

[P, aj(x,D)] u =
∑

l,m

[P, ajlm(x)]Ylm(D)〈D〉α−ju

+
∑

l,m

ajlm(x)
[
P, Ylm(D)〈D〉α−j

]
u.
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From (2.4.2) follows that
∥∥[P, ajlm(x)]Ylm(D)〈D〉α−ju

∥∥
L2

≤ C ‖ajlm‖C1
b

∥∥Ylm(D)〈D〉α−ju
∥∥
Hs−1

+ C ‖ajlm‖Hs

∥∥Ylm(D)〈D〉α−ju
∥∥
L∞
.

Theorem A.0.3 shows that, for some K1 and every positive M

‖ajlm‖C1
b

∥∥Ylm(D)〈D〉α−ju
∥∥
Hs−1 ≤ C〈l〉K1−Mπα−j

M ′,C1
b

(aj) ‖u‖Hs+α−1

holds with some constant M ′ = M ′(M). From Ylm(D)〈D〉α−j ∈ OPSαcl, the
definition of ‖.‖Cα

],K
and from Theorem A.0.3 we conclude that

‖ajlm‖Hs

∥∥Ylm(D)〈D〉α−ju
∥∥
L∞

≤ C〈l〉K−Mπα−jM ′,Hs(aj) ‖u‖Cα
],K
.

It is standard to show
∥∥[P, Ylm(D)〈D〉α−j

]
u
∥∥
L2

≤ C〈l〉K2 ‖u‖Hs+α−1 .

Summing up and choosing M large we get
∥∥∥∥∥

[
P,

N−1∑

j=0

aj(x,D)

]
u

∥∥∥∥∥
L2

≤ C

N−1∑

j=0

πα−j
N,C1

b

(aj) ‖u‖Hs+α−1

+ C
N−1∑

j=0

πα−jN,Hs(aj) ‖u‖Cα
],K

for large N . It remains to estimate ‖[P, rN(x,D)] u‖L2 . If α − N ≤ −1, then
‖PrNu‖L2 ≤ C ‖rNu‖Hs ≤ C ‖u‖Hs−1 because of Proposition 2.2.11. Finally,
we have ‖rNPu‖L2 ≤ C ‖Pu‖H−1 ≤ C ‖u‖Hs−1 , which completes the proof.

Now we list some properties of the spaces Cα
],K.

Lemma 2.4.6. For every α ∈ N0 a positive constant C exists with the property
that

‖〈D〉αu‖C0
b
≤ C ‖u‖Cα

],K0

∀u ∈ Cα
],K0

, (2.4.5)

‖u‖C0
b
≤ C ‖u‖Cα

],K0

∀u ∈ Cα
],K0

, (2.4.6)

‖u‖Cα
b
≤ C ‖u‖Cα

],K0

∀u ∈ Cα
],K0

. (2.4.7)

Let σ ∈ C∞
b , u ∈ Cα

],K0
and K1 > K0 be sufficiently large. Then σu ∈ Cα

],K1

and a constant C = C(σ, α) (independent of u) exists with

‖σu‖Cα
],K1

≤ C ‖u‖Cα
],K0

(2.4.8)
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Proof. The assertions (2.4.5) and (2.4.6) follow from 〈D〉α ∈ OPSαcl, Id ∈
OPSαcl; and (2.4.7) is a consequence of Dβ

x ∈ OPSαcl, (2.4.6) and

‖u‖Cα
b
≤ C

( ∑

|β|≤α

∥∥Dβ
xu
∥∥
C0

b

+ ‖u‖C0
b

)
.

In order to show (2.4.8), we note that

‖〈D〉αYlm(D)(σu)‖C0
b

≤ ‖σ〈D〉αYlm(D)u‖C0
b

+ ‖[〈D〉αYlm(D), σ] u‖C0
b

≤ ‖σ‖C0
b
‖〈D〉αYlm(D)u‖C0

b
+ ‖[〈D〉αYlm(D), σ]u‖C0

b
.

The commutator [〈D〉αYlm(D), σ] belongs to OPSα−1
cl ⊂ OPSαcl and fulfils

‖[〈D〉αYlm(D), σ] v‖C0
b
≤ C〈l〉M ‖v‖Cα

],K0

for all v ∈ S. Then we obtain

‖[〈D〉αYlm(D), σ] u‖C0
b
≤ C〈l〉M ‖u‖Cα

],K0

,

which results in

‖σu‖Cα
],K1

≤ sup
l,m

〈l〉−K1

(
‖σ‖C0

b
‖〈D〉αYlm(D)u‖C0

b
+ C〈l〉M ‖u‖Cα

],K0

)

≤ C ‖u‖Cα
],K0

, K1 := K0 +M.

2.5 Adjoint Operators

Proposition 2.5.1. Let k(x,D) ∈ OPC1
bS

1
cl be an operator whose symbol

is positive homogeneous of order 1 for |ξ| ≥ C. Then the adjoint operator
k∗(x,D) satisfies, for some N ,

(k∗u, v) =
(
ku, v

)
+ (Ru, v) , ‖Ru‖L2 ≤ Cπ1

N,C1
b
(k) ‖u‖L2 .

Proof. We have k(x, λξ) = λk(x, ξ) for |ξ| > C, λ > 1. Hence we can write

k(x, ξ) = k0(x, ξ) + k1(x, ξ),

where k0 is positive homogeneous for all ξ ∈ R
n and all λ > 0 and k1 has

bounded support with respect to ξ. That is to say,

k0(x, ξ) = k0

(
x,

ξ

|ξ|

)
|ξ| =

∑

l,m

k0,lm(x)Ylm

(
ξ

|ξ|

)
|ξ|

=:
∑

l,m

k0,lm(x)Zlm(ξ),

supp k1(x, ξ) ⊂M × {|ξ| ≤ C}, k1(x, ξ) ∈ C1
bS

−∞
1,0 .
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For the “main part” k0 we compute the adjoint k∗0:

(u, k0v) =

∫

Rn
x

∫

R
n
ξ

∫

Rn
y

u(x)e−ixξk0(x, ξ)e
iyξv(y) dy dξ dx

=
∑

l,m

∫

Rn
y

∫

R
n
ξ

∫

Rn
x

v(y)eiyξZlm(ξ)k0,lm(x)u(x)e−ixξ dx dξ dy

=
∑

l,m

∫

Rn
y

∫

R
n
ξ

v(y)eiyξZlm(ξ)
(
k0,lmu

)
(̂ξ) dξ dy

=
∑

l,m

(
Zlm(k0,lmu), v

)

=
(
k0u, v

)
+
∑

l,m

([
Zlm, k0,lm

]
u, v
)
.

By (2.4.1) and Theorem A.0.3, each term of the last sum satisfies

∥∥[Zlm, k0,lm

]
u
∥∥
L2

≤ C ‖k0,lm‖C1
b
‖u‖L2

≤ CRπ
1
N,C1

b
(k0)〈l〉−R ‖u‖L2 ∀R > 0, N = N(R).

Summing up we get

∥∥∥∥∥
∑

l,m

[
Zlm, k0,lm

]
u

∥∥∥∥∥
L2

≤ Cπ1
N,C1

b
(k0) ‖u‖L2 .

Finally, from Proposition 2.2.8 (s0 = s = 0) it can be concluded that

∣∣(k1u, v
)∣∣+ |(u, k1v)| ≤ Cπ0

N,C1
b
(k1) ‖u‖L2 ‖v‖L2 .

This proves the assertion.

From this proposition we easily derive the following corollary:

Corollary 2.5.2. Let K(x,D) ∈ OPC1
bS

1
cl be a matrix pseudodifferential op-

erator whose symbol is positive homogeneous of order 1 for |ξ| ≥ C. Then the
adjoint operator K∗(x,D) satisfies

sym(K∗(x,D) −R) = K(x, ξ)T , ‖RU‖L2 ≤ Cπ1
N,C1

b
(K) ‖U‖L2 .

with some operator R and some N > 0.
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2.6 Compositions

We provide an estimate which is useful for handling the product of an hy-
perbolic differential matrix operator and its symmetrizer, see Corollary 2.6.2.
However, at first let us consider the scalar case.

Proposition 2.6.1. Let a(x,D) ∈ OPC0
bS

j
cl, b(x,D) ∈ OPC1

bS
1−j
cl (j = 0 or

j = 1) be operators with positive homogeneous symbols for |ξ| ≥ C. Then

a(x,D)b(x,D) = c(x,D) +R,

c(x, ξ) = a(x, ξ)b(x, ξ) ∈ C0
bS

1
cl,

‖Ru‖L2 ≤ Cπj
N,C0

b

(a)π1−j
N,C1

b

(b) ‖u‖L2 .

Proof. We have

a(x, ξ) =
∑

l,m

alm(x)Ylm(ξ)〈ξ〉j + ra(x, ξ),

supp ra(x, ξ) ⊂M × {|ξ| ≤ C}, ra(x, ξ) ∈ C0
bS

−∞
1,0 ,

b(x, ξ) =
∑

l,m

blm(x)Ylm(ξ)〈ξ〉1−j + rb(x, ξ),

supp rb(x, ξ) ⊂M × {|ξ| ≤ C}, rb(x, ξ) ∈ C1
bS

−∞
1,0 .

Using this decomposition we can write

a(x,D)b(x,D) =
∑

l,m,p,q

alm(x)bpq(x)Ylm(D)〈D〉jYpq(D)〈D〉1−j

+
∑

l,m,p,q

alm(x)
[
Ylm(D)〈D〉j, bpq(x)

]
Ypq(D)〈D〉1−j

+
∑

l,m

alm(x)Ylm(D)〈D〉jrb(x,D)

+
∑

p,q

ra(x,D)bpq(x)Ypq(D)〈D〉1−j + ra(x,D)rb(x,D).

The symbol of the first sum is c(x, ξ) for |ξ| ≥ C. If we add a suitable symbol
r ∈ C0

bS
−∞
1,0 with support in M ×{|ξ| ≤ C}, then we get c(x, ξ) for all ξ ∈ Rn,

i.e.,

a(x,D)b(x,D) = c(x,D)

+
∑

l,m,p,q

alm(x)
[
Ylm(D)〈D〉j, bpq(x)

]
Ypq(D)〈D〉1−j
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+
∑

l,m

alm(x)Ylm(D)〈D〉jrb(x,D)

+
∑

p,q

ra(x,D)bpq(x)Ypq(D)〈D〉1−j + ra(x,D)rb(x,D) − r(x,D).

The first sum can be estimated by the aid of

∥∥alm(x)
[
Ylm(D)〈D〉j, bpq(x)

]
Ypq(D)〈D〉1−ju

∥∥
L2

≤ C ‖alm‖C0
b

∥∥[Ylm(D)〈D〉j, bpq(x)
]
Ypq(D)〈D〉1−ju

∥∥
L2

≤ C ‖alm‖C0
b
‖bpq‖Lip1 ‖u‖L2 ,

see (2.4.1) for j = 1 and Proposition 2.4.1 for j = 0. It is trivial to estimate
the remaining terms, see Proposition 2.2.8.

Corollary 2.6.2. Let A(x,D) ∈ OPC0
bS

j
cl, B(x,D) ∈ OPC1

bS
1−j
cl (j = 0

or j = 1) be pseudodifferential matrix operators with positive homogeneous
symbols for |ξ| ≥ C. Then

A(x,D)B(x,D) = C(x,D) +R,

C(x, ξ) = A(x, ξ)B(x, ξ) ∈ C0
bS

1
cl,

‖RU‖L2 ≤ Cπj
N,C0

b

(A)π1−j
N,C1

b

(B) ‖U‖L2 .



Chapter 3

Weakly Hyperbolic
Cauchy Problems with
Spatial Degeneracy

3.1 Introduction

Let us consider the following quasilinear weakly hyperbolic Cauchy problem:

Dm
t u+

∑

j+|α|=m,j<m
aj,α(x, t, {c̃k,β(x, t)Dβ

xD
k
t u})σ(x)|α|Dα

xD
j
tu

= f(x, t, {c̃k,β(x, t)Dβ
xD

k
t u}), k + |β| ≤ m− 1, m ≥ 2,

u(x, t0) = ϕ0(x), . . . , D
m−1
t u(x, t0) = ϕm−1(x).

The functions c̃k,β = c̃k,β(x, t) are weight functions that have to satisfy ad-
ditional conditions, the so–called Levi conditions. Examples of such weight
functions are c̃k,β(x, t) = σ(x)|β|. More examples can be found in Section 4.5.

However, it has advantages to transform the differential equation into another
one. By the Leibniz formula we have

σ(x)|α|Dα
xu(x, t) = Dα

x (σ(x)|α|u(x, t)) +
∑

γ<α

dγ(x)D
γ
x(σ(x)|γ|u(x, t)).

Similar relations hold for c̃k,β(x, t)D
β
xD

k
t u. We shift all lower order terms to

the right–hand side. Thus, we arrive at the Cauchy problem

33
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Dm
t u+

∑

j+|α|=m,j<m
aj,α(x, t, {Dβ

xck,β(x, t)D
k
t u})Dα

xD
j
t

(
σ(x)|α|u

)

= f(x, t, {Dβ
xck,β(x, t)D

k
t u}), k + |β| ≤ m− 1, m ≥ 2, (3.1.1)

u(x, t0) = ϕ0(x), . . . , D
m−1
t u(x, t0) = ϕm−1(x).

The linearised form of this new equation is

Dm
t u+

∑

j+|α|=m,j<m
aj,α(x, t)D

α
xD

j
t

(
σ(x)|α|u

)
= f(x, t), (3.1.2)

u(x, t0) = ϕ0(x), . . . , D
m−1
t u(x, t0) = ϕm−1(x).

The chapter is organised as follows.

The following results will be given in the second section:

• The Cauchy problem (3.1.2) will be transformed into a system of first
order. After that this system will be regularised by inserting a smoothing
operator (see Section 2.3). An energy estimate and an existence result
will be proved for this regularised system, see Proposition 3.2.2, (a).

• An energy estimate for the corresponding non-regularised system will be
shown in Proposition 3.2.2, (b).

The question of existence of a solution to (3.1.2) will be studied after we
have considered quasilinear equations. The third section contains the following
results:

• a local existence result for the Cauchy problem (3.1.1), see Theorem 3.3.1,

• a blow–up criterion: if the C1
∗ norm of certain weighted derivatives of u

up to the order m− 1 is bounded, then a blow–up of the solution in the
Hs norm is impossible,

• the global existence of solutions in Sobolev spaces of the linear prob-
lem (3.1.2), see Corollary 3.3.6,

• a local existence result in C∞, see Theorem 3.3.7. This is an immediate
consequence of the blow–up criterion.

Finally, in the fourth section the above results will be applied to

• prove the continuous dependence of the solution to (3.1.1) from coeffi-
cients and data, cf. Theorem 3.4.1,
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• give a sharp lower estimate of the life–span, see Corollary 3.4.2.

These three sections make a strong use of ideas from [Tay91]. In this book
strictly hyperbolic equations and systems have been studied. We are able to
extend the results won in [Tay91] to the weakly hyperbolic case.

It might be a bit surprising that it is not necessary to study the existence
of solutions to linear equations before the existence of solutions to quasilinear
ones. The reason is that we are able to prove the local existence for quasilinear
equations in a direct way without an existence result for linear equations.
Then, linear equations can be regarded as a special case of quasilinear ones.
Let us sketch the proof:

We transform the quasilinear weakly hyperbolic Cauchy problem into a system
of first order,

dtU
∗ = K∗(x, t, U∗, D)(σU∗) +B∗(x, t, U∗, D)U∗ + F ∗(x, t, U∗),

see (3.3.13). The vector U ∗ consists of all (weighted) derivatives of u up to the
order m− 1, K∗ is a strictly hyperbolic matrix pseudodifferential operator of
order 1, B∗ is some operator of order 0 and F ∗ contains the right–hand side
and some other terms. If U ∗ ∈ Hs, then the right–hand side of this above
system belongs to Hs−1, because K∗ has order 1. Let us insert a regularising
operator Jε (see Definition 2.3.1):

dtU
∗
ε = JεK

∗(x, t, U∗
ε , D)(σU∗

ε ) +B∗(x, t, U∗
ε , D)U∗

ε + F ∗(x, t, U∗
ε ).

Then the right–hand side maps U ∗
ε ∈ Hs to some function from Hs. Hence,

we can regard this system as an ODE for some function U ∗
ε with values in

the Banach space Hs. The Theorem of Picard–Lindelöf immediately gives the
local existence of U ∗

ε .

This approach has the following advantage: we are able to derive an estimate
of the form

dt (R
∗〈D〉sU∗

ε , 〈D〉sU∗
ε )

≤ C(‖K∗‖C1
b
, ‖B∗‖C1

b
) ‖U∗

ε ‖2
Hs

+ C(‖K∗‖Hs + ‖B∗‖Hs) ‖U∗
ε ‖C1

],K0

‖U∗
ε ‖Hs + C ‖F ∗

ε ‖2
Hs .

The operator R∗ is a generalised (since U ∗
ε contains lower order terms) sym-

metrizer. From Moser’s inequality we get

dt (R
∗〈D〉sU∗

ε , 〈D〉sU∗
ε ) ≤ C(‖U∗

ε ‖C1
],K0

+ 1)(‖U∗
ε ‖2

Hs + 1). (3.1.3)

This leads us (after some calculations) to an interesting blow–up criterion:
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A blow–up of U ∗ in the Hs norm is impossible as long as the Zygmund norm
‖U∗‖C1

∗
is bounded.

This characterisation seems to require the approach via the theorem of Picard–
Lindelöf. The usual iteration technique (constructing a sequence of functions
that are solutions of linear Cauchy problems) will not lead to an estimate of
the type (3.1.3).

This blow–up criterion immediately yields the local existence in C∞, see The-
orem 3.3.7.

Finally, the following results are proved in the fourth section: let us consider a
quasilinear weakly hyperbolic Cauchy problem with spatial degeneracy and its
solution which is assumed to exist in the interval [0, T ]. We perturb the data,
the coefficients, the right–hand side and the weight functions of this Cauchy
problem. It will be shown that the solution of this perturbed Cauchy problem
exists up to T and differs by an arbitrary small value from the solution of
the unperturbed problem (in appropriate norms), if the perturbation is small.
This result includes a life–span estimate.

3.2 The Linear Case

First, we list the assumptions.

Condition 1. We assume that the roots τj(x, t, ξ) of

τm +
∑

j+|α|=m,j<m
aj,α(x, t)ξ

ατ j = 0

are real and distinct,

|τj(x, t, ξ) − τi(x, t, ξ)| ≥ c|ξ|, c > 0, i 6= j, ∀(x, t, ξ).

Let M = Tn be an n–dimensional torus. We suppose that

σ ∈ C∞(M), (3.2.1)

aj,α ∈ C1([t0, T ], Hs0(M)), s0 >
n

2
+ 1, (3.2.2)

ϕj ∈ Hs1+m−1−j , s1 ≥ 0, (3.2.3)

f ∈ C([t0, T ], Hs1(M)). (3.2.4)

As already mentioned in the introduction to this chapter, the linear problem
will be transformed into an equivalent system of first order. Then energy
estimates of solutions to this system and to a regularised system are derived.
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3.2.1 Transformation into a 1st Order System

We define the vector U = (U1, . . . , Um)T ,

U1 := 〈D〉m−1
(
σm−1u

)
,

U2 := 〈D〉m−2
(
σm−2Dtu

)
,

. . . , (3.2.5)

Um := Dm−1
t u

and get the system

∂tU1 =i〈D〉(σU2) + i〈D〉
[
〈D〉m−2, σ

]
〈D〉2−mU2,

∂tU2 =i〈D〉(σU3) + i〈D〉
[
〈D〉m−3, σ

]
〈D〉3−mU3,

. . . ,

∂tUm−1 =i〈D〉(σDm−1
t u) = i〈D〉(σUm),

∂tUm =iDm
t u = −i

∑

j+|α|=m,j<m
aj,αD

α
xD

j
t

(
σ|α|u

)
+ if

= − i
∑

j+|α|=m,j<m
aj,αP

α〈D〉〈D〉|α|−1
(
σσ|α|−1Dj

tu
)

+ if

= − i
∑

j+|α|=m,j<m
aj,αP

α〈D〉(σUj+1)

− i
∑

j+|α|=m,j<m
aj,αP

α〈D〉
[
〈D〉|α|−1, σ

]
〈D〉1−|α|Uj+1 + if

with Pj = Dxj
〈D〉−1, P α =

∏n
j=1 P

αj

j . This gives

∂tU = K(σU) +BU + F, U(t0) = Φ0, (3.2.6)

K = K0〈D〉 = i




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
k0 k1 k2 . . . km−1




〈D〉, (3.2.7)

kj = −
∑

|α|=m−j
aj,αP

α,

B = i




0 b(2) 0 . . . 0
0 0 b(3) . . . 0
...

...
...

. . .
...

0 0 0 . . . b(m)

b1 b2 b3 . . . bm



, (3.2.8)
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bk = −
∑

|α|=m+1−k
ak−1,αP

α〈D〉
[
〈D〉m−k, σ

]
〈D〉k−m ∀k ≤ m− 1,

bm = 0,

b(j) = 〈D〉
[
〈D〉m−j, σ

]
〈D〉j−m,

F = (0, 0, . . . , 0, if)T , (3.2.9)

Φ0 = (〈D〉m−1(σm−1ϕ0), 〈D〉m−2(σm−2ϕ1), . . . , ϕm−1)
T . (3.2.10)

Obviously, K ∈ C1
bS

1
cl with positive homogeneous symbol with respect to ξ for

|ξ| ≥ C.

Let us construct a symmetrizer for K0, using ideas from [Ler54]. We introduce
the notations

pj = ξj〈ξ〉−1, pα =

n∏

j=1

p
αj

j .

The eigenvalues of K0(x, t, p) are iτj(x, t, p). Obviously,

K0




1
τj(x, t, p)
τj(x, t, p)

2

...
τj(x, t, p)

m−1




= i




τj(x, t, p)
τj(x, t, p)

2

τj(x, t, p)
3

...
τj(x, t, p)

m




= iτj(x, t, p)




1
τj(x, t, p)
τj(x, t, p)

2

...
τj(x, t, p)

m−1



.

Let S0 = V (τ1(x, t, p), . . . , τm(x, t, p)) be the Vandermonde–matrix of the num-
bers (τ1, . . . , τm). We have

K0S0 = iS0




τ1 0 . . . 0
0 τ2 . . . 0
...

...
. . .

...
0 0 . . . τm


 =: iS0D.

The matrix

S := S0S
T
0 =




s0 s1 s2 . . . sm−1

s1 s2 s3 . . . sm
s2 s3 s4 . . . sm+1
...

...
...

. . .
...

sm−1 sm sm+1 . . . s2m−2



,

sk(x, t, p) =

m∑

j=1

τj(x, t, p)
k,
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is symmetric and positive definite. Vieta’s Theorem reveals that the sk are
some polynomials in aj,αp

α. The symmetrizer is defined as R := det(S)S−1.
Obviously, R(x, t, p) is a symmetric positive definite matrix. It remains to
check that RK0 is symmetric: The matrix K0S is symmetric since

K0S = K0S0S
T
0 = iS0DS

T
0 = (iS0DS

T
0 )T = (K0S)T .

Further,

RK0 = cS−1K0 = cS−1(K0S)S−1 = cS−1(K0S)(S−1)T

= (cS−1(K0S)(S−1)T )T = (RK0)
T

with c = det(S). This proves that R is a symmetrizer for K0. The components
rij of R are some polynomials of the aj,αp

α, that is,

rij(x, t, p) =
∑

l∈Bij

cijl

( ∏

(j,α)∈Dijl

aj,α(x, t)

)( ∏

(j,α)∈Dijl

pα
)
, (3.2.11)

with cijl ∈ C and some finite index sets Bij and Dijl. Since the τk(x, t, p)
depend on pj = ξj〈ξ〉−1, we have R(t, x, ξ) ∈ C1

bS
0
cl. The property of R being

a symmetrizer implies

C−1
R,∼ ‖V ‖2

L2 ≤ (RV , V ) ≤ CR,∼ ‖V ‖2
L2 ∀V ∈ L2 (3.2.12)

with CR,∼ > 0, see [Ler54].

Let us characterise the mapping properties of these matrix operators. The
product structure of the kij gives

CK := max{‖K‖H1→L2 , ‖K0‖L2→L2 , ‖K‖C1
]
→C0

b
} ≤ C(max

j,α
‖aj,α‖C0

b
),

(3.2.13)

where the term C(maxj,α ‖aj,α‖C0
b
) denotes a universal constant which depends

on maxj,α ‖aj,α‖C0
b

in a nonlinear way. We will use this notation very often in

this and the following sections.

The product form of the rij shows

CR := ‖R‖L2→L2 ≤ C(max
j,α

‖aj,α‖C0
b
). (3.2.14)

Let us devote ourselves to the termK∗R+RK. We will prove that this operator
maps L2 into itself. The adjoint K∗ of K(x, t,D) has the representation

K∗(x, t,D) = −KT (x, t,D) +R1, R1 : L2 → L2,
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see Corollary 2.5.2. Then we have

R(x, t,D)K(x, t,D) = C1(x, t,D) +R2,

C1(x, t, ξ) = R(x, t, ξ)K(x, t, ξ), R2 : L2 → L2.

On the other hand,

K∗(x, t,D)R(x, t,D)

= −KT (x, t,D)R(x, t,D) +R1R(x, t,D)

= C2(x, t,D) +R3 +R1R(x, t,D),

C2(x, t, ξ) = −KT (x, t, ξ)R(x, t, ξ), R3 : L2 → L2.

From C1(x, t, ξ) + C2(x, t, ξ) = 0 we deduce that

R(x, t,D)K(x, t,D) +K∗(x, t,D)R(x, t,D)

= R2 +R3 +R1R(x, t,D) =: R4,

‖R4‖L2→L2 ≤ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖C1

b
+ 1). (3.2.15)

Finally, mapping properties of the matrix operator B are studied. First, we
consider the terms of the secondary diagonal. Since1 σ ∈ C∞, the theory of
pseudodifferential operators with smooth symbols can be applied to describe
the behaviour of 〈D〉

[
〈D〉m−k, σ

]
〈D〉k−m. We get

b(j) = 〈D〉
[
〈D〉m−k, σ

]
〈D〉k−m ∈ OPS0

cl,

which gives
∥∥b(j)v

∥∥
Hs ≤ C ‖v‖Hs for all v ∈ Hs.

It remains to consider the last row of the matrix B. Two cases are distin-
guished. In the first case we have 0 < s ≤ s0, in the second s = 0. The only
reason for this distinction is that Proposition 2.4.5 can not be applied if s = 0.
Let 0 < s ≤ s0. It remains to examine

∥∥ak−1,α(., t)P
α〈D〉

[
〈D〉m−k, σ

]
〈D〉k−mv

∥∥
Hs , k = 1, . . . , m− 1.

Utilising the formula (3.1.59) from [Tay91],

‖uv‖Hs,p ≤ C (‖u‖L∞ ‖v‖Hs,p + ‖v‖L∞ ‖u‖Hs,p) , s > 0, 1 < p <∞,

we get
∥∥ak−1,α(., t)P

α〈D〉
[
〈D〉m−k, σ

]
〈D〉k−mv

∥∥
Hs

≤ C ‖ak−1,α‖L∞
∥∥P α〈D〉

[
〈D〉m−k, σ

]
〈D〉k−mv

∥∥
Hs

+ C ‖ak−1,α‖Hs

∥∥P α〈D〉
[
〈D〉m−k, σ

]
〈D〉k−mv

∥∥
L∞
.

1This is the only time we use σ ∈ C∞. Probably it is possible to weaken this assumption.
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From σ ∈ C∞ it may be concluded that

P α〈D〉
[
〈D〉m−k, σ

]
〈D〉k−m ∈ OPS0

cl,

which gives

∥∥P α〈D〉
[
〈D〉m−k, σ

]
〈D〉k−mv

∥∥
Hs ≤ C ‖v‖Hs ,∥∥P α〈D〉

[
〈D〉m−k, σ

]
〈D〉k−mv

∥∥
L∞

≤ C ‖v‖C0
],K0

.

If s = 0, then we immediately arrive at

∥∥ak−1,α(., t)P
α〈D〉

[
〈D〉m−k, σ

]
〈D〉k−mv

∥∥
L2

≤ C ‖ak−1,α‖L∞ ‖v‖L2 .

Consequently,

‖BU‖Hs ≤ C(max
j,α

‖aj,α‖C0
b
) ‖U‖Hs (3.2.16)

+ C max
j,α

(‖aj,α‖Hs + 1) ‖U‖C0
]
,

‖BU‖L2 ≤ C(max
j,α

‖aj,α‖C0
b
) ‖U‖L2 . (3.2.17)

Let us summarise the results:

Proposition 3.2.1. The linear weakly hyperbolic Cauchy problem (3.1.2) can
be transformed into the equivalent system (3.2.6) with U , K, B, F , Φ
from (3.2.5), (3.2.7), (3.2.8), (3.2.9) and (3.2.10), respectively.

The matrix operator K is a strictly hyperbolic pseudodifferential operator with
finite smoothness, K ∈ OPC1S1

cl ∩ OPHs0S1
cl. Its symbol is positive homoge-

neous with respect to ξ for |ξ| ≥ C.

Furthermore, a symmetrizer R assigned to K exists. This operator R is a
zero order pseudodifferential operator with finite smoothness, R ∈ OPC1S0

cl ∩
OPHs0S0

cl. Its symbol is homogeneous with respect to ξ for |ξ| ≥ C. The
symmetrizer R induces a norm in L2 which is equivalent to the usual norm,
see (3.2.12).

The operators K, R, K∗R +RK and B have the mapping properties given in
(3.2.13), (3.2.14), (3.2.15) and (3.2.16), (3.2.17), respectively.

3.2.2 A–priori Estimates

Now we have all tools to show an a–priori estimate of strictly hyperbolic type.
The attempt to do this for (3.2.6) leads to 2 problems. First, if U ∈ H s, then
the function 〈D〉sKσU belongs to H−1. Such a function can only be inserted
into the scalar product (〈D〉sKσU, 〈D〉sU), if the other argument 〈D〉sU of
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this scalar product is from H1. But in this case this is not true, it is from L2.
Second, the existence of a solution of (3.2.6) is not clear. We overcome these
difficulties by considering

∂tUε = JεK(σUε) +BUε + F, Uε(t0) = Φ0. (3.2.18)

For the solutions U , Uε of (3.2.6), (3.2.18) we prove:

Proposition 3.2.2. (a) The linear system (3.2.18) has a unique global solu-
tion Uε ∈ C1([t0, T ], Hmin(s0,s1)(M)) which satisfies the following estimates for
0 ≤ s ≤ min(s0, s1):

dt (R〈D〉sUε, 〈D〉sUε)
≤ C(max

j,α
‖∂taj,α‖C0

b
) ‖Uε‖2

Hs

+ 2
√

(R〈D〉sUε, 〈D〉sUε)
√

(R〈D〉sF , 〈D〉sF )

+ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖C1

b
+ 1) ‖Uε‖2

Hs

+ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖Hs + 1) ‖Uε‖Hs ‖Uε‖C1

],K0

.

(b) Let U ∈ C1([t0, T ], Hmin(s0,s1)(M)) be a solution of (3.2.6) and let 0 ≤ s ≤
min(s0, s1) − 1. Then

dt (R〈D〉sU, 〈D〉sU)

≤ C(max
j,α

‖∂taj,α‖C0
b
) ‖U‖2

Hs

+ 2
√

(R〈D〉sU, 〈D〉sU)
√

(R〈D〉sF , 〈D〉sF )

+ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖C1

b
+ 1) ‖U‖2

Hs

+ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖Hs + 1) ‖U‖Hs ‖U‖C1

],K0

.

If s = 0, then we can replace the C1
],K0

–norms by L2–norms in both estimates.

Proof of (a)

The operator Jε maps Hr into Hr+k for any r, k ∈ R with norm O(ε−k) for
k > 0 and O(1) for k ≤ 0. This guarantees 〈D〉sJεK(σUε) ∈ L2 for Uε ∈ Hs.
Because (due to (3.2.16)) the right side of (3.2.18) maps H r continuously into
Hr (for 0 ≤ r ≤ min(s0, s1)), the equation (3.2.18) is a linear Banach space
ODE which is globally solvable, Uε ∈ C1([t0, T ], Hs(M)), s ≤ min(s0, s1).

Then it holds

dt (R〈D〉sUε, 〈D〉sUε)
= (Rt〈D〉sUε, 〈D〉sUε) + (R〈D〉sUε,t, 〈D〉sUε) + (R〈D〉sUε, 〈D〉sUε,t)
= (Rt〈D〉sUε, 〈D〉sUε) + (R〈D〉s(JεKσUε +BUε + F ), 〈D〉sUε)

+ (R〈D〉sUε, 〈D〉s(JεKσUε +BUε + F )) .
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It is easy to estimate the first term on the right:

‖Rt〈D〉sUε‖L2 ≤ C(max
j,α

‖∂taj,α‖C0
b
) ‖Uε‖Hs .

Since (R., .) is a scalar product of L2, the Cauchy–Schwarz Inequality results
in

| (R〈D〉sF , 〈D〉sUε) + (R〈D〉sUε, 〈D〉sF ) |
≤ 2
√

(R〈D〉sUε, 〈D〉sUε)
√

(R〈D〉sF , 〈D〉sF ).

From the formulas (3.2.16) and (3.2.14) we see that

| (R〈D〉sBUε, 〈D〉sUε) + (R〈D〉sUε, 〈D〉sBUε) |
≤ C(max

j,α
‖aj,α‖C0

b
) ‖Uε‖2

Hs + Cmax
j,α

(‖aj,α‖Hs + 1) ‖Uε‖C0
],K0

‖Uε‖Hs .

It remains to consider the terms

I1 = (R〈D〉sJεKσUε, 〈D〉sUε) , I2 = (R〈D〉sUε, 〈D〉sJεKσUε) .

The scalar product I1 can be written in the form

I1 =I11 + I12 + I13 + I14 + I15 + I16 + I17 + I18 + I19

= (RJε [〈D〉s, K0] 〈D〉σUε, 〈D〉sUε)
+
(
RJεK0

[
〈D〉s+1, σ

]
Uε, 〈D〉sUε

)

+
(
RJε [K0, σ] 〈D〉s+1Uε, 〈D〉sUε

)

+ (RJεσ [K0, 〈D〉] 〈D〉sUε, 〈D〉sUε)
+ (R [Jε, σ] 〈D〉K0〈D〉sUε, 〈D〉sUε)
+ ([R, σ] 〈D〉JεK0〈D〉sUε, 〈D〉sUε)
+ (σ [R, Jε] 〈D〉K0〈D〉sUε, 〈D〉sUε)
+ (σJεR [〈D〉, K0] 〈D〉sUε, 〈D〉sUε)
+ (σJεRK〈D〉sUε, 〈D〉sUε) .

We estimate now I11, . . . , I18. From (3.2.14), Proposition 2.4.5 and Lemma
2.4.6 it can be deduced that

|I11| ≤ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖C1

b
+ 1) ‖Uε‖2

Hs

+ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖Hs + 1) ‖σUε‖C1

],K1

‖Uε‖Hs

≤ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖C1

b
+ 1) ‖Uε‖2

Hs

+ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖Hs + 1) ‖Uε‖C1

],K0

‖Uε‖Hs .
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Exploiting (3.2.14), (3.2.13), (2.4.2) and (2.4.6) shows

|I12| ≤ C(max
j,α

‖aj,α‖C0
b
)
(
‖σ‖Lip1 ‖Uε‖Hs + ‖σ‖Hs ‖Uε‖L∞

)
‖Uε‖Hs

≤ C(max
j,α

‖aj,α‖C0
b
) ‖Uε‖Hs (‖Uε‖Hs + ‖Uε‖C1

],K0

).

From (3.2.14) and Proposition 2.4.4 (α = β = 0) it follows that

|I13| ≤ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖C1

b
+ 1) ‖σ‖C1

b
‖Uε‖2

Hs .

By (3.2.14) and Proposition 2.4.4 (α = 0, β = 1) we have

|I14| + |I18| ≤ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖C1

b
+ 1) ‖Uε‖2

Hs .

We use (3.2.14), Lemma 2.4.2, Proposition 2.4.4 (α = β = 0), (3.2.13) and
conclude that

|I15| + |I16| + |I17|
≤ C(max

j,α
‖aj,α‖C0

b
) max

j,α
(‖aj,α‖C1

b
+ 1) ‖〈D〉K0〈D〉sUε‖H−1 ‖Uε‖Hs

≤ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖C1

b
+ 1) ‖Uε‖2

Hs .

Summing up shows

|I1 − I19| ≤ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖C1

b
+ 1) ‖Uε‖2

Hs

+ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖Hs + 1) ‖Uε‖Hs ‖Uε‖C1

],K0

.

The scalar product I2 satisfies

I2 = (R〈D〉sUε, Jε〈D〉sKσUε) = I21 + I22 + I23 + I24

= (R〈D〉sUε, Jε [〈D〉s, K]σUε) + (R〈D〉sUε, JεK [〈D〉s, σ]Uε)

+ (R〈D〉sUε, [Jε, K]σ〈D〉sUε) + (σJεK
∗R〈D〉sUε, 〈D〉sUε) .

Employing (3.2.14), [〈D〉s, K] = [〈D〉s, K0] 〈D〉, Proposition 2.4.5 and Lemma
2.4.6 we get

|I21| ≤ C(max
j,α

‖aj,α‖C0
b
) ‖Uε‖Hs max

j,α
(‖aj,α‖C1

b
+ 1) ‖σUε‖Hs

+ C(max
j,α

‖aj,α‖C0
b
) ‖Uε‖Hs max

j,α
(‖aj,α‖Hs + 1) ‖σUε‖C1

],K1

≤ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖C1

b
+ 1) ‖Uε‖2

Hs

+ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖Hs + 1) ‖Uε‖C1

],K0

‖Uε‖Hs .
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From (3.2.14), (3.2.13), (2.4.3) and (2.4.6) it can be concluded that

|I22| ≤ C(max
j,α

‖aj,α‖C0
b
) ‖Uε‖Hs

(
‖σ‖Lip1 ‖Uε‖Hs + ‖σ‖Hs+1 ‖Uε‖L∞

)

≤ C(max
j,α

‖aj,α‖C0
b
) ‖Uε‖Hs (‖Uε‖Hs + ‖Uε‖C1

],K0

).

By (3.2.14), Proposition 2.4.4 (α = 0, β = 1) and Lemma 2.4.2 we have

|I23| ≤ C(max
j,α

‖aj,α‖C0
b
) ‖Uε‖Hs max

j,α
(‖aj,α‖C1

b
+ 1) ‖σ‖L∞ ‖Uε‖Hs .

The above estimates give

|I2 − I24| ≤ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖C1

b
+ 1) ‖Uε‖2

Hs

+ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖Hs + 1) ‖Uε‖Hs ‖Uε‖C1

],K0

.

Finally, (3.2.15) yields

|I19 + I24| = | (σJε(RK +K∗R)〈D〉sUε, 〈D〉sUε) |
≤ C(max

j,α
‖aj,α‖C0

b
) max

j,α
(‖aj,α‖C1

b
+ 1) ‖Uε‖2

Hs .

Summing up we obtain the estimate of (a) for 0 < s ≤ min(s0, s1).

Now we consider the case s = 0. The term ‖BUε‖L2 can be estimated by

C max
j,α

(‖aj,α‖C0
b

+ 1) ‖Uε‖L2 . (3.2.19)

We have I11 = I21 = I22 = 0. For the estimate of I12 we replace Proposi-
tion 2.4.5 by (2.4.1). The other items can be estimated in the same manner.
We get the sharper inequality

dt (RUε, Uε) ≤ C(max
j,α

‖∂taj,α‖C0
b
) ‖Uε‖2

L2 + 2
√

(RUε, Uε)
√

(RF, F )

+ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖C1 + 1) ‖Uε‖2

L2 . (3.2.20)

Proof of (b). We prove this estimate in a similar way as the previous one re-
placing the operators Jε by the identity operator Id.

The proposition is proved.

Remark 3.2.3. The restriction s ≤ min(s0, s1) − 1 in the part (b) (instead
of s ≤ min(s0, s1) in the part (a)) has the following reason: The attempt
to estimate dtEs2 := dt (R〈D〉s2U, 〈D〉s2U) (s2 = min(s0, s1)) leads to a term
(〈D〉s2KσU, 〈D〉s2U) which does in general not exist, if U(., t) ∈ Hs2. Compare
the comments in front of Proposition 3.2.2.
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Or, in other words: it is well–known [Dio62] that the assumptions (3.2.2),
(3.2.3), (3.2.4) lead to a solution U ∈ C ([0, T ], H s2) in the strictly hyperbolic
case σ ≡ 1. Then the energy Es2(t) is a continuous function of t. However,
this energy is in general no C1 function of t. Hence, one can not expect the
estimate from the part (b) to hold for s = s2.

Remark 3.2.4. The proposition has been proved for the case that M be a
torus. If s = 0, then an a–priori estimate of U can be proved in the case
M = Rn, too. This will be done in Proposition 5.3.3. Such an estimate will be
used to study domains of dependence.

If one is interested in Sobolev solutions to (3.1.1), (3.1.2) in the case M =
R
n, then different methods should be applied, e.g. the construction of the

parametrix, see [Yag97a].

3.3 The Quasilinear Case

We reflect upon the weakly hyperbolic Cauchy problem (3.1.1). The weight
functions ck,β = ck,β(x, t) are assumed to satisfy

ck,β ∈ C1
(
[t0, T ], Hs0+|β|) , (3.3.1)

‖ck,β,t(., t)v(.)‖Hs+|β| ≤ C ‖ck,β(., t)v(.)‖Hs+|β| , k + |β| ≤ m− 2,
(3.3.2)

‖ck,β(., t)v(.)‖Hs+|β| ≤ C ‖ck+1,β(., t)v(.)‖Hs+|β| , k + |β| ≤ m− 2,
(3.3.3)

ck,β(x, t) = σ(x)|β|, k + |β| = m− 1, (3.3.4)

for s0 > 1 + n/2, s0 ≥ s ≥ 0. These conditions are called Levi conditions.
Examples for such functions can be found in Section 4.5.

We suppose that the coefficients and the right–hand side are defined in a
suitable neighbourhood KG of the initial data,

KG := {(x, {vk,β}) ∈M × R
n0 : |vk,β(x) −Dβ

x(ck,β(x, t0)ϕk(x))| ≤ G}.
(3.3.5)

Further, we assume (3.2.1) and

aj,α ∈ C1([t0, T ], Cs0(KG)), (3.3.6)

ϕj ∈ Hs0+m−1−j(M), (3.3.7)

f ∈ C([t0, T ], Cs0(KG)). (3.3.8)

Additionally, let the following condition hold:
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Condition 2. The roots τj(t, x, v, ξ) of

τm +
∑

j+|α|=m,j<m
aj,α(x, t, v)ξ

ατ j = 0

are real and distinct,

|τj(t, x, v, ξ) − τi(t, x, v, ξ)| ≥ c|ξ|, c > 0, i 6= j,

for all

(t, x, v, ξ) ∈ [t0, T ] ×KG × R
n.

The main result of this section is the following theorem:

Theorem 3.3.1. Under the above assumptions, the Cauchy problem (3.1.1)
has a uniquely determined solution u with

〈D〉k(σkDm−1−k
t u) ∈ C([t0, T0], H

s0(M)) ∩ C1([t0, T0], H
s0−1(M))

for 0 ≤ k ≤ m− 1. This solution exists as long as

(x, {Dβ
xck,β(x, t)D

k
t u(x, t)}) ∈ KG ∀x

and

∥∥〈D〉k(σkDm−k−1
t u)

∥∥
C1

∗
<∞, 0 ≤ k ≤ m− 1.

The space C1
∗ is a Zygmund space from Example 2.2.2.

The proof consists of several propositions. At first, we construct a hyperbolic
first order system for the vector of all weighted derivatives up to the order
m − 1. Then a smoothing operator Jε is inserted in the same way as in the
previous section. Employing the ideas from Section 3.2 we prove the existence
and estimates of the solution U ∗

ε to the perturbed system. Then we show
that the length of the existence interval of the U ∗

ε does not tend to zero as
ε approaches zero. This allows to prove the convergence of the U ∗

ε in certain
spaces for ε→ 0. The limit is a solution with the asserted smoothness. Finally,
the characterisation of the existence interval will be proved. This immediately
leads to an existence result in C∞, see Theorem 3.3.7.
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3.3.1 Transformation into a 1st Order System

We define

Uk,β(x, t) := Dβ
x(ck,β(x, t)D

k
t u(x, t)), k + |β| ≤ m− 1. (3.3.9)

If k + |β| ≤ m− 2, then we have

∂tUk,β(x, t) = Dβ
x(ck,β,t(x, t)D

k
t u(x, t)) + iDβ

x(ck,β(x, t)D
k+1
t u(x, t)).

The right–hand side can be estimated by
∥∥ck,β,t(., t)Dk

t u(., t)
∥∥
Hs+|β| +

∥∥ck,β(., t)Dk+1
t u(., t)

∥∥
Hs+|β| (3.3.10)

≤ C
∥∥ck,β(., t)Dk

t u(., t)
∥∥
Hs+|β| + C

∥∥ck+1,β(., t)D
k+1
t u(., t)

∥∥
Hs+|β|

≤ C ‖Uk,β(., t)‖Hs + C ‖Uk+1,β(., t)‖Hs , k + |β| ≤ m− 3,∥∥ck,β,t(., t)Dk
t u(., t)

∥∥
Hs+|β| +

∥∥ck,β(., t)Dk+1
t u(., t)

∥∥
Hs+|β| (3.3.11)

≤ C
∥∥ck,β(., t)Dk

t u(., t)
∥∥
Hs+|β| + C

∥∥σ(.)m−k−2Dk+1
t u(., t)

∥∥
Hs+|β|

≤ C ‖Uk,β(., t)‖Hs + C ‖Uk+2(., t)‖Hs , k + |β| = m− 2,

see (3.3.1)–(3.3.4). We define the vector

U∗ = ({Uk,β}, UT )T (3.3.12)

and obtain

dtU
∗ =

(
0 0
0 K(x, t, U∗, D)

)
(σU∗) +

(
0 0
0 B(x, t, U∗, D)

)
U∗

+

(
G(x, t, U∗)
F (x, t, U∗)

)

where G is bounded as mapping from Hs into Hs, see (3.3.10), (3.3.11). This
system can be rewritten as

dtU
∗ = K∗(x, t, U∗, D)(σU∗) +B∗(x, t, U∗, D)U∗ + F ∗(x, t, U∗),

(3.3.13)

U∗(t0) = Φ∗.

The matrix

R∗(x, t, U∗, D) =

(
E 0
0 R(x, t, U∗, D)

)

is a symmetrizer for K∗, where R is the symmetrizer from Section 3.2. From
now on, we consider a regularised version of (3.3.13),

dtU
∗
ε = JεK

∗(x, t, U∗
ε , D)(σU∗

ε ) +B∗(x, t, U∗
ε , D)U∗

ε + F ∗(x, t, U∗
ε ),

(3.3.14)

U∗
ε (t0) = Φ∗.
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3.3.2 A–priori Estimates and
Common Existence Interval

The system (3.3.14) is a Banach space ODE. Hence, it has a solution

U∗
ε ∈ C1 ([t0, Tε], H

s)

which persists as long as it stays in KG and as long as ‖U ∗
ε ‖Hs <∞. Applying

Proposition 3.2.2 and C1,α ⊂ C1
],K0

we get

dt (R
∗〈D〉sU∗

ε , 〈D〉sU∗
ε )

≤ C(max
j,α

‖∂taj,α‖C0
b
) ‖U∗

ε ‖2
Hs

+ 2
√

(R∗〈D〉sU∗
ε , 〈D〉sU∗

ε )
√

(R∗〈D〉sF ∗, 〈D〉sF ∗)

+ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖C1

b
+ 1) ‖U∗

ε ‖2
Hs

+ C(max
j,α

‖aj,α‖C0
b
) max

j,α
(‖aj,α‖Hs + 1) ‖U∗

ε ‖Hs ‖U∗
ε ‖C1,α

b

for s0 ≥ s > 1 + n/2 + α. The Moser–type estimates

‖aj,α‖C1
b
≤ C(‖U∗

ε ‖C0
b

+ 1)(‖U∗
ε ‖C1

b
+ 1),

‖aj,α‖Hs ≤ C(‖U∗
ε ‖L∞)(‖U∗

ε ‖Hs + 1)

and the embedding inequality ‖U ∗
ε ‖C1,α

b
≤ C ‖U∗

ε ‖Hs can be applied on the

right. Let us consider the term C(maxj,α ‖∂taj,α‖C0
b
) which denotes some con-

stant that depends in a nonlinear way on maxj,α ‖∂taj,α‖C0
b
. The computations

which lead to this term show that it has the form

C(max
j,α

‖aj,α‖C0
b
) · max

j,α
(‖∂taj,α‖C0

b
+ 1)

where the first factor stands for some constant that depends in a nonlinear
way on maxj,α ‖aj,α‖C0

b
. It is enough to study the last factor. We see that

‖∂taj,α‖C0
b
≤ C(1 + ‖∂tU∗

ε ‖C0
b
)

≤ C(1 + ‖JεK∗σU∗
ε ‖C0

b
+ ‖B∗U∗

ε ‖C0
b

+ ‖F ∗‖C0
b
)

≤ C(1 + ‖σU ∗
ε ‖C1

],K1

+ ‖U∗
ε ‖C0

],K0

)

≤ C(1 + ‖U ∗
ε ‖C1,α

b
)

cf. Lemma 2.3.6, (3.2.13), Lemma 2.4.6, (2.4.4) and the proof of (3.2.16).
Taking into account all these inequalities we obtain

dt (R
∗〈D〉sU∗

ε , 〈D〉sU∗
ε ) ≤ C(‖U∗

ε ‖L∞)(‖U∗
ε ‖C1,α

b
+ 1) ‖U∗

ε ‖2
Hs (3.3.15)

+ 2
√

(R∗〈D〉sU∗
ε , 〈D〉sU∗

ε )
√

(R∗〈D〉sF ∗, 〈D〉sF ∗).
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In the next step we show that there is a common existence interval of the
solutions U∗

ε , that is to say
⋂

0<ε≤ε0

[t0, Tε] 6= {t0}.

We define tε ∈ (t0, Tε] by the inequality

‖U∗
ε (t)‖Hs ≤ 2 ‖Φ∗‖Hs + 1, t0 ≤ t ≤ tε

and by the condition that the components of the vector U ∗
ε (t) be in the interior

of the domain of definition of the coefficients aj,α and the right–hand side f ,
if t0 ≤ t ≤ tε.

To obtain a contradiction, let us assume that for every γ > 0 an ε = ε(γ) exists
with t0 < tε ≤ t0 + γ. Now we study estimates of ‖U ∗

ε ‖Hs and ‖U∗
ε − Φ∗‖L∞ .

The norms ‖V ‖L2 and
√

(R∗V , V ) are equivalent as long as R∗ is defined (i.e.,
for t ≤ tε),

C−1
R,∼ ‖V ‖2

L2 ≤ (R∗V , V ) ≤ CR,∼ ‖V ‖2
L2 . (3.3.16)

From (3.3.15) and the estimate ‖F ∗‖Hs ≤ C(‖U∗‖L∞)(‖U∗‖Hs +1) we see that

dt (R
∗〈D〉sU∗

ε , 〈D〉sU∗
ε ) ≤ Q((R∗〈D〉sU∗

ε , 〈D〉sU∗
ε )),

where Q is a smooth nonlinear increasing function, independent of ε. Let T0 be
a number with the property that the nonnegative solutions of the differential
inequality

dty(t) ≤ Q(y(t)), (3.3.17)

y(t0) = (R∗(x, t0,Φ
∗, D)〈D〉sΦ∗, 〈D〉sΦ∗)

satisfy y(t) ≤ 2 ‖Φ∗‖Hs + 1 for t0 ≤ t ≤ T0. To estimate ‖U ∗
ε − Φ∗‖L∞ , we

write U∗
ε = Φ∗ + V ∗

ε and get

dtV
∗
ε = JεK

∗(x, t, U∗
ε , D)(σV ∗

ε ) +B∗(x, t, U∗
ε , D)U∗

ε + F ∗(x, t, U∗
ε )

+ JεK
∗(x, t, U∗

ε , D)(σΦ∗),

hence, by Proposition 3.2.2 and Young’s inequality,

dt (R
∗V ∗

ε , V
∗
ε ) ≤ C(‖U∗

ε ‖L∞)((R∗V ∗
ε , V

∗
ε ) + (R∗F ∗, F ∗)),

(R∗V ∗
ε , V

∗
ε ) (t0) = 0.

The norms ‖U∗
ε ‖L∞ are uniformly bounded for t ≤ tε, see the definition of tε.

From Gronwall’s Lemma it can be concluded that

(R∗V ∗
ε , V

∗
ε ) (t) ≤ g(t)2, t0 ≤ t ≤ min(T0, tε),
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g(t0) = 0, g continuous and increasing. We obtain ‖V ∗
ε (t)‖2

L2 ≤ Cg(t)2; and
the Interpolation Theorem of Nirenberg–Gagliardo gives

‖V ∗
ε (t)‖L∞ ≤ C ‖V ∗

ε (t)‖Hs−1

≤ Cg(t)θ ‖V ∗(t)‖1−θ
Hs ≤ Cg(t)θ (‖U∗

ε (t)‖Hs + ‖Φ∗‖Hs)
1−θ

≤ Cg(t)θ (3 ‖Φ∗‖Hs + 1)1−θ =: g1(t) (3.3.18)

with some real number θ between 0 and 1. This proves that tε cannot come
arbitrary close to t0, which is a contradiction. Hence, there is a common
existence interval.

We have proved:

Lemma 3.3.2. There is a constant T0 > t0 with the property that the sys-
tems (3.3.14) have unique solutions

U∗
ε ∈ C1 ([t0, T0], H

s)

for 0 < ε ≤ ε0 and s0 ≥ s > 1 + n/2. It holds

‖U∗
ε (t)‖Hs ≤ C ∀ε, t,

‖U∗
ε (t) − Φ∗‖L∞ ≤ g1(t)

with some continuous function g1(t), g1(t0) = 0.

3.3.3 Convergence and Regularity of the Limit

Let us contemplate on convergence properties for ε→ 0. It holds

dt(U
∗
ε − U∗

ε′)

= JεK
∗(x, t, U∗

ε , D)(σU∗
ε ) − Jε′K

∗(x, t, U∗
ε′, D)(σU∗

ε′)

+B∗(x, t, U∗
ε , D)U∗

ε −B∗(x, t, U∗
ε′, D)U∗

ε′

+ F ∗(x, t, U∗
ε ) − F ∗(x, t, U∗

ε′)

= I1 + I2 + I3 + I4 + I5 + I6

= (Jε − Jε′)K
∗(x, t, U∗

ε , D)(σU∗
ε )

+ Jε′(K
∗(x, t, U∗

ε , D) −K∗(x, t, U∗
ε′, D))(σU∗

ε )

+ Jε′K
∗(x, t, U∗

ε′, D)σ(U∗
ε − U∗

ε′)

+ (B∗(x, t, U∗
ε , D) −B∗(x, t, U∗

ε′, D))U∗
ε

+B∗(x, t, U∗
ε′, D)(U∗

ε − U∗
ε′) + F ∗(x, t, U∗

ε ) − F ∗(x, t, U∗
ε′).

We obtain from Corollary 2.3.5 and s > 1 + n/2

‖I1‖L2 ≤ C(ε+ ε′) ‖K∗(x, t, U∗
ε , D)σU∗

ε ‖H1 ≤ C(‖U∗
ε ‖Hs)(ε+ ε′).
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By the special structure of K∗ (see Subsection 3.2.1 and Subsection 3.2.2),
Hadamard’s Formula, Lemma 2.4.6 and Hs ⊂ C1,α ⊂ C1

],K0
(s > n

2
+ 1 + α),

we get

‖I2‖L2 ≤ C ‖U∗
ε − U∗

ε′‖L2 ‖σU∗
ε ‖C1

],K1

≤ C ‖U∗
ε − U∗

ε′‖L2 .

In a similar way it follows that

‖I4‖L2 ≤ C ‖U∗
ε − U∗

ε′‖L2 ‖U∗
ε ‖C0

],K0

,

‖I5‖L2 ≤ C ‖U∗
ε − U∗

ε′‖L2 ,

see the proof of (3.2.19). Finally, by Hadamard’s Formula,

‖I6‖L2 ≤ C ‖U∗
ε − U∗

ε′‖L2 .

Summing up results in

dt(U
∗
ε − U∗

ε′) = G(ε, ε′, U∗
ε , U

∗
ε′) + Jε′K

∗(x, t, U∗
ε′ , D)σ(U∗

ε − U∗
ε ),

‖G‖L2 ≤ C(ε+ ε′) + C ‖U∗
ε − U∗

ε′‖L2 .

From Proposition 3.2.2 it can be concluded that

dt (R
∗(U∗

ε − U∗
ε′), U

∗
ε − U∗

ε′) ≤ C ‖U∗
ε − U∗

ε′‖2
L2 + C(ε+ ε′)

≤ C (R∗(U∗
ε − U∗

ε′), U
∗
ε − U∗

ε′) + C(ε+ ε′).

By Gronwall’s Lemma and (U ∗
ε − U∗

ε′)(t0) = 0, we have

(R∗
ε(U

∗
ε − U∗

ε′), U
∗
ε − U∗

ε′) (t) ≤ C

∫ t

t0

(ε+ ε′) dt ≤ C(T0 − t0)(ε+ ε′).

Since the U∗
ε lie in KG, the inequalities (3.3.16) hold with a constant CR,∼

independent of ε. This yields

‖U∗
ε − U∗

ε′‖2
L2 ≤ C(T0 − t0)(ε+ ε′)

for all t ∈ [t0, T0]. By the uniform bound ‖U ∗
ε ‖Hs0 ≤ C and interpolation, it

follows that

‖U∗
ε − U∗

ε′‖Hs ≤ C(ε+ ε′)θ,
n

2
+ 1 + α < s < s0, θ =

1

2

(
1 − s

s0

)
.

Thus, the sequence (U ∗
ε ) is a Cauchy sequence in C ([t0, T0], H

s) and in
C([t0, T0], C

1,α
b ). Hence we have proved:



3.3. THE QUASILINEAR CASE 53

Lemma 3.3.3. The above sequence (U ∗
ε ) ⊂ C1 ([t0, T0], H

s0) converges in

C ([t0, T0], H
s) and C([t0, T0], C

1,α
b )

for any s and α with 1 + n/2 + α < s < s0. The limit U∗ belongs to
C1 ([t0, T0], H

s−1) and is a solution of (3.3.13).

It remains to study the regularity of the solution U ∗. Here we make use of
standard techniques, which can be found e.g. in [Rac92]. The uniform estimate
of U∗

ε in Hs0 gives

U∗ ∈ L∞([t0, T0], H
s0) ∩ Lip1([t0, T0], H

s0−1).

We fix t0 ≤ t1 < T0 and consider the forward Cauchy problem (recycling the
variable U∗

ε which we do not need anymore)

dtU
∗
ε =JεK

∗(x, t, U∗
ε , D)(σU∗

ε ) +B∗(x, t, U∗
ε , D)U∗

ε + F ∗(x, t, U∗
ε ),

U∗
ε (t1) =U∗(t1).

From (3.3.15) and (3.3.16) we deduce that

dt (R
∗〈D〉s0U∗

ε (t), 〈D〉s0U∗
ε (t))

≤ C ′(‖U∗
ε ‖C1,α

b
+ 1) (R∗〈D〉s0U∗

ε (t), 〈D〉s0U∗
ε (t)) + C ‖F ∗(t)‖2

Hs0 .

Defining the norm

‖V ‖2
Hs0 ,t1

:= (R∗(t1)〈D〉s0V , 〈D〉s0V ) (3.3.19)

we obtain

dt ‖U∗
ε (t)‖2

Hs0 ,t ≤ C ′(‖U∗
ε ‖C1,α

b
+ 1) ‖U∗

ε (t)‖2
Hs0 ,t + C ‖F ∗(t)‖2

Hs0 .

Gronwall’s Lemma gives

‖U∗
ε (t)‖2

Hs0 ,t ≤ ‖U∗(t1)‖2
Hs0 ,t1

eC
′(t−t1) + C

∫ t

t1

eC
′(t−τ) ‖F ∗(τ)‖2

Hs0 dτ,

C ′ = C ′(‖U∗
ε ‖C1,α

b
+ 1).

The right–hand side does not depend on ε. Then the weak compactness of
bounded subsets in Hilbert spaces implies (ε→ 0)

‖U∗(t)‖2
Hs0 ,t ≤ ‖U∗(t1)‖2

Hs0 ,t1
eC

′(t−t1) + C

∫ t

t1

eC
′(t−τ) ‖F ∗(τ)‖2

Hs0 dτ.
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The function ‖V ‖Hs0 ,t defines an equivalent norm in the Hilbert space Hs0, if
t is fixed. For proving continuity in t we need a norm which does not depend
on t. For this purpose we rewrite the left–hand side:

(R∗(t)〈D〉s0U∗(t), 〈D〉s0U∗(t)) = (R∗(t1)〈D〉s0U∗(t), 〈D〉s0U∗(t))

+ ((R∗(t) −R∗(t1))〈D〉s0U∗(t), 〈D〉s0U∗(t))

and have the estimate

| ((R∗(t) − R∗(t1))〈D〉s0U∗(t), 〈D〉s0U∗(t)) |
≤ C(|t− t0| + ‖U∗(t) − U∗(t1)‖L∞) ‖U∗(t)‖2

Hs0

≤ C(1 + ‖U ∗‖C1([t0,T0],Hs−1)) ‖U∗(t)‖2
Hs0 |t− t1|,

if s0 ≥ s > 1 + n/2. This implies

‖U∗(t)‖2
Hs0 ,t1

≤ ‖U∗(t1)‖2
Hs0 ,t1

eC
′(t−t1) + C ′′|t− t1|,

resulting in

lim sup
t→t1+0

‖U∗(t)‖2
Hs0 ,t1

≤ lim sup
t→t1+0

(‖U∗(t1)‖2
Hs0 ,t1

eC
′(t−t1) + C ′′|t− t1|)

= ‖U∗(t1)‖2
Hs0 ,t1

≤ lim inf
t→t1+0

‖U∗(t)‖2
Hs0 ,t1

,

which gives the Hs0–continuity of U ∗ at t1 from the right. The following facts
from the functional analysis [Heu92] (nr. 27 and nr. 59) have been used here:
let H be a Hilbert space. Then

fn ⇀ f in H =⇒ ‖f‖H ≤ lim inf
n

‖fn‖H ,
fn ⇀ f in H, ‖fn‖H → ‖f‖H =⇒ fn → f.

Inverting the time direction the reader can show the continuity from the left.

Thus, we have proved:

U∗ ∈ C ([t0, T0], H
s0) ∩ C1

(
[t0, T0], H

s0−1
)
. (3.3.20)

In the last step a criterion for the blow–up is given. The idea of the proof is
taken from [Tay91], Proposition 5.1.F.

Proposition 3.3.4. Let U ∗ ∈ C ([t0, T ), Hs0)∩C1 ([t0, T ), Hs0−1) be a solution
of (3.3.13) with

sup
[t0,T )

‖U∗(t)‖C1
∗
<∞,

inf
[t0,T )

dist((x, {Uk,β(x, t)}), ∂KG) ≥ δ > 0.

Then a constant T1 > T exists with

U∗ ∈ C ([t0, T1], H
s0) ∩ C1

(
[t0, T1], H

s0−1
)
.
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Proof. We multiply (3.3.13) with Jε from the left and estimate the terms on
the right as in the proof of Proposition 3.2.2. This gives

dt (R
∗〈D〉s0JεU∗, 〈D〉s0JεU∗)

≤ C(‖U∗‖L∞)(1 + ‖U∗‖C1
b

+ ‖U∗‖C1
],K0

) ‖U∗‖2
Hs0 + ‖F ∗‖2

Hs0 .

We suppose that the Hs0 norm is arranged in such a way that ‖V ∗‖C1
∗
≤

‖V ∗‖Hs0 holds for every function V ∗ ∈ Hs0. Then the inequality

‖V ∗‖C1
],K0

≤ C ‖V ∗‖C1
∗

(
1 + ln

(
‖V ∗‖Hs0

‖V ∗‖C1
∗

))

can be shown, see [Tay91], (B.2.12). Consequently,

‖U∗‖C1
],K0

≤ C ‖U∗‖C1
∗
(1 + ln+ ‖U∗‖Hs0 ) + C.

From ‖U∗‖C1
b

≤ C ‖U∗‖C1
],K0

(see Proposition 2.4.6) and ‖F ∗‖2
Hs0 ≤

C(‖U∗‖L∞)(e+ ‖U∗‖2
Hs0 ) it follows that

dt (R
∗〈D〉s0JεU∗, 〈D〉s0JεU∗)

≤ C(‖U∗‖L∞)(1 + ‖U∗‖C1
∗
)(1 + ln+ ‖U∗‖2

Hs0 )(e+ ‖U∗‖2
Hs0 ).

Using the equivalent norm ‖.‖Hs0 ,t from (3.3.19) and ‖U ∗‖C1
∗
≤ C we get

dt ‖JεU∗(t)‖Hs0 ,t ≤ C0(1 + ln+ ‖U∗(t)‖2
Hs0 ,t)(e+ ‖U∗(t)‖Hs0 ,t).

We integrate, let ε tend to 0 and see that

‖U∗(t)‖2
Hs0 ,t ≤‖U∗(t0)‖2

Hs0 ,t0

+ C0

∫ t

t0

(1 + ln+ ‖U∗(τ)‖2
Hs0 ,τ )(e+ ‖U∗(τ)‖2

Hs0 ,τ ) dτ.

Introducing N(t) = e+ ‖U ∗(t)‖2
Hs0 ,t we deduce that

N(t) ≤ N(t0) + 2C0

∫ t

t0

ln(N(τ))N(τ) dτ =: Q(t).

Since N(t) is continuous, Q(t) ∈ C1[t0, T ) and

Q′(t) = 2C0 ln(N(t))N(t) ≤ 2C0 ln(Q(t))Q(t),
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hence

Q(t) ≤ Q(t0)
e2C0(t−t0)

< C ∀t0 ≤ t < T.

Taking into account all these inequalities gives ‖U ∗(t)‖Hs0 ≤ C ′ for t0 ≤ t < T .

Let us consider the Cauchy problems (3.3.14) with data

U∗
ε (T − γ) = U∗(T − γ)

for some small γ > 0. The vector functions U ∗
ε (t) persist as long as their

Hs0 norm remains bounded and as long as each component of these vectors
stays in the domain of the functions aj,α and f . The length of the common
existence interval of the U ∗

ε is determined by (3.3.17) and (3.3.18). But these
are autonomous (differential) inequalities (independent of ε), hence the length
of the interval only depends on δ and C ′. It follows that for small γ the point
T is contained in the common existence interval of the U ∗

ε , and consequently,
of the limit function U .

This completes the proof of Theorem 3.3.1.

Remark 3.3.5. The last proposition states a connection between blow–up in
the Hs0 norm and blow–up in the C1

∗ norm. We emphasise that exactly the
same connection exists in the strictly hyperbolic theory, cf. [Tay91], Proposi-
tion 5.1.F and Theorem 5.3.A.

If the equation is linear, then we have global existence:

Corollary 3.3.6. Let us consider the Cauchy problem (3.1.1). We assume
that the coefficients aj,α only depend on (x, t) and that the right–hand side f
depends on {Dβ

xck,βD
k
t u} in a linear way,

f(x, t, {Dβ
xck,βD

k
t u}) = f ∗(x, t) +

∑

k+|β|≤m−1

fk,β(x, t)D
β
xck,βD

k
t u.

We suppose that Condition 1 and (3.2.1), (3.2.2), (3.2.3) (with s1 > n/2 +
1), (3.2.4) (with f replaced by f ∗) and (3.3.1)–(3.3.4) are true. Then (3.1.1)
has a global solution u with

〈D〉k(σkDm−1−k
t u) ∈ C([t0, T ], Hs2(M)) ∩ C1([t0, T ], Hs2−1(M))

for 0 ≤ k ≤ m− 1 and s2 := min(s0, s1).

Proof. Utilising the embedding Hs2 ⊂ C1
],K0

one can prove the estimate

dt (R
∗〈D〉s2JεU∗, 〈D〉s2JεU∗) ≤ C(‖U∗‖2

Hs2 + ‖F ∗‖2
Hs2 ),

see the proof of Proposition 3.2.2. The constant C does not depend on U ∗.
Hence, a blow–up is impossible.
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We complete this section with a local existence result in C∞.

Theorem 3.3.7. Let us consider the Cauchy problem (3.1.1) on the set M ×
[t0, T ] with M being a torus. We suppose (3.2.1) and

ck,β ∈ C1([t0, T ], C∞(M)),

aj,α ∈ C1([t0, T ], C∞(KG)),

ϕj ∈ C∞(M),

f ∈ C([t0, T ], C∞(KG)).

Furthermore, we assume that (3.3.2)–(3.3.4) hold for all s ≥ 0 and that Con-
dition 2 holds. Then the Cauchy problem (3.1.1) has a solution

u ∈ Cm([t0, T1), C
∞(M)).

Proof. We fix some s0 > 1 + n/2. From Theorem 3.3.1 we deduce that a
solution u exists with

u ∈ Cm−1([t0, Ts0], H
s0(M)) ∩ Cm([t0, Ts0 ], H

s0−1(M)).

The embedding Hs0 ⊂ C1
∗ and the definition of the vector U ∗, cf. (3.3.9),

(3.3.12), show that ‖U ∗(t)‖C1
∗
≤ C for t0 ≤ t ≤ Ts0. Let us take an arbitrary

s > s0. Then Proposition 3.3.4 reveals that

u ∈ Cm−1([t0, Ts0], H
s(M)) ∩ Cm([t0, Ts0], H

s−1(M)) ∀s0 ≤ s <∞,

which results in u ∈ Cm([t0, Ts0], C
∞(M)).

We can repeat this procedure with t0 replaced by Ts0 . Following this way we
can complete the proof.

3.4 Stability of Solutions and

Life–Span Estimates

The aim of this subsection is to show that the solution of a quasilinear weakly
hyperbolic Cauchy problem continuously depends on the data, weight func-
tions, coefficients and right–hand side. This result will be used to derive a
life–span estimate.

We consider the Cauchy problem (3.1.1), i.e.,

Dm
t u+

∑

j+|α|=m,j<m
aj,α(x, t, {Dβ

xck,β(x, t)D
k
t u})Dα

xD
j
t

(
σ(x)|α|u

)

= f(x, t, {Dβ
xck,β(x, t)D

k
t u}), k + |β| ≤ m− 1, (3.4.1)

u(x, t0) = ϕ0(x), . . . , D
m−1
t u(x, t0) = ϕm−1(x). (3.4.2)
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Additionally, let us examine a family of Cauchy problems

Dm
t u

ε +
∑

j+|α|=m,j<m
aεj,α(x, t, {Dβ

xc
ε
k,β(x, t)D

k
t u

ε})Dα
xD

j
t

(
σε(x)|α|uε

)

= f ε(x, t, {Dβ
xc

ε
k,β(x, t)D

k
t u

ε}), k + |β| ≤ m− 1, (3.4.3)

uε(x, t0) = ϕε0(x), . . . , D
m−1
t uε(x, t0) = ϕεm−1(x) (3.4.4)

with 0 < ε ≤ ε0. The given functions from (3.4.1) are assumed to satisfy
(3.3.1)–(3.3.8) and Condition 2 with s0 > m + 1 + n/2, s0 ≥ s ≥ 0 and
σ ∈ C∞(M).

We suppose that the functions cεk,β, σ
ε, aεj,α, ϕ

ε
k and f ε fulfil (3.3.1)–(3.3.4)

with s0 > m + 1 + n/2, s0 ≥ s ≥ 0 and Condition 2. The constants C are
supposed to be independent of ε. Let us assume that the coefficients aεj,α
and the right–hand sides f ε are defined in a neighbourhood of the initial data
of (3.4.1),

KG := {(x, {vk,β}) ∈M × R
n0 : |vk,β(x) −Dβ

x(ck,β(x, t0)ϕk(x))| ≤ G}.
Using this KG, we suppose (3.3.6)–(3.3.8) for the functions aεj,α, ϕ

ε
k and f ε.

Finally, we assume σε ∈ C∞(M). Let the functions cεk,β, σ
ε, aεj,α, ϕ

ε
k and f ε be

close to ck,β, σ, aj,α, ϕk and f , respectively. More precise,
∥∥cεk,β − ck,β

∥∥
C1([t0,T ],Hs0+|β|)

≤ ε,

‖σε − σ‖Cs0+m ≤ ε,∥∥aεj,α − aj,α
∥∥
C1([t0,T ],Cs0(KG))

≤ ε,

‖ϕεk − ϕk‖Hs0+m−1−k ≤ ε,

‖f ε − f‖C([t0,T ],Cs0(KG)) ≤ ε.

These conditions allow to prove the continuous dependence of the solutions:

Theorem 3.4.1. We suppose that the above conditions are fulfilled. Let u be
a solution of (3.4.1), (3.4.2) with

〈D〉k(σkDm−1−k
t u) ∈ C([t0, T0], H

s0(M)) ∩ C1([t0, T0], H
s0−1(M))

for 0 ≤ k ≤ m− 1. Then a number ε0 > 0 exists with the property that for all
0 < ε < ε0 the Cauchy problem (3.4.3), (3.4.4) has a solution uε with

〈D〉k(σε,kDm−1−k
t uε) ∈ C([t0, T0], H

s0(M)) ∩ C1([t0, T0], H
s0−1(M))

for all 0 ≤ k ≤ m− 1. The difference u− uε satisfies

‖(U∗ − U ε,∗)(t)‖Hs0−m ≤ CeC
′(t−t0)ε, t0 ≤ t ≤ T0.

The constants C,C ′ do not depend on ε.
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Proof. Using the function u we define a vector valued function U ∗(x, t) of
weighted lower order derivatives, see (3.3.12) and (3.3.9). Let us set

M0 := sup
[t0,T0]

‖U∗(t)‖C1,α
b
, M ′

0 := sup
[t0,T0]

‖U∗(t)‖Hs0 .

From Theorem 3.3.1 we conclude that the Cauchy problem (3.4.3), (3.4.4) has
a solution uε which persists up to some Tε with t0 < Tε ≤ T0. There is no loss
of generality in assuming that

sup
[t0,Tε]

‖U ε,∗(t)‖C1,α
b

≤ 2M0 + 1, sup
[t0,Tε]

‖U ε,∗(t)‖Hs0 ≤ 2M ′
0 + 1,

otherwise we shrink the interval [t0, Tε]. The difference u− uε satisfies

Dm
t (u− uε) +

∑

j+|α|=m,j<m
aj,α(x, t, {Dβ

xck,βD
k
t u})Dα

xD
j
t

(
σ|α|(u− uε)

)

= f(x, t, {Dβ
xck,βD

k
t u}) − f ε(x, t, {Dβ

xc
ε
k,βD

k
t u

ε})
+

∑

j+|α|=m,j<m

(
aεj,α(x, t, {Dβ

xc
ε
k,βD

k
t u

ε})

− aj,α(x, t, {Dβ
xck,βD

k
t u})

)
Dα
xD

j
t

(
σ|α|uε

)

+
∑

j+|α|=m,j<m
aεj,α(x, t, {Dβ

xc
ε
k,βD

k
t u

ε})Dα
xD

j
t

(
σε,|α| − σ|α|)uε.

The right–hand side can be written in the form

hε(x, t) +
∑

k+|β|≤m−1

gεk,β(x, t)D
β
xck,β(x, t)D

k
t (u− uε)

with

‖hε‖C([t0,Tε],Hs0−m) ≤ C1(M0,M
′
0)ε,∥∥gεk,β

∥∥
C([t0,Tε],Hs0−m)

≤ C2(M0,M
′
0).

The constants C1(M0,M
′
0) and C2(M0,M

′
0) do not depend on ε. The Cauchy

problem for u− uε can be transformed into a system:

dt(U
∗ − U ε,∗) = K∗(x, t,D)(σ(U∗ − U ε,∗)) +B∗(x, t,D)(U∗ − U ε,∗)

+Hε(x, t) +Gε(x, t, U∗ − U ε,∗), (3.4.5)

(U∗ − U ε,∗)(t0) = Φ∗ − Φε,∗,
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compare the calculations which led to (3.3.13). It holds

‖Hε‖C([t0,Tε],Hs0−m) ≤ C1(M0,M
′
0)ε,

‖Gε(x, t, U∗ − U ε,∗)‖C([t0,Tε],Hs0−m)

≤ C3(M0,M
′
0) ‖U∗ − U ε,∗‖C([t0,Tε],Hs0−m) .

Multiplying (3.4.5) with Jδ from the left leads to

dt
(
R∗〈D〉s0−mJδ(U∗ − U ε,∗), 〈D〉s0−mJδ(U∗ − U ε,∗)

)

≤ C ‖U∗ − U ε,∗‖2
Hs0−m + Cε2.

We integrate over [t0, t], let δ tend to 0 and with (3.3.16) we get

‖(U∗ − U ε,∗)(t)‖2
Hs0−m

≤ C‖(U∗ − U ε,∗)(t0)‖2
Hs0−m + C

∫ t

t0

‖(U∗ − U ε,∗)(τ)‖2
Hs0−m dτ +Cε2

≤ C4

∫ t

t0

‖(U∗ − U ε,∗)(τ)‖2
Hs0−m dτ + C5ε

2.

Writing v(t) =
∫ t
t0
‖(U∗ − U ε,∗)(τ)‖2

Hs0−m dτ we have v′(t) ≤ C4v(t)+C5ε
2 and

v(t0) = 0, hence, by Gronwall’s Lemma,

v(t) ≤
∫ t

t0

eC4(t−τ)C5ε
2dτ =

C5ε
2

C4

(
eC4(t−t0) − 1

)
,

which implies

‖(U∗ − U ε,∗)(t)‖2
Hs0−m ≤ C5ε

2eC4(t−t0).

The constants C4 and C5 only depend on M0 and M ′
0. From s0 > m +

1 + n/2 and the Sobolev Embedding Theorem it follows that the norm
‖U∗ − U ε,∗‖C1

∗
can be made arbitrarily small, if ε is small enough. From this,

sup[t0,T0] ‖U∗(t)‖C1
∗
< ∞ and Proposition 3.3.4 we see that U ε,∗ persists up to

t = T0 for small ε > 0. The theorem is proved.

Corollary 3.4.2 (Life–span). Let u ≡ 0 be a global solution of (3.4.1) with
vanishing data for t = t0. Let uε be the solution of (3.4.1) with data εϕ0, . . . ,
εϕm−1. We assume ‖ϕk‖Hs0+m−1−k ≤ 1. Then the life–span of uε, ε small, can
be estimated as

Tε ≥ t0 +
1

C ′ ln
G

Cε
(3.4.6)

with the constants G,C,C ′ from (3.3.5) and Theorem 3.4.1.
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Proof. We have ‖U ε,∗(t)‖Hs0−m ≤ CeC
′(t−t0)ε, see Theorem 3.4.1. The coeffi-

cients aj,α and the right–hand side are defined in the set

KG = {(x, {vk,β}) ∈M × R
n0 : |vk,β| ≤ G}

see (3.3.5). The solution uε exists as long as ‖U ε,∗‖C1
∗
<∞ and ‖U ε,∗‖L∞ < G.

This implies

lim
t→Tε−0

‖U ε,∗(t)‖C1
∗
≥ G,

hence G ≤ CeC
′(Tε−t0)ε, which is equivalent to (3.4.6).

Remark 3.4.3. This estimate is in general sharp, up to constants. Namely,
let us take functions ϕj, aj,α, f that are independent of x and t and let us
assume σ ≡ 0, cm−1,0 ≡ 1 and ck,β ≡ 0 otherwise. These choices include the
ODE

dmt u =
dm−1
t u

1 − dm−1
t u

, u(t0) = · · · = dm−2
t u(t0) = 0, dm−1

t u(t0) = ε.

The solution v(t) of the initial value problem v ′ = v/(1− v), v(t0) = ε satisfies
ln v − v + t0 + ε− ln ε = t. This shows Tε = t0 − 1 + ε+ ln 1

ε
.

Remark 3.4.4. For special hyperbolic operators, e.g. ∂tt−4 or ∂tt−4+1, and
special nonlinear right–hand sides it is possible to prove Tε = ∞ if 0 < ε ≤ ε0.
See, for instance, [Kla85] and [LC88] for the case of a wave equation with data
from C∞

0 (Rn) or [Man94] for the case of a wave equation (in Rn×[0, T ]) whose
data are periodic in at most n−2 variables. The global existence of the solution
to a certain semilinear weakly hyperbolic equation with logarithmic nonlinearity
was proved in [D’A94a] and estimates of the life–span of analytic solutions to
quasilinear weakly hyperbolic equations were given in [DS91]. The stability
of global Gevrey solutions to weakly hyperbolic equations of second order was
studied in [RY97]. However, we will not follow these directions, since our goal
is the investigation of hyperbolic equations of rather general type.



Chapter 4

Weakly Hyperbolic
Cauchy Problems with
Spatial and Time Degeneracy

4.1 Introduction

The theory of local existence for weakly hyperbolic equations with time degen-
eracy presents new difficulties which can not be observed in the case of pure
spatial degeneracy. Some of these difficulties are:

Loss of regularity The Example of Qi Min-You [Qi58] shows that the so-
lution can lose Sobolev smoothness in comparison with the initial data.
The number of lost derivatives depends (in the linear case) on the L∞–
norm of the coefficients of some lower order terms. At first glance, it is
not clear how to show the strictly hyperbolic type property.

Singular coefficients in energy inequalities Let us consider the weakly
hyperbolic equation

utt − λ(t)2uxx = f(x, t), λ(0) = 0, λ′(t) > 0 (t > 0).

If we choose the energy in the usual way, E(t)2 = ‖ut‖2
L2 + ‖λ(t)ux‖2

L2 ,
then we obtain, after some calculations,

E ′(t) ≤ ‖f(., t)‖2
L2 +

λ′(t)

λ(t)
E(t).

The Lemma of Gronwall is not applicable, since the coefficient λ′(t)
λ(t)

be-

comes unbounded for t → 0. But one can use Nersesyan’s Lemma (see
Lemma B.0.4) if the initial data vanish and ‖f(., t)‖L2 goes sufficiently
fast to 0 as t tends to 0.

62
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At first glance, the loss of regularity seems to make it impossible to prove
the local existence of solutions to quasilinear equations, because the standard
iteration procedure does not work. But in the special case of a right–hand
side which is going to zero sufficiently fast as t approaches zero this standard
iteration technique works!

Our approach is divided into three steps:

• In Section 4.2 linear weakly hyperbolic Cauchy problems with vanishing
data and a right–hand side which is going sufficiently fast to 0 as t tends
to 0 are studied. We will replace λ(t) by λ(t) + δ, δ > 0, in such a
way that we get a weakly hyperbolic Cauchy problem with pure spatial
degeneracy. Then the results of the previous chapter can be applied. We
are able to prove the strictly hyperbolic type property, see Theorem 4.2.1
and the Chapter Introduction.

• In Section 4.3 we examine quasilinear weakly hyperbolic Cauchy prob-
lems with vanishing data and a special right–hand side with suitable
behaviour for t → 0. The strictly hyperbolic type property of the linear
problem allows us to apply the usual iteration technique. We obtain the
local existence, see Theorem 4.3.5.

• In Section 4.4 we take an arbitrary quasilinear weakly hyperbolic Cauchy
problem with spatial and time degeneracy and reduce it to another prob-
lem which can be handled with the methods described in the section
before. The central result of that section is Theorem 4.4.1. The blow–
up criterion of Proposition 3.3.4 can be carried over to the case of both
degeneracies, since the time degeneracy occurs only for t = 0, cf. Corol-
lary 4.4.2.

The last two sections base on ideas taken from [KY98]. The idea of trans-
forming a weakly hyperbolic problem with general right–hand side into an-
other weakly hyperbolic problem with special right–hand side has been used
in [Ole70], [RY93] and [Rei97].

4.2 A Special Linear Case

We study the Cauchy problem

Dm
t u+

∑

j+|α|=m,j<m
aj,α(x, t)λ(t)|α|Dα

xD
j
t

(
σ(x)|α|u

)
= f(x, t), (4.2.1)
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u(x, 0) = · · · = Dm−1
t u(x, 0) = 0

under the assumption

‖f(., t)‖Hs0 ≤ Cfλ(t)pλ′(t). (4.2.2)

Later, the number p will be chosen sufficiently large. Then this condition
implies that the right–hand side goes fast to zero for t → 0. Additionally, we
suppose Condition 1, (3.2.1), (3.2.2) and (3.2.4). For the function λ = λ(t) we
assume:

Condition 3. Let Λ(t) :=
∫ t
0
λ(τ) dτ . The function λ(t) is nonnegative,

strictly monotonically increasing with λ(0) = 0 and it holds

λ ∈ C2([0, T ]),

λ(t)

Λ(t)
≤ Cλ

λ′(t)

λ(t)
,

λ′(t)

λ(t)
≤ C ′

λ

λ(t)

Λ(t)
, Cλ <

m

m− 1
.

The derivative λ′(t) is monotonically increasing.

Examples for these weight functions are Λ(t) = tl with l ≥ m+ 1 or

Λ(t) = exp(−|t|−r), Λ(t) = exp(− exp(exp(exp(|t|−r)))), r > 0.

The central result of this section is the following theorem:

Theorem 4.2.1. If the constant p is sufficiently large, then the Cauchy prob-
lem (4.2.1) has a solution u with the property that

U :=




〈D〉m−1((λσ)m−1u)
〈D〉m−2((λσ)m−2Dtu)

. . .
Dm−1
t u


 ∈ C ([0, T ], Hs0) ∩ C1

(
[0, T ], Hs0−1

)
.

Let CR, CR,∼ be the constants from Section 3.2, see (3.2.14) and (3.2.12).
Then a constant C1 (independent of u) exists with the property that the estimate

‖U(t)‖Hs0 ≤ C2
R,∼

∫ t

0

eC1(t−s)
(
λ(t)

λ(s)

)CR,∼CR(m−1)

‖F (s)‖Hs0 ds

holds. The constant C1 is given in (4.2.6). The number p of (4.2.2) can be
chosen as given in (4.2.3).
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Proof. Let CR, CR,∼ be the constants from Section 3.2, describing some prop-
erties of the symmetrizer R(x, t,D). Then we choose some real number p with

p > CR,∼CR(m− 1) + 1. (4.2.3)

We obtain the system

∂tU1 = (m− 1)
λ′

λ
U1 + λi〈D〉(σU2) + λi〈D〉

[
〈D〉m−2, σ

]
〈D〉2−mU2,

∂tU2 = (m− 2)
λ′

λ
U2 + λi〈D〉(σU3) + λi〈D〉

[
〈D〉m−3, σ

]
〈D〉3−mU3,

. . . ,

∂tUm−1 =
λ′

λ
Um−1 + λi〈D〉(σUm),

∂tUm = iDm
t u = −i

∑

j+|α|=m,j<m
aj,αλ

|α|Dα
xD

j
t

(
σ|α|u

)
+ if

= −iλ
∑

j+|α|=m,j<m
aj,αP

α〈D〉(σUj+1)

− iλ
∑

j+|α|=m,j<m
aj,αP

α〈D〉
[
〈D〉|α|−1, σ

]
〈D〉1−|α|Uj+1 + if.

This leads to

∂tU = λK(σU) + λBU +H
λ′

λ
U + F, U(0) = 0 (4.2.4)

with K, B, F as in (3.2.7), (3.2.8), (3.2.9) and H = diag(m−1, m−2, . . . , 1, 0).
Considering a regularised version of this system, we substitute λ by λ + δ in
suitably chosen places to eliminate the time degeneracy and insert a smoothing
operator Jε. This results in the system

∂tUδε = Jε(λ+ δ)K(σUδε) + λBUδε +H
λ′

λ+ δ
Uδε + F, (4.2.5)

Uδε(0) = 0.

The function Uδε is a solution of a weakly hyperbolic pseudodifferential system
with spatial degeneracy. Therefore it is possible to find an energy estimate for
Uδε by the same procedure as in Section 3.2. We can take the same symmetrizer
R as in the previous chapter, since the function λ+ δ has no influence on the
operator K. This operator does not feel the time degeneracy.
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If 1 + n/2 < s ≤ s0 or s = 0, then the estimate

dt (R〈D〉sUδε, 〈D〉sUδε)
= (Rt〈D〉sUδε, 〈D〉sUδε) + (R〈D〉sJε(λ+ δ)K(σUδε), 〈D〉sUδε)

+
(
R〈D〉sJε(λBUδε +H λ′

λ+δ
Uδε + F ), 〈D〉sUδε

)

+ (R〈D〉sUδε, 〈D〉sJε(λ+ δ)K(σUδε))

+
(
R〈D〉sUδε, 〈D〉s(λBUδε +H λ′

λ+δ
Uδε + F )

)

≤ C(‖aj,α‖C0
b
) max

j,α
(‖∂taj,α‖C0

b
+ 1) ‖Uδε‖2

Hs

+ (λ(t) + δ)C(‖aj,α‖C0
b
) max

j,α
(‖aj,α‖C1

b
+ ‖aj,α‖Hs + 1) ‖Uδε‖2

Hs

+ 2CR(m− 1) λ′(t)
λ(t)+δ

‖Uδε‖2
Hs

+ 2
√

(R〈D〉sUδε, 〈D〉sUδε)
√

(R〈D〉sF, 〈D〉sF )

holds, compare Proposition 3.2.2. We define

Hs(Uδε(t)) :=
√

(R(t)〈D〉sUδε(t), 〈D〉sUδε(t))
and it follows that

dtHs(Uδε(t)) ≤ C1Hs(Uδε(t)) + CR,∼CR(m− 1)
λ′(t)

λ(t) + δ
Hs(Uδε(t))

+ CR,∼ ‖F (t)‖Hs . (4.2.6)

By Gronwall’s Lemma we see that

Hs(Uδε(t)) ≤
∫ t

0

eC2,δ(t−τ)CR,∼ ‖F (τ)‖Hs dτ

≤ e
CT
δ CR,∼CF

∫ t

0

λ′(τ)λ(τ)pdτ

≤ Cδλ(t)p+1,

C2,δ = sup
[0,T ]

{
C1 + CR,∼CR(m− 1) λ′(t)

λ(t)+δ

}
= O(δ−1).

This allows us to apply the Lemma of Nersesyan (see Lemma B.0.4) to (4.2.6).
The result is

Hs(Uδε(t)) ≤
∫ t

0

eC1(t−τ)
(
λ(t)

λ(τ)

)CR,∼CR(m−1)

CR,∼ ‖F (τ)‖Hs dτ

≤ CR,∼CFλ(t)CR,∼CR(m−1)

∫ t

0

eC1(t−τ)λ(τ)p−CR,∼CR(m−1)λ′(τ)dτ

≤ CR,∼CFe
C1t

p− CR,∼CR(m− 1) + 1
λ(t)p+1.
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We emphasise that this estimate is independent of δ and ε. We know that

Uδε ∈ C ([0, T ], Hs0) ∩ C1
(
[0, T ], Hs0−1

)
.

Employing the methods from Section 3.3 one can show that

∃ lim
ε→0

Uδε ∈ C ([0, T ], Hs0) ∩ C1
(
[0, T ], Hs0−1

)
.

Using a standard technique one proves that this limit Uδ solves

∂tUδ = (λ+ δ)K(σUδ) + λBUδ +H
λ′

λ+ δ
Uδ + F, Uδ(0) = 0 (4.2.7)

and that the following energy estimate holds for 1 + n/2 < s ≤ s0 and s = 0:

Hs(Uδ(t)) ≤ CR,∼

∫ t

0

eC1(t−τ)
(
λ(t)

λ(τ)

)CR,∼CR(m−1)

‖F (τ)‖Hs dτ. (4.2.8)

In the next step we let δ tend to 0 and study the convergence properties of the
sequence (Uδ). The difference Uδ − Uδ′ satisfies the equation

dt(Uδ − Uδ′) = (λ+ δ)K(σUδ) − (λ+ δ′)K(σUδ′) + λBUδ − λBUδ′

+H

(
λ′

λ+ δ
Uδ −

λ′

λ+ δ′
Uδ′

)

= (λ+ δ′)K(σ(Uδ − Uδ′)) + λB(Uδ − Uδ′) +H
λ′

λ + δ′
(Uδ − Uδ′)

+ (δ − δ′)

(
K(σUδ) −H

λ′

(λ+ δ)(λ+ δ′)
Uδ

)
.

From (4.2.8) with s = 0 it can be concluded that

H0((Uδ − Uδ′)(t)) ≤ CR,∼

∫ t

0

eC1(t−τ)
(
λ(t)

λ(τ)

)CR,∼CR(m−1)

|δ − δ′|

×
(
‖KσUδ‖L2 + (m− 1)

λ′

(λ+ δ)(λ+ δ′)
‖Uδ‖L2

)
dτ

≤ C|δ − δ′|eC1tλ(t)CR,∼CR(m−1)

∫ t

0

λ(τ)p−1−CR,∼CR(m−1)λ′(τ)dτ

≤ C|δ − δ′|λ(t)p.

So evidence is given that (Uδ) is a Cauchy sequence in the Banach space
C ([0, T ], H0). Using (4.2.8), Nirenberg–Gagliardo Interpolation and the dif-
ferential equation we see that it is also a Cauchy sequence in the spaces
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C ([0, T ], Hs), C1 ([0, T ], Hs−1) for s < s0. It is standard to show that the
limit U is a solution of (4.2.4). From (4.2.8) we gain a uniform estimate of
Uδ(t) in the Hilbert space Hs0. The weak compactness of bounded subsets in
Hilbert spaces and the convergence in spaces of low regularity imply

U ∈ L∞ ([0, T ], Hs0) ∩ Lip1([0, T ], Hs0−1).

It remains to show that

U ∈ C ([0, T ], Hs0) ∩ C1
(
[0, T ], Hs0−1

)
.

This can be done as follows: the function U is a solution of the weakly hyper-
bolic Cauchy problem with spatial degeneracy

∂tU = λK(σU) + λBU +H
λ′

λ
U + F, t ≥ γ > 0,

U(., γ) = U(γ) ∈ Hs0.

The techniques for solving such problems lead us to

U ∈ C ([γ, T ], Hs0) ∩ C1
(
[γ, T ], Hs0−1

)
∀γ > 0.

On the other hand we have U(0) = 0 and ‖U(t)‖Hs0 ≤ Cλ(t)p+1. This gives
the continuity for t = 0 and the theorem is proved.

Remark 4.2.2. The theorem shows that weighted derivatives of the solution
of order m − 1 belong to the same Sobolev space as the right–hand side. This
is exactly the strictly hyperbolic type property, which will allow us to attack
special quasilinear equations with time degeneracy in the next section.

4.3 A Special Quasilinear Case

A special quasilinear case shall be examined here. We assume that the initial
data are zero and that the right–hand side has a suitable asymptotic behaviour.
In other words, let us consider the Cauchy problem

Dm
t u+

∑

j+|α|=m,j<m
aj,α(x, t, {Dβ

xck,β(x, t)D
k
t u})λ(t)|α|Dα

xD
j
t (σ(x)|α|u)

= f(x, t, {Dβ
xck,β(x, t)D

k
t u}), k + |β| ≤ m− 1, (4.3.1)

u(x, 0) = · · · = Dm−1
t u(x, 0) = 0
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with the following asymptotic behaviour for f :

‖f(., t, 0)‖Hs0 ≤ Cfpλ(t)pλ′(t), (4.3.2)∥∥∥∥
∂f

∂gk,β
(., t, (gk,β))

∥∥∥∥
L∞

≤ Cfkβ (4.3.3)

for all t ∈ [0, T ] and all (gk,β) ∈ Rn0 from a suitable chosen compact set near
zero. Furthermore, we suppose (3.2.1), (3.3.6), (3.3.8) (replace t0 by 0 and
KG by some compact set near zero) and Condition 2. Concerning the weight
functions ck,β we assume the Levi conditions

ck,β(x, t) =

{
λ(t)m−kΛ(t)k+|β|−mc0k,β(x, t) : |β| > 0,

c0k,β(x, t) : |β| = 0,
(4.3.4)

where Λ(t) =
∫ t
0
λ(τ) dτ ; and the functions c0k,β fulfil the relations

∥∥c0k,β,t(., t)v(.)
∥∥
Hs+|β| ≤ Cc

∥∥c0k,β(., t)v(.)
∥∥
Hs+|β| , k + |β| ≤ m− 2,

(4.3.5)∥∥c0k,β(., t)v(.)
∥∥
Hs+|β| ≤ Cc

∥∥c0k+1,β(., t)v(.)
∥∥
Hs+|β| , k + |β| ≤ m− 2,

(4.3.6)

c0k,β(x, t) = σ(x)|β|, k + |β| = m− 1, (4.3.7)

for all 0 ≤ s ≤ s0.

Our intention is to show the local existence of a solution to (4.3.1), see Theorem
4.3.5. For this purpose we transform the equation into an equivalent system
of first order and study a linearised version of this system. In other words, we
introduce U = (U1, . . . , Um)T , V = (V1, . . . , Vm)T , V ∗ = (Vk,β, V ),

U1 := 〈D〉m−1((λσ)m−1u), V1 := 〈D〉m−1((λσ)m−1v),

U2 := 〈D〉m−2((λσ)m−2Dtu), V2 := 〈D〉m−2((λσ)m−2Dtv),

. . . , . . . ,

Um := Dm−1
t u, Vm := Dm−1

t v,

Vk,β(x, t) = Dβ
x(ck,β(x, t)D

k
t v(x, t)) (4.3.8)

and get the system

∂tU(x, t) = λK(x, t, V ∗, D)σU + λB(x, t, V ∗, D)U

+ F (x, t, V ∗) +H
λ′

λ
U,

U(0) = 0.
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Utilising the mapping V 7→ V ∗ 7→ U we can construct a sequence {V k} in
a standard way, see Subsection 4.3.2. In Subsection 4.3.3 the convergence of
this sequence will be proved. Then it is not difficult to show that (4.3.1) has
a solution in appropriate spaces, if p from (4.3.2) is large enough. But before
this sequence {V k} can be studied, estimates of K, B and F must be found.
This will be done now.

4.3.1 Auxiliary Estimates

The following lemma proves the boundedness of the mapping V 7→ V ∗ in
certain topologies.

Lemma 4.3.1. Let T < 1 and

‖V (t)‖Hs0 ≤ Cvpλ(t)p+1.

We assume that p ≥ CλCc +m. Then it holds
∥∥〈D〉|β|ck,β(., t)Dk

t v(., t)
∥∥
Hs0

≤ CλCvpλ(t)pλ′(t)eCct, (4.3.9)

‖Vk,β(., t)‖Hs0
≤ CλCvpλ(t)pλ′(t)eCct. (4.3.10)

Proof. We prove (4.3.9) by induction over k+ |β|. Then the assertion (4.3.10)
is an immediate consequence. Let k + |β| = m − 1. If |β| = 0, then (4.3.9)
follows from the definition of V , Vk,β and 1 Cλ > 1, see Condition 3. Hence,
we may assume |β| > 0. Then we have

∥∥〈D〉|β|ck,β(., t)Dk
t v
∥∥
Hs0

= λ(t)m−kΛ(t)k+|β|−m ∥∥σ|β|Dk
t v
∥∥
Hs0+|β|

=
λ(t)

Λ(t)

∥∥λ(t)|β|〈D〉|β|(σ|β|Dk
t v)
∥∥
Hs0

≤ Cλ
λ′(t)

λ(t)
‖V (t)‖Hs0 ≤ CλCvpλ(t)pλ′(t).

The case k + |β| = m − 1 is the base of the induction. Let k + |β| ≤ m − 2.
Then

dt
∥∥〈D〉|β|(ck,βDk

t v)
∥∥2

Hs0
= 2

(
〈D〉|β|(ck,β,tDk

t v), 〈D〉|β|(ck,βDk
t v)
)
Hs0

+ 2
(
〈D〉|β|(ck,β∂tDk

t v), 〈D〉|β|(ck,βDk
t v)
)
Hs0

,

which leads to

dt
∥∥〈D〉|β|(ck,βDk

t v)
∥∥
Hs0

≤ S1 + S2 :=
∥∥ck,β,tDk

t v
∥∥
Hs0+|β| +

∥∥ck,βDk+1
t v

∥∥
Hs0+|β| .

1The inequality Cλ > 1 can be proved in a similar way as (6.3.3), see also (6.1.6).
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If |β| > 0, then using (4.3.4) and (4.3.5) we obtain

S1 ≤
(

(m− k)
λ′

λ
+ (k + |β| −m)

λ

Λ

)
λm−kΛk+|β|−m ∥∥c0k,βDk

t v
∥∥
Hs0+|β|

+ λm−kΛk+|β|−m ∥∥c0k,β,tDk
t v
∥∥
Hs0+|β|

≤
(

(m− k)
λ′

λ
+ Cc

)∥∥ck,βDk
t v
∥∥
Hs0+|β| .

In the case |β| = 0 the condition (4.3.5) yields

S1 ≤ Cc
∥∥ck,βDk

t v
∥∥
Hs0+|β| .

To estimate S2 for |β| = 0, we exploit λ(t) ≤ tλ′(t) ≤ λ′(t), Cλ > 1, the
induction hypothesis and conclude that

S2 =
∥∥ck,βDk+1

t v
∥∥
Hs0+|β| =

∥∥c0k,βDk+1
t v

∥∥
Hs0+|β|

≤ Cc
∥∥c0k+1,βD

k+1
t v

∥∥
Hs0+|β| ≤ CcCλCvpλ(t)pλ′(t)eCct

≤ CcC
2
λCvp(λ

′(t))2λ(t)p−1eCct.

If |β| > 0, then

S2 = λ(t)m−kΛ(t)k+|β|−m ∥∥c0k,βDk+1
t v

∥∥
Hs0+|β| .

Employing (4.3.6), (4.3.4), Condition 3 and the induction hypothesis we get

S2 ≤ λ(t)m−kΛ(t)k+|β|−mCc
∥∥c0k+1,βD

k+1
t v

∥∥
Hs0+|β|

=
λ(t)

Λ(t)
Cc
∥∥〈D〉|β|(ck+1,βD

k+1
t v)

∥∥
Hs0

≤ λ′(t)

λ(t)
C2
λCcCvpλ(t)pλ′(t)eCct

≤ CcCvpC
2
λ(λ

′(t))2λ(t)p−1eCct.

Summing up results in

dt
∥∥〈D〉|β|(ck,βDk

t v)
∥∥
Hs0

≤
(
m
λ′(t)

λ(t)
+ Cc

)∥∥〈D〉|β|(ck,βDk
t v)
∥∥
Hs0

+ CcCvpC
2
λ(λ

′(t))2λ(t)p−1eCct.

In order to apply the Lemma of Nersesyan, we have to ensure that

∥∥〈D〉|β|(ck,βDk
t v)
∥∥
Hs0

= o(λ(t)m).
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This is true for |β| = 0, cf. the estimate of S2 in the case |β| = 0. If |β| > 0,
then we know from the induction hypothesis that

∥∥ck+1,βD
k+1
t v

∥∥
Hs0+|β| ≤ Cλ(t)pλ′(t),

C is a universal constant. Making use of λ′ ∼ λ2Λ−1 (see Condition 3) we
obtain

∥∥c0k+1,βD
k+1
t v

∥∥
Hs0+|β| ≤ Cλ(t)p+k+1−mλ′(t)Λ(t)m−k−|β|−1

≤ Cλ(t)p+k+3−mΛ(t)m−k−|β|−2.

By (4.3.5), (4.3.6) and the product formula for the differentiation, we get

dt
∥∥c0k,βDk

t v
∥∥
Hs0+|β|

≤ Cλ(t)p+k+3−mΛ(t)m−k−|β|−2 + C
∥∥c0k,β,tDk

t v
∥∥
Hs0+|β|

≤ Cλ(t)p+k+3−mΛ(t)m−k−|β|−2 + C
∥∥c0k,βDk

t v
∥∥
Hs0+|β| .

Gronwall’s Lemma and Condition 3 give

∥∥c0k,βDk
t v
∥∥
Hs0+|β| ≤ C

∫ t

0

λ(τ)p+k+3−mΛ(τ)m−k−|β|−2 dτ

≤ Cλ(t)p+k+2−mΛ(t)m−k−|β|−1

≤ Cλ(t)p+k−mΛ(t)m−k−|β|λ′(t).

This proves
∥∥ck,βDk

t v
∥∥
Hs0+|β| ≤ C0λ(t)pλ′(t) = o(λ(t)m). In order to describe

the constant C0 more precisely we will apply the Lemma of Nersesyan. Utilising
the monotonicity of λ′ and p−m ≥ CλCc we deduce that

∥∥〈D〉|β|(ck,βDk
t v)
∥∥
Hs0

≤
∫ t

0

exp

(∫ t

s

m
λ′(τ)

λ(τ)
+ Cc dτ

)
CcCvpC

2
λ(λ

′(s))2λ(s)p−1eCcs ds

≤ CcCvpC
2
λλ

′(t)

∫ t

0

eCct

(
λ(t)

λ(s)

)m
λ(s)p−1λ′(s) ds

= CcCvpC
2
λλ

′(t)eCctλ(t)m
1

p−m
λ(t)p−m

≤ CλCvpλ(t)pλ′(t)eCct.

The lemma is proved.

Remark 4.3.2. The conclusion of this lemma can be sharpened in the follow-
ing way. If 0 ≤ s ≤ s0, then the estimates

‖Vk,β‖Hs ≤
∥∥〈D〉|β|(ck,βDk

t v)
∥∥
Hs ≤ λ(t)pλ′(t)eCctCλ sup

[0,t]

‖V (τ)‖Hs

λ(τ)p+1
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hold for k + |β| = m− 1. And for k + |β| ≤ m− 2 we have

‖Vk,β‖Hs ≤
∥∥〈D〉|β|(ck,βDk

t v)
∥∥
Hs

≤ λ(t)pλ′(t)eCct sup
[0,t]

∥∥〈D〉|β|(ck+1,βD
k+1
t v)

∥∥
Hs

λ(τ)pλ′(τ)eCcτ
.

This lemma gives us an estimate for V ∗ if a bound of V is known. We will also
employ this lemma to derive an estimate for U ∗ from a bound of U . Such an
estimate of U in the terms of the right–hand side is given by Theorem 4.2.1.
The next lemma will be useful to find an estimate of F in terms of V ∗.

Lemma 4.3.3. Let K ⊂ Rn0 be a compact set and M be an n-dimensional
smooth closed compact manifold. Let f ∈ CN(M × K) with sufficiently large
N . We assume vi ∈ HN(M) with

(x, v1(x), . . . , vn0(x)) ∈M ×K ∀x ∈M.

Then

‖f(., v1(.), . . . , vn0(.))‖HN

≤ ϕN(‖v1‖L∞ , . . . , ‖vn0‖L∞)(‖v1‖HN + · · ·+ ‖vn0‖HN + 1).

More precisely, it can be proved: if N is sufficiently large and 0 ≤ m < n0,
then a constant N1 < N (independent of N) exists with

‖f(., v1(.), . . . , vn0(.))‖′HN

≤ ϕN(‖v1‖CN1
b

, . . . , ‖vn0‖CN1
b

)

× (‖v1‖HN + · · ·+ ‖vm‖HN + ‖vm+1‖HN−1 + · · ·+ ‖vn0‖HN−1)

+

n0∑

j=m+1

∥∥∥∥
∂f

∂vj
(., v1(.), . . . , vn0(.))

∥∥∥∥
L∞

∑

|α|=N
‖∂αx vj‖L2

+
∑

|α|≤N

∥∥f (α,0,...,0)(., v1(.), . . . , vn0(.))
∥∥
L2
.

Here we used the norm ‖w‖′HN =
∑

|α|≤N ‖∂αxw‖L2 , which is equivalent to

‖.‖HN ,

C−1
N ‖w‖′HN ≤ ‖w‖HN ≤ CN ‖w‖′HN . (4.3.11)

This lemma is a generalisation of Remark A.1 in [DR98b] and gives a precise
description of the dependence of ‖f(., v1, . . . , vn)‖′HN on the highest orders of
some vj (see the terms ‖∂αx vj‖L2). The proof is omitted. We will use this lemma
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to determine the loss of Sobolev regularity (it depends on the terms
∥∥fvj

∥∥
L∞

),
or, in other words, to determine the space in which the solution lives.

From now on we assume s0 = N ∈ N and set s1 := N1. Lemma 4.3.3 gives

‖f(x, t, {Vk,β})‖Hs0
≤ Cs0 ‖f(x, t, {Vk,β})‖′Hs0

≤ Cs0ϕs0(‖{Vk,β}‖Cs1
b

) ‖{Vk,β}‖Hs0−1 + Cs0
∑

|α|≤s0

∥∥∥∥
∂αf

∂xα
(x, t, {Vk,β})

∥∥∥∥
L2

+ Cs0
∑

k+|β|≤m−1

∥∥∥∥
∂f

∂Vk,β

∥∥∥∥
L∞

∑

|α|=s0

‖∂αxVk,β‖L2 . (4.3.12)

We estimate the terms on the right. Repeated application of Remark 4.3.2
reveals

‖{Vk,β}‖Hs0−1 = max
β,k

{‖Vk,β‖Hs0−1}

≤ max



max

β 6=0
λ(t)pλ′(t)eCct sup

[0,t]

∥∥∥cm−1−|β|,βD
m−1−|β|
t v

∥∥∥
Hs0+|β|−1

λ(τ)pλ′(τ)eCcτ
,

max
k=0,...,m−1

‖V0k‖Hs0−1

}
.

In the case |β| > 0 we get

I1 := λ(t)pλ′(t)eCct sup
[0,t]

λ(τ)|β|+1−p

Λ(τ)λ′(τ)eCcτ

∥∥∥σ|β|D
m−1−|β|
t v

∥∥∥
Hs0+|β|−1

≤ CλCσλ(t)pλ′(t)eCct

× sup
[0,t]

λ(τ)−p
∥∥∥〈D〉|β|−1(λ(τ)|β|−1σ|β|−1D

m−1−|β|
t v)

∥∥∥
Hs0

. (4.3.13)

Here Condition 3 has been applied and a constant Cσ has been introduced.

By the definition of V , it holds

dτ

∥∥∥〈D〉|β|−1(λ(τ)|β|−1σ|β|−1D
m−1−|β|
t v)

∥∥∥
Hs0

≤ (|β| − 1)
λ′(τ)

λ(τ)

∥∥∥〈D〉|β|−1(λ(τ)|β|−1σ|β|−1D
m−1−|β|
t v)

∥∥∥
Hs0

+
∥∥∥〈D〉|β|−1(λ(τ)|β|−1σ|β|−1D

m−|β|
t v)

∥∥∥
Hs0

≤ (|β| − 1)
λ′(τ)

λ(τ)

∥∥∥〈D〉|β|−1(λ(τ)|β|−1σ|β|−1D
m−1−|β|
t v)

∥∥∥
Hs0

+ sup
[0,τ ]

‖V (s)‖Hs0

λ(s)p+1
λ(τ)p+1.
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Then Nersesyan’s Lemma yields
∥∥∥〈D〉|β|−1(λ(t)|β|−1σ|β|−1D

m−1−|β|
t v)

∥∥∥
Hs0

≤ tλ(t)p+1 sup
[0,t]

‖V (τ)‖Hs0

λ(τ)p+1
.

Making use of the constant Cσ of (4.3.13) we deduce that

I1 ≤ CλCσλ(t)pλ′(t)eCct sup
[0,t]

τλ(τ) sup
[0,τ ]

‖V (s)‖Hs0

λ(s)p+1

≤ CλCσtλ(t)p+1λ′(t)eCct sup
[0,t]

‖V (τ)‖Hs0

λ(τ)p+1
.

Now let us devote ourselves to the case β = 0. It holds the estimate

max
k=0,...,m−1

∥∥c0k,0(., t)Dk
t v
∥∥
Hs0−1 ≤ max

k=0,...,m−1
Cm−1−k
c

∥∥Dk
t v
∥∥
Hs0−1 ,

see (4.3.6) and (4.3.7). For k = m− 1 we get

∥∥Dm−1
t v(., t)

∥∥
Hs0−1 ≤

∥∥Dm−1
t v(., t)

∥∥
Hs0

≤ λ(t)p+1 sup
[0,t]

‖V (τ)‖Hs0

λ(τ)p+1
.

Assuming tCc ≤ 1 we obtain

Cc
∥∥Dm−2

t v(., t)
∥∥
Hs0−1 ≤ Cc

∫ t

0

∥∥Dm−1
t v(., τ)

∥∥
Hs0−1 dτ

≤ Cc

∫ t

0

λ(τ)p+1dτ · sup
[0,t]

‖V (τ)‖Hs0

λ(τ)p+1
≤ λ(t)p+1 sup

[0,t]

‖V (τ)‖Hs0

λ(τ)p+1
.

Following this way we see that

max
k=0,...,m−1

∥∥c0k,0(., t)Dk
t v
∥∥
Hs0−1 ≤ λ(t)p+1 sup

[0,t]

‖V (τ)‖Hs0

λ(τ)p+1
.

Hence it can be concluded that

‖{Vk,β}‖Hs0−1 ≤ max(1, CλCσtλ
′(t)eCct)λ(t)p+1 sup

[0,t]

‖V (τ)‖Hs0

λ(τ)p+1

≤ λ(t)p+1 sup
[0,t]

‖V (τ)‖Hs0

λ(τ)p+1
,

if t is sufficiently small. From this, (4.3.12) and (4.3.3) it follows that

‖f(., t, {Vk,β})‖Hs0
≤ Cs0ϕs0(‖V ∗‖Cs1

b
)λ(t)p+1 sup

[0,t]

‖V (τ)‖Hs0

λ(τ)p+1

+ Cs0
∑

k+|β|≤m−1

Cfkβ
∑

|α|=s0

‖∂αxVk,β‖L2

+ Cs0
∑

|α|≤s0

∥∥∥∥
∂αf

∂xα
(x, t, {Vk,β})

∥∥∥∥
L2
.



76 CHAPTER 4. BOTH DEGENERACIES

We employ Remark 4.3.2 and (4.3.11) to estimate ‖∂αxVk,β‖L2 and see that

∑

|α|=s0

‖∂αxVk,β‖L2 ≤ Cs0 ‖Vk,β‖Hs0

≤ Cs0Cλλ(t)pλ′(t)eCct sup
[0,t]

‖V (τ)‖Hs0

λ(τ)p+1
.

Finally, from Hadamard’s Formula and (4.3.2) it can be deduced that

∑

|α|≤s0

∥∥∥∥
∂αf

∂xα
(x, t, {Vk,β})

∥∥∥∥
L2

≤
∑

|α|≤s0

∥∥∥∥
∂αf

∂xα
(x, t, {Vk,β}) −

∂αf

∂xα
(x, t, 0)

∥∥∥∥
L2

+
∑

|α|≤s0

∥∥∥∥
∂αf

∂xα
(x, t, 0)

∥∥∥∥
L2

≤
∑

|α|≤s0

∥∥∥∥∥
∑

k,β

gαβk(x, t, {Vk,β})Vk,β
∥∥∥∥∥
L2

+ Cs0Cfpλ(t)pλ′(t)

≤ C ‖V ∗(t)‖L2 + Cs0Cfpλ(t)pλ′(t)

≤ C ‖V ∗(t)‖Hs0−1 + Cs0Cfpλ(t)pλ′(t).

Summing up and introducing the notation

Cf :=
∑

k+|β|≤m−1

Cfkβ (4.3.14)

we get the following estimate, if t is small:

‖f(., t, {Vk,β})‖Hs0

≤ Cs0(1 + ϕs0(‖{Vk,β}‖Cs1
b

))λ(t)p+1 sup
[0,t]

‖V (τ)‖Hs0

λ(τ)p+1

+ C2
s0CλCfλ(t)pλ′(t)eCct sup

[0,t]

‖V (τ)‖Hs0

λ(τ)p+1
+ C2

s0Cfpλ(t)pλ′(t)

≤
(

(1 + ϕs0(‖{Vk,β}‖Cs1
b

))
λ(t)

λ′(t)
+ Cs0CλCf

)

× Cs0λ(t)pλ′(t)eCct sup
[0,t]

‖V (τ)‖Hs0

λ(τ)p+1
+ C2

s0
Cfpλ(t)pλ′(t)

≤ 2C2
s0
CλCfλ(t)pλ′(t)eCct sup

[0,t]

‖V (τ)‖Hs0

λ(τ)p+1
+ C2

s0
Cfpλ(t)pλ′(t)

≤ C2
s0
λ(t)pλ′(t)eCct

(
2CλCf sup

[0,t]

‖V (τ)‖Hs0

λ(τ)p+1
+ Cfp

)
. (4.3.15)



4.3. A SPECIAL QUASILINEAR CASE 77

4.3.2 Iteration

Now we have all tools to find a bound for the mapping V 7→ V ∗ 7→ U .

Lemma 4.3.4. We assume that p is so large and that T ∗ is so small that

p > 2C2
R,∼C

2
s0

(2CλCf + Cfp) + CR,∼CR(m− 1),

p ≥ CcCλ +m,

T ∗ ≤ min(C−1
c , 1),

CλCσT
∗λ′(T ∗)eCcT ∗ ≤ 1,

(1 + ϕ0(‖{Vk,β}‖Cs1
b

))
λ(T ∗)

λ′(T ∗)
≤ Cs0CλCf (for ‖V (t)‖Hs0 ≤ λ(t)p+1),

e(C1+Cc)T ∗ ≤ 2.

For the definitions of the constants in these conditions we refer the reader to
the formulas given in the following table:

CR,∼ (3.2.12) Cs0 (4.3.11) Cλ Condition 3
Cf (4.3.14) Cfp (4.3.2) CR (3.2.14)
Cc (4.3.5), (4.3.6) C1 (4.2.6) Cσ (4.3.13)

We suppose

sup
[0,T ∗]

‖V (t)‖Hs0

λ(t)p+1
≤ 1.

Then it holds

sup
[0,T ∗]

‖U(t)‖Hs0

λ(t)p+1
≤ 1.

Proof. Due to Theorem 4.2.1 and (4.3.15) we have

‖U(t)‖Hs0 ≤ C2
R,∼

∫ t

0

eC1(t−s)
(
λ(t)

λ(s)

)CR,∼CR(m−1)

‖f(s)‖Hs0 ds

≤ C2
R,∼e

C1t

∫ t

0

(
λ(t)

λ(s)

)CRCR,∼(m−1)

C2
s0
λ(s)pλ′(s)eCcs

×
(

2CλCf sup
[0,s]

‖V (τ)‖Hs0

λ(τ)p+1
+ Cfp

)
ds

≤ C2
R,∼C

2
s0(2CλCf + Cfp)e

(C1+Cc)t
λ(t)p+1

p− CR,∼CR(m− 1) + 1
.
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The assumption on p implies

C2
R,∼C

2
s0(2CλCf + Cfp)

p− CR,∼CR(m− 1) + 1
≤ 1

2
.

Exploiting e(C1+Cc)T ∗ ≤ 2 we obtain ‖U(t)‖Hs0 ≤ λ(t)p+1.

Now we restrict the constant T ∗ in such a manner, that

‖V (t)‖Hs0 ≤ λ(t)p+1 ∀t ∈ [0, T ∗]

implies

(x, (Vk,β(x, t))) ∈ KG ∀(x, t) ∈M × [0, T ∗].

All these results allow us to define a sequence

(V l) ⊂ C ([0, T ∗], Hs0) ∩ C1
(
[0, T ∗], Hs0−1

)

by V 0(t) ≡ 0 and

V l(0) = 0 ∀l,
∂tV

l(t) = λ(t)K(x, t, V ∗,l−1, D)σV l + λ(t)B(x, t, V ∗,l−1, D)V l

+ F (x, t, V ∗,l−1) +H
λ′(t)

λ(t)
V l ∀l ≥ 1.

Due to Lemma 4.3.4 and Remark 4.3.2 the functions V l fulfil
∥∥V l(t)

∥∥
Hs0

≤ λ(t)p+1 ∀t ∈ [0, T ∗],
∥∥V l

k,β(t)
∥∥
Hs0

≤ Cλe
Cctλ(t)pλ′(t) ∀t ∈ [0, T ∗].

4.3.3 Convergence

Now we want to give evidence for the convergence of the sequence (V l) and
cogitate upon the regularity of the limit. Due to Hadamard’s Formula we have

∂t(V
l+1 − V l)(t) = λ(t)K(x, t, V ∗,l, D)σ(V l+1 − V l)

+ λ(t)(K(x, t, V ∗,l, D) −K(x, t, V ∗,l−1, D))σV l

+ λ(t)B(x, t, V ∗,l, D)(V l+1 − V l) +

+ λ(t)(B(x, t, V ∗,l, D) −B(x, t, V ∗,l−1, D))V l

+ F (x, t, V ∗,l) − F (x, t, V ∗,l−1) +H
λ′(t)

λ(t)
(V l+1 − V l)

= λ(t)K(x, t, V ∗,l, D)σ(V l+1 − V l) + λ(t)B(x, t, V ∗,l, D)(V l+1 − V l)

+H
λ′(t)

λ(t)
(V l+1 − V l) +G(x, t, V ∗,l, V ∗,l−1, D)(V l,∗ − V ∗,l−1)
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with
∥∥G(., t, V ∗,l, V ∗,l−1, D)(V l,∗ − V ∗,l−1)

∥∥
L2

≤ C3

∥∥V ∗,l − V ∗,l−1
∥∥
L2
.

(4.3.16)

The difference W l := V l+1 − V l satisfies the differential equation

∂tW
l(t) = λ(t)K(x, t,D)σW l + λ(t)B(x, t,D)W l

+H
λ′(t)

λ(t)
W l +G(x, t)W ∗,l−1.

Theorem 4.2.1 and Remark 4.3.2 give

∥∥W l(t)
∥∥
L2

≤ C2
R,∼

∫ t

0

eC1(t−s)
(
λ(t)

λ(s)

)CR,∼CR(m−1) ∥∥G(., s)W ∗,l−1
∥∥
L2
ds

≤ C2
R,∼CλC3e

(C1+Cc)tλ(t)CR,∼CR(m−1)

×
∫ t

0

λ(s)p−CR,∼CR(m−1) sup
[0,s]

∥∥W l−1
∥∥
L2

λ(τ)p+1
λ′(s)ds

≤ C2
R,∼CλC3e

(C1+Cc)t

p− CR,∼CR(m− 1) + 1
λ(t)p+1 sup

[0,t]

∥∥W l−1
∥∥
L2

λ(s)p+1
.

If p satisfies

2C2
R,∼CλC3

p− CR,∼CR(m− 1) + 1
≤ 1

2
, (4.3.17)

then we get

sup
[0,T ∗]

∥∥W l(t)
∥∥
L2

λ(t)p+1
≤ 1

2
sup
[0,T ∗]

∥∥W l−1(t)
∥∥
L2

λ(t)p+1
.

This proves that the sequence (V l) is a Cauchy sequence in C ([0, T ∗], H0).
By the Interpolation Theorem of Nirenberg–Gagliardo we see that (V l) is a
Cauchy sequence in C ([0, T ∗], Hs0−1), too. We denote the limit by U and prove
in a standard way that U is a solution of (4.3.1). Exploiting the arguments
which gave (3.3.20) we get U ∈ C ([0, T ∗], Hs0). Thus, we have proved:

Theorem 4.3.5 (Existence). Let the conditions mentioned at the beginning
of this section be fulfilled. Let s0 ∈ N be sufficiently large and let p be a constant
satisfying the conditions from Lemma 4.3.4 and (4.3.17). We assume that T ∗

fulfils the conditions given in Lemma 4.3.4. Then the Cauchy problem (4.3.1)
has a solution u with

U ∈ C ([0, T ∗], Hs0) ∩ C1
(
[0, T ∗], Hs0−1

)
.
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Remark 4.3.6. One assumption of this theorem was

f ∈ C([0, T ], Cs0(KG)).

It is possible to weaken this assumption. Namely, it suffices to assume that f
depends on x with smoothness Hs0 and on {Vk,β} with smoothness Cs0. Then
weighted derivatives of order m− 1 of u will belong to the same Sobolev space
as the right–hand side. This is the strictly hyperbolic type property.

4.4 Reduction of a

General Quasilinear Equation to a

Quasilinear Equation with

Special Right–Hand Side

In this section we reflect upon a general quasilinear weakly hyperbolic Cauchy
problem and prove the existence of a solution using the technique of the pre-
vious section. Namely, we will transform the Cauchy problem

Dm
t u+

∑

j+|α|=m,j<m
aj,α(x, t, {Dβ

xck,β(x, t)D
k
t u})λ(t)|α|Dα

xD
j
t (σ(x)|α|u)

= f(x, t, {Dβ
xck,β(x, t)D

k
t u}), k + |β| ≤ m− 1, (4.4.1)

u(x, 0) = ϕ0(x), . . . , D
m−1
t u(x, 0) = ϕm−1(x)

into another Cauchy problem

Dm
t v +

∑

j+|α|=m,j<m
aj,α,p′(x, t, {Dβ

xck,β(x, t)D
k
t v})λ(t)|α|Dα

xD
j
t (σ(x)|α|v)

= fp′(x, t, {Dβ
xck,β(x, t)D

k
t v}), (4.4.2)

v(x, 0) = · · · = Dm−1
t v(x, 0) = 0,

whose right–hand side fp′ fulfils the relations (4.3.2) and (4.3.3) with p = p(p′).
It will be shown that these two Cauchy problems are equivalent in the sense
that functions u1, u2, . . . , up′ exist with

u = u1 + u2 + · · ·+ up′ + v.

The functions u1, u2, . . . , up′ are solutions of ODEs in t with parameter x.
If p is large enough, then we can apply Theorem 4.3.5 to (4.4.2) and see that
there is a solution v of (4.4.2). This proves the existence of a solution u of the
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general Cauchy problem (4.4.1). This idea has been used in [KY98], [RY93]
and [Rei97].

The Example of Qi Min–You [Qi58] shows that a loss of Sobolev regularity (in
comparison to the data) must be expected. This phenomenon can be observed
in our computations, too. Namely, the smoothness of the uj decreases by m,
as j increases by 1.

We list the assumptions.

The functions ck,β are assumed to satisfy (4.3.4)–(4.3.7). The functions aj,α
and the right–hand side f are defined in the set KG; see (3.3.5). Finally, we
suppose (3.2.1), (3.3.6), (3.3.7), (3.3.8), Condition 2 and Condition 3.

We will prove:

Theorem 4.4.1 (Existence). If s0 ∈ N is large enough, then some number
T ∗ ∈ (0, T ] and some γ > 0 (independent of s0) exist with the property that
there is a solution u of (4.4.1) with

U :=




〈D〉m−1((λσ)m−1u)
〈D〉m−2((λσ)m−2Dtu)

. . .
Dm−1
t u


 ∈

1⋂

j=0

Cj
(
[0, T ∗], Hs0−γ−j) .

Proof. We define

εl,i,β =

{
1 : |β| = 0 or l > i,

0 : |β| > 0 and l = i

and consider the system of ODEs in t with parameter x

Dm
t u1(x, t) = f(x, t, {Dβ

xck,β(x, t)D
k
t u1(x, t)ε1,1,β}),

u1(x, 0) = ϕ0(x), . . . , D
m−1
t u1(x, 0) = ϕm−1(x),

Dm
t ul(x, t) = gl(x, t, ul(x, t), . . . , D

m−1
t ul(x, t))

:= f
(
x, t,

{
Dβ
xck,β(x, t)D

k
t

l∑

i=1

εl,i,βui(x, t)
})

− f
(
x, t,

{
Dβ
xck,β(x, t)D

k
t

l−1∑

i=1

εl−1,i,βui(x, t)
})

−

−
∑

j+|α|=m,j<m
ãj,α,l(x, t)

l−1∑

i=1

λ(t)|α|Dα
xD

j
t (σ(x)|α|ui(x, t))

+
∑

j+|α|=m,j<m
ãj,α,l−1(x, t)

l−2∑

i=1

λ(t)|α|Dα
xD

j
t (σ(x)|α|ui(x, t))

ul(x, 0) = · · · = Dm−1
t ul(x, 0) = 0, l = 2, . . . , p.
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The following notations have been used here:

ãj,α,l(x, t) := aj,α

(
x, t,

{
Dβ
xck,β(x, t)D

k
t

l∑

i=1

ui(x, t)εl,i,β

})
,

0∑

i=1

= 0.

This system can be solved step by step and possesses solutions

ul ∈ Cm
(
[0, Tl], H

s0−m(l−1)
)
, s0 −ml >

n

2
+ 1.

To see this, one may apply Theorem 3.3.1 with σ ≡ 0.

The functions ul have a special asymptotical behaviour for t→ 0. Obviously,

m−1∑

j=0

∥∥Dj
tu1(., t)

∥∥
Hs0

≤ C1λ(t)0.

Let ε be a positive number with ε < m− (m−1)Cλ, Cλ from Condition 3. We
assume

m−1∑

j=0

∥∥Dj
tul(., t)

∥∥
Hs0−m(l−1) ≤ Clλ(t)ε(l−1)

with s0 −ml > 1 + n/2 and prove

m−1∑

j=0

∥∥Dj
tul+1(., t)

∥∥
Hs0−ml ≤ Cl+1λ(t)εl.

For this purpose we consider ‖gl+1(t)‖Hs0−ml . Hadamard’s Formula yields

f
(
x, t,

{
Dβ
xck,βD

k
t

l+1∑

i=1

εl+1,i,βui

})
− f

(
x, t,

{
Dβ
xck,βD

k
t

l∑

i=1

εl,i,βui

})

=
∑

k

d1lk(x, t)ck,0D
k
t ul+1 +

∑

|β|>0,k

d2lkβ(x, t)D
β
xck,βD

k
t ul.

We drop the arguments of ck,β(x, t), λ(t), σ(x), uj(x, t) and ãj,α,l(x, t) from
now on. Similarly we get

∑

j+|α|=m,

j<m

(
ãj,α,l+1

l∑

i=1

λ|α|Dα
xD

j
t (σ

|α|ui) − ãj,α,l

l−1∑

i=1

λ|α|Dα
xD

j
t (σ

|α|ui)

)

= S1 + S2,
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S1 =
∑

j+|α|=m,j<m
ãj,α,l+1λ

|α|D|α|
x Dj

t (σ
|α|ul),

S2 =
∑

j+|α|=m,j<m
(ãj,α,l+1 − ãj,α,l)

l−1∑

i=1

λ|α|Dα
xD

j
t (σ

|α|ui)

=
∑

j,α,k

d3αlk(x, t)
(
ck,0D

k
t ul+1

) l−1∑

i=1

λ|α|Dα
xD

j
t (σ

|α|ui)

+
∑

j,α,|β|>0,k

d4αlkβ(x, t)
(
Dβ
xck,βD

k
t ul
) l−1∑

i=1

λ|α|Dα
xD

j
t (σ

|α|ui).

The Hs0−ml–norms of the functions d1lk, d2lkβ, d3αlk and d4αlk are bounded
since

m−1∑

j=0

∥∥Dj
tui(., t)

∥∥
Hs0−m(l−1) ≤ Ciλ(t)ε(i−1), i ≤ l,

m−1∑

j=0

∥∥Dj
tul+1(., t)

∥∥
Hs0−ml ≤ C.

The function λ(t)m−εΛ(t)1−m is monotonically increasing due to the choice of
ε, see Condition 3. This implies

‖ck,β(., t)‖Hs ≤ Csλ(t)ε ∀s ∈ R
+, ∀|β| > 0.

We conclude that ul+1 is a solution of

Dm
t ul+1 +

∑

k<m

d5k(x, t)D
k
t ul+1 = hl+1(x, t)

with

‖hl+1(., t)‖Hs0−ml ≤ Cλ(t)εl, ‖d5k(., t)‖Hs0−ml ≤ C. (4.4.3)

Utilising a standard technique one shows

m−1∑

j=0

∥∥Dj
tul+1(., t)

∥∥
Hs0−ml ≤ C

∫ t

0

‖hl+1(., τ)‖Hs0−ml dτ ≤ Cl+1λ(t)εl.

This is the desired estimate. Summing up the differential equations for u1,
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. . . , ul we deduce that

Dm
t (u1 + · · · + ul) = f

(
x, t,

{
Dβ
xck,βD

k
t

l∑

i=1

εl,i,βui

})

−
∑

j+|α|=m,j<m
ãj,α,l

l−1∑

i=1

λ|α|Dα
xD

j
t (σ

|α|ui),

Dj
t (u1 + · · · + ul)(x, 0) = ϕj(x), j = 0, . . . , m− 1.

If a function v has homogeneous initial data and satisfies

Dm
t v

= f
(
x, t,

{
Dβ
xck,βD

k
t

( l∑

i=1

ui + v
)})

−f
(
x, t,

{
Dβ
xck,βD

k
t

l∑

i=1

εl,i,βui

})

−
∑

j+|α|=m,j<m
aj,α

(
x, t,

{
Dβ
xck,βD

k
t

( l∑

i=1

ui + v
)})

× λ|α|Dα
xD

j
t

(
σ|α|
( l∑

i=1

ui + v
))

+
∑

j+|α|=m,j<m
aj,α

(
x, t,

{
Dβ
xck,βD

k
t

l∑

i=1

εl,i,βui

})
λ|α|Dα

xD
j
t

(
σ|α|

l−1∑

i=1

ui

)
,

then the function u :=
∑l

i=1 ui + v solves (4.4.1). We define

aj,α,l(x, t, {Dβ
xck,βD

k
t v}) := aj,α

(
x, t,

{
Dβ
xck,βD

k
t

( l∑

i=1

ui + v
)})

,

fl(x, t, {Dβ
xck,βD

k
t v})

:=f
(
x, t,

{
Dβ
xck,βD

k
t

( l∑

i=1

ui + v
)})

−f
(
x, t,

{
Dβ
xck,βD

k
t

l∑

i=1

εl,i,βui

})

−
∑

j+|α|=m,j<m
aj,α

(
x, t,

{
Dβ
xck,βD

k
t

( l∑

i=1

ui + v
)})

× λ|α|Dα
xD

j
t

(
σ|α|

l∑

i=1

ui

)

+
∑

j+|α|=m,j<m
aj,α

(
x, t,

{
Dβ
xck,βD

k
t

l∑

i=1

εl,i,βui

})
λ|α|Dα

xD
j
t

(
σ|α|

l−1∑

i=1

ui

)



4.4. REDUCTION . . . 85

and obtain (4.4.2) with p′ := l. It remains to verify the conditions (4.3.2)
and (4.3.3) for this function fl: We fix δ > 0 and restrict all the intervals [0, Tl]
in such a way that

∥∥∥∥∥D
j
t

l∑

i=1

ui(., t) − ϕj(.)

∥∥∥∥∥
Hs0−ml

≤ δ, 0 ≤ t ≤ Tl, 0 ≤ j ≤ m− 1.

The condition (4.3.3) is obviously satisfied for t ≤ Tl and the constants Cfkβ
only depend on δ, but not on l. This argument reveals more, namely that the
constant C3 from (4.3.16) and (4.3.17) only depends on δ and does not depend
on p and l. In a similar way as in the proof of (4.4.3) one shows

‖fl(., t, 0)‖Hs0−ml ≤ Clλ(t)εl,

which proves (4.3.2) with, e.g., p := εl − 1. It has to be remarked that the
meaning of s0 has changed. One has to replace s0 by s0 −ml.

Theorem 4.3.5 gives the existence of a solution v to (4.4.2) which satisfies
〈D〉k((λσ)kv) ∈ C

(
[0, T ∗], Hs0−ml

)
, if p and s0 −ml are large enough.

The proof is complete.

Proposition 3.3.4 leads to the following criterion for the blow–up of the solu-
tion:

Corollary 4.4.2 (Blow–up). Let the solution U from Theorem 4.4.1, which
belongs to C ([0, T ), Hs0−γ) ∩ C1 ([0, T ), Hs0−γ−1), satisfy

sup
[0,T )

‖U∗(t)‖C1
∗
<∞,

inf
[0,T )

dist((x, {Uk,β(x, t)}), ∂KG) ≥ δ > 0.

The vector U ∗ is defined in a similar way to V ∗, cf. (4.3.8). If s0−γ > 1+n/2,
then a constant T1 > T exists with the property that

U∗ ∈ C
(
[0, T1], H

s0−γ) ∩ C1
(
[0, T1], H

s0−γ−1
)

is a solution.

Proof. Theorem 4.4.1 shows the existence of a solution u in the interval [0, t0].
We consider the Cauchy problem with data for t = t0. Then Proposition 3.3.4
yields the assertion.

In other words, a blow–up of the solution in the Hs0−γ norm can only happen
if the solution blows up in the C1

∗ norm or if some argument of the coefficients
or the right–hand side leaves the domain of definition.
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4.5 Examples

In this section we give some examples for the weight functions ck,β, c
0
k,β.

Example 4.5.1. We may choose c0k,β(x, t) = σ(x)|β|.

Example 4.5.2. We may take functions d0
k,β ∈ C1([0, T ], C∞(M)) and define

c0k,β(x, t) = d0
k,β(x, t)σ(x)|β|.

However, this choice can be reduced to the first example by modifying the defi-
nition of the functions aj,α, f .

Example 4.5.3. Let M be the unit circle. Functions on M can be regarded
as 2π–periodic functions over R. We define

σ(x) := exp
(
−(sin(x))−2

)
,

c0k,β(x, t) =

{
(t+ 1)σ(x)|β| : x ∈ [2kπ, (2k + 1)π), k ∈ Z,

(t+ 2)σ(x)|β| : x ∈ [(2k + 1)π, (2k + 2)π), k ∈ Z.

The functions c0k,β(x, t) belong to C∞([0, T ] ×M) and we can write

c0k,β(x, t) = d(x, t)σ(x)|β|

with some function d(x, t) ∈ C∞([0, T ], L∞(M)). Since the function d(x, t) is
not smooth enough it is not possible to reduce this example to the first one.
Otherwise one would get coefficients ãj,α and a right–hand side f which are
not differentiable with respect to x.

The last example shows that the usage of the weight functions ck,β(x, t)
with (4.3.4)–(4.3.7) gives more generality than the natural choice

ck,β(x, t) =

{
λ(t)m−kΛ(t)k+|β|−mσ(x)|β| : |β| > 0,

1 : |β| = 0

that is motivated by the Levi conditions.



Chapter 5

Domains of Dependence

5.1 Introduction

One of the fundamental properties of solutions to strictly hyperbolic Cauchy
problems is the finite propagation speed, or, in other words, the existence of
a cone of dependence. We will see how to extend these properties to weakly
hyperbolic equations. In [Kaj83] the cone of dependence for solutions of fully
nonlinear weakly hyperbolic systems (including Leray–Volevich effects) was
proved using the theory of local solutions in Gevrey spaces. In this Ph.D.
thesis solutions in Sobolev spaces will be studied. Since the existence of a cone
of dependence implies uniqueness of solutions, and because the uniqueness of
solutions to hyperbolic equations with time degeneracy could not be proved in
spaces of low Sobolev regularity up to now, we study equations with spatial
degeneracy only.

We will construct so-called domains of dependence. It turns out that our
definition generalises the definition from [AM84] from the strictly hyperbolic
case to the weakly hyperbolic case. These domains can be exhausted with
hypersurfaces, and the Cauchy problem is weakly hyperbolic in the normal
direction at each point of each hypersurface, see Definition 5.2.1. One example
of such domains is a cone, whose slope does not exceed some critical value,
see Example 5.2.2. This concept will be applied to prove some results of
uniqueness, finite propagation speed and regularity:

Global uniqueness for linear equations: The solution of a linear Cauchy
problem is unique in any domain of dependence, see Theorem 5.3.1.

Local uniqueness for quasilinear equations: For every ball in the initial
plane one can find a cone (with suitably small slope) over this ball with
the property that the solution is unique in this cone, see Theorem 5.4.4.

87



88 CHAPTER 5. DOMAINS OF DEPENDENCE

Local existence for quasilinear equations: For every rectangle in the ini-
tial plane one can find a rectangular parallelepipedon over the rectangle
with the property that a Sobolev solution of the quasilinear equation
exists in this parallelepipedon, cf. Theorem 5.4.1. This solution exists
in the whole domain of dependence if the equation is linear, cf. Corol-
lary 5.4.5.

Extension property for solutions of quasilinear equations: Let Ω0 be
a domain in the initial plane and let u1, u2 be two solutions of a quasi-
linear Cauchy problem which are defined in the domains Ω1, Ω2 over Ω0.
Let Ω1 and Ω2 be domains of dependence. Then u1 ≡ u2 in Ω1 ∩Ω2, see
Theorem 5.4.6.

C∞ regularity: We consider a quasilinear Cauchy problem, whose coeffi-
cients, right-hand side, weight functions and initial data are C∞. Let
us be given a Sobolev solution in some domain of dependence. Then this
solution is C∞ in this domain, cf. Theorem 5.5.2.

How to extend the results presented in this chapter is a challenging question.
Let us consider two examples. First, one may think about the analytic regu-
larity: we study a quasilinear Cauchy problem, whose coefficients, right-hand
side, weight functions and initial data are analytic. Let us be given a Sobolev
(or C∞) solution in some domain of dependence. Then this solution is ana-
lytic in this domain. It is planned to devote a forthcoming publication to this
subject. The problem of analytic regularity was studied in [AM84] for fully
nonlinear strictly hyperbolic equations and in [CZ97] for a class of weakly hy-
perbolic equations with characteristic roots of constant multiplicity. In [CZ95]
it was shown that solutions are analytic in domains of dependence, if the quasi-
linear equation satisfies some Gevrey type Levi conditions and the solution is
from some Gevrey space.

A second example is the Gevrey regularity: we consider a given quasilinear
Cauchy problem, whose coefficients, right-hand side, weight functions and ini-
tial data are from some Gevrey space Gs, 1 < s < ∞. Then every Sobolev
solution is a Gevrey function defined in the aforementioned domain of depen-
dence. An important tool to prove the Gevrey regularity is a local existence
result in Gevrey spaces. Such local existence results can be found, for instance,
in [Kaj83] or [GR]. Gevrey regularity results for second order equations have
been proved in [MT96] (for the domain Rn × [0, T )).
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5.2 Definition of Domains of Dependence

We come to the definition of a domain of dependence. Here we cite ideas
from [AM84].

We contemplate the Cauchy problem

Dm
t u+

∑

j+|α|≤m,j<m
aj,α(x, t)D

α
xD

j
t

(
σ(x)|α|u

)
= f(x, t), (5.2.1)

u(x, 0) = ϕ0(x), . . . , D
m−1
t u(x, 0) = ϕm−1(x)

for (x, t) ∈ Ω0 × [0, T ] ⊂ R
n
x × R

1
t ; Ω0 is an open and bounded domain with

smooth boundary.

We suppose Condition 1 and

σ ∈ C∞
b (Ω0), (5.2.2)

aj,α ∈
{
C1
b (Ω0 × [0, T ]) : j + |α| = m,

C0
b (Ω0 × [0, T ]) : j + |α| < m.

(5.2.3)

The principal part of the operator from the left is

Pm,σ(x, t,Dx, Dt) = Dm
t +

∑

j+|α|=m,j<m
aj,α(x, t)D

α
xD

j
tσ(x)|α|.

To this operator we assign the strictly hyperbolic operator

Pm,1(x, t,Dx, Dt) = Dm
t +

∑

j+|α|=m,j<m
aj,α(x, t)D

α
xD

j
t .

The domain of dependence Ω over a bounded domain Ω0 ⊂ Rn has to satisfy
the following conditions. At first,

Ω = Ω′ ∩ {(x, t) : t ≥ 0}, Ω′
b R

n+1, Ω′ open , (5.2.4)

Ω0 = Ω′ ∩ {(x, t) : t = 0}. (5.2.5)

Next, the projections π : (x, t) 7→ x of the level sets Ωt0 := Ω′∩{(x, t) : t = t0}
shall become “smaller” for increasing t0,

πΩt1 b πΩt0 ∀0 ≤ t0 < t1 ≤ T. (5.2.6)

The set Ω can be exhausted with hyper-surfaces Sr,

Ω =
⋃

0≤r<r∗
Sr :=

⋃

0≤r<r∗
{(x, t) : g(x, t) = r}. (5.2.7)
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We suppose g ∈ C∞
b (Ω0 × [0, T ]) and

∂g

∂t
> 0 in Ω. (5.2.8)

Furthermore, we assume that each hypersurface Sr intersects1 with the initial
domain Ω0 and

(
Ω0 ∩

⋃

0≤r≤r0

Sr

)
b

(
Ω0 ∩

⋃

0≤r≤r1

Sr

)
∀0 ≤ r0 < r1 < r∗. (5.2.9)

Finally, we will need a connection between the slope of the normal vector to
Sr at the point (x, t) and the largest characteristic root of Pm,σ at the point
(x, t):

λmax,σ(x, t)

∣∣∣∣
∇xg(x, t)

gt(x, t)

∣∣∣∣ < 1, (5.2.10)

λmax,σ(x, t) = sup{|τ | : Pm,σ(x, t, τ, ξ) = 0, |ξ| = 1},
Pm,σ(x, t, τ, ξ) = τm +

∑

j+|α|=m,j<m
aj,α(x, t)σ(x)|α|ξατ j.

This condition can be interpreted in the way that the polynomial Pm,σ is weakly
hyperbolic at the point (x, t) in the normal direction of Sr. Later we will use
the equivalent formula

∣∣∣∣
σ(x)∇xg(x, t)

gt(x, t)

∣∣∣∣ <
1

λmax,1(x, t)
,

λmax,1(x, t) = sup{|τ | : Pm,1(x, t, τ, ξ) = 0, |ξ| = 1},
Pm,1(x, t, τ, ξ) = τm +

∑

j+|α|=m,j<m
aj,α(x, t)ξ

ατ j.

For technical reasons we assume the following condition:

The set Ω0 is strongly star–shaped with centre x∗. (5.2.11)

“Strongly star–shaped with centre x∗” means that a point x∗ ∈ Ω0 exists with
the property that each ray starting at x∗ intersects ∂Ω0 at exactly one point.
This restriction excludes the case that some line segment of some ray starting
from x∗ belongs to ∂Ω0. The mapping Sn−1 → ∂Ω0 which maps a ray to its
intersection point with ∂Ω0 is assumed to be C∞.

1This condition differs from the definition of [AM84]. There it was assumed that Sr∩Ω0 =
∅ and Sr ∩ Ω0 = ∂Ω0 for each r.
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If (5.2.11) holds, then there is a well-known radial extension of functions de-
fined in Ω × [0, T ] to functions defined in Rn × [0, T ]. It is possible to relax
Condition (5.2.11); for instance, it may be assumed that Ω0 is C∞ diffeomor-
phic to a strongly star–shaped domain.

Definition 5.2.1. A set Ω is called a domain of dependence over Ω0 for the
operator Pm,σ if the conditions (5.2.4)–(5.2.11) are satisfied.

Example 5.2.2 (Characteristic cone). The characteristic cone K(B) for
the ball B = B(x∗, d) in the initial plane is defined by

K(B) =

{
(x, t) : |x− x∗| < d− λ′

max,σt, 0 ≤ t <
d

λ′max,σ

}

with

λ′max,σ = λ′max,1 ‖σ‖L∞(B) ,

λ′max,1 = sup
{
|τ | : Pm,1(x, t, τ, ξ) = 0, (x, t) ∈ B × [0, T ], |ξ| = 1

}
.

Figure 5.1 shows this cone and one of the exhausting surfaces Sr.

Ω0

(x∗, d/λ′max,σ)

Sr

Ω

(x∗, 0)
•

•

Figure 5.1: Characteristic cone of dependence

In this section we will also examine the quasilinear Cauchy problem

Dm
t u+

∑

j+|α|≤m,j<m
aj,α(x, t, {Dβ

xσ(x)|β|Dk
t u})Dα

xD
j
t

(
σ(x)|α|u

)

= f(x, t, {Dβ
xσ(x)|β|Dk

t u}), k + |β| ≤ m− 1, (5.2.12)

u(x, 0) = ϕ0(x), . . . , D
m−1
t u(x, 0) = ϕm−1(x).
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This equation will be written as P
(u)
m,σu = f (u).

If u is a solution of this Cauchy problem, then one can define a domain of de-
pendence Ω(u), which itself depends on u, since the coefficients of the principal
part depend on u. For this Cauchy problem we will assume almost the same
conditions as in the case of the torus:

aj,α ∈ C1([0, T ], Cs0(Ω0 × R
n0)), s0 >

n

2
+ 1, (5.2.13)

ϕj ∈ Hs0+m−1−j(Ω0), (5.2.14)

f ∈ C([0, T ], Cs0(Ω0 × R
n0)). (5.2.15)

And we replace Condition 2 by Condition 4:

Condition 4. The roots τj(t, x, v, ξ) of

τm +
∑

j+|α|=m,j<m
aj,α(x, t, v)ξ

ατ j = 0

are real and distinct,

|τj(t, x, v, ξ)− τi(t, x, v, ξ)| ≥ c|ξ|, c > 0, i 6= j

for all

(t, x, v, ξ) ∈ [0, T ] × Ω0 × R
n0 × R

n.

5.3 Uniqueness for Linear Equations

There is another way to define domains of dependence. A set Ω ⊂ R+ × R
n

is called domain of dependence over Ω0 ⊂ Rn for some hyperbolic operator
if the vanishing of data in Ω0 and the vanishing of the right–hand side in Ω
imply the vanishing of the solution to the Cauchy problem in Ω. The following
theorem states that the two definitions are in concordance.

Theorem 5.3.1 (Uniqueness). We suppose (5.2.2), (5.2.3) and Condition
1. Let Ω ⊂ Ω0 × [0, T ] be a domain of dependence over Ω0 for the operator
Pm,σ. Let ϕ0 ≡ · · · ≡ ϕm−1 ≡ 0 in Ω0 and f ≡ 0 in Ω. Then u ≡ 0 in Ω for
every solution u of (5.2.1) with

D
m−|α|
t Dα

xσ
|α|u ∈ C(Ω) ∀|α| ≤ m.

Proof. Let us sketch the structure of the proof. The solution is defined in Ω,
the coefficients aj,α are defined in Ω0×[0, T ]. In a first step we extend u and aj,α
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to the domain Ω0 × (−∞, 0]; the function u vanishes there. This gives a new
Cauchy problem with solution u. In a second step we transform the variables.
The domain Ω is mapped to some domain Ω̃ = {(y, r) : y ∈ Ω0, g(y, 0) ≤ r <
r∗}, and v, the image of u, vanishes in {(y, r) : y ∈ Ω0, 0 ≤ r < g(y, 0)}.
Consequently, this function v has compact support with respect to the spatial
variable y if the time variable is frozen. In order to show that v vanishes in Ω̃,
we will apply an energy estimate to be given later. Before we can do this, the
coefficients aj,α and the weight function σ must be extended from Ω0 × [0, T ]
to Rn × [0, T ]. Then, the energy estimate leads to v ≡ 0. This will prove the
theorem.

The coefficients aj,α satisfy Condition 1, (5.2.3) and are defined in Ω0 × [0, T ].
For 0 < t ≤ ε we set

aj,α(x,−t) = 2aj,α(x, 0) − aj,α(x, t), x ∈ Ω0.

We obtain aj,α ∈ C1
b (Ω0 × [−ε, T ]) for j + |α| = m and aj,α ∈ C0

b (Ω0 × [−ε, T ])
for j + |α| < m. If ε is sufficiently small, then the aj,α satisfy Condition 1 on
Ω0× [−ε, T ]. This follows from the continuity of aj,α. In general this extension
procedure is not applicable to the interval (−∞, 0], since generally Condition 1
will be violated. Therefore we need another procedure to extend from [−ε, T ]
to (−∞, T ].

The coefficients aj,α will be extended by aj,α(x, t) = aj,α(x,−ε) for t ≤ −ε.
But before this can be done, we have to guarantee that

Dtaj,α(x,−ε+ 0) = 0 ∀j + |α| = m,

because the highest order coefficients must be C1. For this purpose we take a
function χ(s) ∈ C∞(R), 0 ≤ χ ≤ 1,

χ(s) =

{
0 : s ≥ −1,

1 : s ≤ −2

and choose 0 < δ < ε/2. If −ε ≤ t ≤ 0 and j + |α| = m, then we define

aj,α,δ(x, t) := aj,α(x, t)

(
1 − χ

(
2

δ
(t+ ε) − 3

))

+ aj,α(x,−ε)χ
(

2

δ
(t+ ε) − 3

)
.

If t ≥ −ε + δ, then χ( 2
δ
(t + ε) − 3) = 0 and from t ≤ −ε + δ/2 follows that

χ(2
δ
(t+ ε) − 3) = 1. We see that aj,α,δ ∈ C1

b (Ω0 × [−ε, T ]), Dtaj,α,δ(x,−ε) = 0
and limδ→0 aj,α,δ(x, t) = aj,α(x, t) uniformly. Consequently, Condition 1 is
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satisfied for small δ > 0. We fix this δ and write aj,α instead of aj,α,δ. Finally,
we set

aj,α(x, t) = aj,α(x,−ε) ∀(x, t) ∈ Ω0 × (−∞,−ε]

and conclude that aj,α ∈ C1
b (Ω0× (−∞, T ]) for j+ |α| = m and aj,α ∈ C0

b (Ω0×
(−∞, T ]) for j + |α| < m. The Condition 1 is true in this domain.

The same method can be used to extend the derivative gt(x, t) of the function
g(x, t) to Ω0 × (−∞, T ]. The result is

g ∈ C∞(Ω0 × (−∞, T ]), gt ∈ C∞
b (Ω0 × (−∞, T ]),

gt(x, t) = gt(x,−ε) (t ≤ −ε).

We see that the function g takes arbitrarily small values and conclude that

Ω ∪ (Ω0 × (−∞, 0]) =
⋃

−∞<r<r∗

Sr.

We extend the solution u by

u(x, t) = 0, (x, t) ∈ Ω0 × (−∞, 0] =: Z

(the letter Z means that the function u is zero). Then u solves (5.2.1) in Z
with homogeneous data for t = −1, f ≡ 0 in Z, and

D
m−|α|
t Dα

xσ
|α|u ∈ C(Ω ∪ Z) ∀|α| ≤ m.

We apply a Holmgren type transform to change the variables,

y := x,

r := g(x, t),

∇x = ∇y + (∇xg)∂r,

∂t = (∂tg)∂r,

v(y, r) := u(x, t).

The dual variables fulfil

ξ = η + (∇xg)% =: η + ~c(y, r)%,

τ = gt% =: c0(y, r)%.

The domain Ω is mapped to the set (cf. Figure 5.2)

Ω̃ = {(y, r) : y ∈ Ω0, g(y, 0) ≤ r < r∗},
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r = 0t = 0

Z̃

Ω̃

Z

Ω

Figure 5.2: Transformation of variables

and Z̃ is the image of Z:

Z̃ = {(y, r) : y ∈ Ω0,−∞ < r ≤ g(y, 0)}.

Let us study the smoothness of the function v. For |α| ≤ m it holds

Dm−|α|
r Dα

y σ(y)|α|v(y, r)

=

(
1

c0(x, t)
Dt

)m−|α|(
Dx −

~c(x, t)

c0(x, t)
Dt

)α
σ(x)|α|u(x, t)

=
∑

β≤α,i≤j
cαjβi(x, t)D

β
xσ(x)|β|Di

tu(x, t) ∈ C(Ω ∪ Z).

This implies D
m−|α|
r Dα

y σ(y)|α|v(y, r) ∈ C(Ω̃ ∪ Z̃) for |α| ≤ m.

The function v is a solution of

Dm
r v +

∑

j+|α|≤m,j<m
ãj,α(y, r)D

α
yD

j
r

(
σ(y)|α|v

)
= 0,

v(y, 0) = · · · = Dm−1
r v(y, 0) = 0, (y, r) ∈ Ω0 × [0, r∗),

ãj,α(y, r) are the transformed coefficients. We have to check whether this
Cauchy problem is weakly hyperbolic and satisfies the Levi conditions. We
remember the definition of (strict) hyperbolicity, see [Miz73]:

Definition 5.3.2. A differential operator Q(z,Dz) =
∑

|α|=m aα(z)D
α
z is

called hyperbolic at the point z0 in the direction N 6= 0 if

• Q(z0, N) 6= 0,



96 CHAPTER 5. DOMAINS OF DEPENDENCE

• Q(z0, τN + ζ) = 0 has only real roots τ for every ζ 6= 0.

A differential operator Q(z,Dz) is called strictly hyperbolic at (z0, N) if it is
hyperbolic at (z0, N) and if Q(z0, τN + ζ) = 0 has m real and distinct roots τ
for every ζ ⊥ N , ζ 6= 0.

By definition, the operator

Pm,σ(x, t,Dx, Dt) = Dm
t +

∑

j+|α|=m,j<m
aj,α(x, t)σ(x)|α|Dj

tD
α
x

is hyperbolic in the direction N = (1, 0, . . . , 0) ∈ R1+n and the operator

Pm,1(x, t,Dx, Dt) = Dm
t +

∑

j+|α|=m,j<m
aj,α(x, t)D

j
tD

α
x

is strictly hyperbolic in this direction N . The symbol of the principal part
P̃m,σ of the transformed operator is

Pm,σ(x, t, η + ~c%, c0%) = P̃m,σ(y, r, η, %).

That is to say

(c0%)
m +

∑

j+|α|=m,j<m
aj,α(x, t)(η + ~c%)α(c0%)

jσ|α|

= (c0%)
m +

∑

j+|α|=m,j<m
aj,α(c0%)

jσ|α|
∑

β≤α

(
α

β

)
ηβ(~c%)α−β

= (c0%)
m +

∑

k+|β|=m,k<m
ηβ%kσ|β|

∑

α≥β,j+|α|=m
aj,αc

j
0σ

|α−β|
(
α

β

)
~cα−β.

If k + |β| = m and k < m, then it holds

ãk,β(y, r) =
∑

α≥β,j+|α|=m
aj,α(x, t)c0(x, t)

−|α|σ(x)|α−β|
(
α

β

)
~c(x, t)α−β.

To be able to apply the results of the Sections 3.2 and 3.3, we have to verify
that the operator P̃m,σ is hyperbolic in the direction Ñ and that the operator
P̃m,1 is strictly hyperbolic in the direction Ñ . Here Ñ = (1, 0, . . . , 0) ∈ R1

%×Rn
y

is the normal direction of the hypersurfaces r = const.

At first we show

P̃m,σ(y, r, Ñ) = P̃m,σ(y, r, 0, 1) 6= 0.
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It can be seen that

P̃m,σ(y, r, 0, 1) = Pm,σ(x, t,~c, c0) = |~c|mPm,σ
(
x, t,

~c

|~c| ,
c0
|~c|

)
.

From (5.2.10) we obtain

|c0(x, t)|
|~c(x, t)| > λmax,σ(x, t).

This and the definition of λmax,σ yield P̃m,σ(y, r, Ñ) 6= 0.

In the next step we show that the equation P̃m,σ(y, r, η, %) = 0 has m real roots
%1, . . . , %m for every η 6= 0. It holds

P̃m,σ(y, r, η, %) = Pm,σ(x, t, η + ~c%, c0%) = Pm,1(x, t, σ(η + ~c%), c0%)

= cm0 Pm,1

(
x, t,

σ

c0
(η + ~c%), %

)
.

If σ(x) = 0, then the only roots are %1 = · · · = %m = 0. If σ(x) 6= 0, then we
can write

P̃m,σ(y, r, η, %) = σmPm,1

(
x, t, η + ~c%,

c0
σ
%
)
.

The polynomial Pm,1(x, t, η, c0%/σ) is strictly hyperbolic in the direction N .
From

∣∣∣∣
σ(x)~c(x, t)

c0(x, t)

∣∣∣∣ <
1

λmax,1(x, t)
,

and Proposition B.0.2 it can be deduced that the polynomial Pm,1(x, t, η +
~c%, (c0/σ)%) is strictly hyperbolic in the direction N + σ~c/c0. We get that
P̃m,σ(y, r, η, %) = 0 has m real roots. They are distinct if σ(y) 6= 0.

It remains to show that P̃m,1 is strictly hyperbolic. It is easy to check that

P̃m,1(y, r, η, %) = (c0%)
m + cm0

∑

k+|β|=m,k<m
ηβ%kãk,β(y, r)

= Pm,1(x, t, η + σ~c%, c0%).

Proposition B.0.2 shows that this polynomial is strictly hyperbolic in the di-
rection N + σ~c/c0. Hence we have m real and distinct roots c0%i. The strict
hyperbolicity is proved.

Let us come back to the function v. Our aim is to show that v ≡ 0 in Ω̃.
We will do this by the aid of Proposition 5.3.3 and Gronwall’s Lemma. But
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before the coefficients ãj,α and the weight σ have to be extended to the whole
Rn
x × [0, T ], Rn

x, respectively, since they are only defined on Ω0 × (−∞, T ] and
Ω0.

We fix some arbitrary 0 < r0 < r∗ and will show v(y, r) = 0 in Ω0 × [0, r0].
A small ε with 0 < 2ε < dist(∂Ω0, (Ω0 ∩ Sr0)) is chosen and we change the
values of ãj,α in some annular domain A(r0, 2ε). The family of these domains
is defined by

A(r0, ε) = {(y, r) ∈ Ω0 × [0, r0] : dist(y, ∂Ω0) < ε}.

A(r0, ε) A(r0, ε)

r = r∗

r = r0

r = 0

Figure 5.3: The annular domain A(r0, ε)

Due to (5.2.11) the set Ω0 is star-shaped with centre y∗ := x∗. Then for each
y ∈ Ω0, y 6= y∗, we find a unique point y′ ∈ ∂Ω0, y

′ = y′(y), lying on the ray
starting at y∗ and going through y. We replace ãj,α by

aj,α,ε(y, r) := ãj,α(y, r)

(
1 − χ

(
1

ε
(|y − y′|) − 1

))

+ ãj,α(y
′(y), r)χ

(
1

ε
(|y − y′|) − 1

)

with χ ∈ C∞(R), 0 ≤ χ ≤ 1,

χ(z) =

{
1 : z ≤ 0,

0 : z ≥ 1.

The difference |ãj,α− aj,α,ε| can be made arbitrarily small if ε is small enough.
Hence the coefficients aj,α,ε satisfy Condition 1. Due to Condition (5.2.11) the
mapping y 7→ y′ is C∞. Then we have a∗j,α := aj,α,ε ∈ C1

b (Ω0 × [0, r0]) (for
j + |α| = m) and a∗j,α(y, r) = ãj,α(y, r) for

dist(y, ∂Ω0) > 2ε.
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The use of this procedure is that the derivatives of a∗j,α at ∂Ω0 in the directions
ñ along rays starting at the star-centre vanish,

∂a∗j,α
∂ñ

∣∣∣
∂Ω0

= 0.

This allows us to extend the a∗j,α in a radially constant way2,

a∗j,α(y, r) := a∗j,α(y
′, r), y 6∈ Ω0, 0 ≤ r ≤ r0.

We get coefficients a∗j,α ∈ C1
b (R

n × [0, r0]) for j + |α| = m and a∗j,α ∈ C0
b (R

n ×
[0, r0]) for j + |α| < m. The same procedure is applied to the weight function
σ. The function v can be extended by zero,

v(y, r) = 0, y 6∈ Ω0, 0 ≤ r ≤ r0.

We see that v solves

Dm
t v +

∑

j+α=m,j<m

a∗j,α(y, r)D
α
yD

j
r(σ(y)|α|v) = 0, (y, r) ∈ R

n × [0, r0],

v(y, 0) = · · · = Dm−1
r v(y, 0) = 0, y ∈ R

n.

Proposition 5.3.3 and Gronwall’s Lemma yield v(y, r) = 0 for y ∈ Rn, 0 ≤ r ≤
r0. Since r0 < r∗ can be chosen arbitrarily, we have v = 0 in Ω̃, hence u = 0
in Ω. The theorem is proved.

The following proposition giving an L2(Rn) estimate for solutions to linear
weakly hyperbolic Cauchy problems has been used in the proof of the previous
theorem:

Proposition 5.3.3 (Energy estimate). We consider the Cauchy problem
(3.1.1) on the set Rn× [t0, T ]. We assume that the coefficients aj,α only depend
on (x, t) and that the right–hand side f depends on {Dβ

xck,βD
k
t u} in a linear

way,

f(x, t, {Dβ
xck,βD

k
t u}) = f ∗(x, t) +

∑

k+|β|≤m−1

fk,β(x, t)D
β
xck,βD

k
t u.

We suppose Condition 1, (3.2.1), (3.3.1)–(3.3.4) and

aj,α ∈ C1
b (R

n × [t0, T ]),

f ∗, fk,β ∈ C0
b (R

n × [t0, T ]),

ϕj ∈ Hm−1−j(Rn).

2Of course it is possible to apply other methods to extend these functions, as long as the
Condition 1 remains valid in R

n×[0, T ]. Then the Condition (5.2.11) could be weakened. For
instance, one may assume that the domain Ω0 is C∞ diffeomorphic to a strongly star–shaped
domain.
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Finally, we assume that (3.1.1) has a global solution u with

〈D〉k(σkDm−1−k
t u) ∈ C([t0, T ], H1(Rn)).

for 0 ≤ k ≤ m− 1. Then it holds the estimate

dt (R
∗U∗, U∗) ≤ C(‖U∗‖2

L2 + ‖f ∗‖2
L2).

Proof. We follow the lines of the proof of Proposition 3.2.2, part (b). We see
that the commutators I11 and I21, I22 vanish. Then the computations from
the proof of Proposition 3.2.2 (with the obvious adaptions to the case of an
equation with lower order terms from Section 3.3) give the assertion.

5.4 Existence and Uniqueness for

Quasilinear Equations

The next theorem studies the local existence of Sobolev solutions to quasilinear
weakly hyperbolic equations.

Theorem 5.4.1 (Local existence). We suppose (5.2.13)–(5.2.15) and Con-
dition 4. Let Q0 = Πn

i=1[ai, bi] be a rectangular parallelepipedon (RP for short),
Q0 b Ω0. Then a constant 0 < T0 ≤ T and a solution u of (5.2.12) exist with

Dj
tσ

m−1−ju ∈ C([0, T0], H
s0+m−1−j(Q0)), j = 0, . . . , m− 1.

Proof. We take a cut–off function ϕ(x) which is supported in a neighbour-
hood of Q0 and is identical to 1 on Q0. Then we replace the functions σ(x),
f(x, t, {Vk,β}), ϕj(x) by ϕ(x)σ(x), ϕ(x)f(x, t, {Vk,β}) and ϕ(x)ϕj(x).

We leave it to the reader to check that the conditions of this theorem are still
fulfilled. Let Q be an RP with suppϕ b Q. Lemma B.0.3 is used to extend
the coefficients aj,α from Q × [0, T ] × Rn0 to the larger set Q′ × [0, T ] × Rn0,
Q′ being an RP with twice the edge lengths of Q which can be regarded as a
torus. We get a Cauchy problem on Q′. Theorem 3.3.1 shows that a solution u
exists with the desired smoothness on the torus Q′. This function is a solution
on Q0 × [0, T0], since ϕ ≡ 1 on Q0.

Remark 5.4.2. Nothing has been said about the uniqueness of this solution u
so far. The problem of uniqueness is studied in the next theorem.

Remark 5.4.3. The statement of this theorem remains true if the RP Q0 is
replaced by a ball B0. This can be seen in the following way: Let us take a cube
Q0 with B0 b Q0. If Q0 is contained in Ω0, one can proceed as in the above
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proof. If Q0 is not entirely contained in Ω0, the coefficients must be defined in
Q0 \ B0 in a suitable way. By the aid of a cut–off function with support near
B0 we can extend the functions σ, f , ϕj from B0 into Q0 \ B0, see the proof
above. Then an idea from the end of the proof of Theorem 5.3.1 is applied
to extend the functions aj,α(., t, {Vk,β}) from the star-shaped domain B0 into
Q0 \B0. This allows to proceed as in the previous proof. In any case we get a
solution which is defined in Q0 × [0, T0].

Theorem 5.4.4 (Local uniqueness). Let the conditions of Theorem 5.4.1
be satisfied. Let B0 b Ω0 be a ball. Then a number T0 > 0 and a cone Ω over
B0 exist with the property that a uniquely determined solution u with

Dj
tσ

m−1−ju ∈ C([0, T0], H
s0+m−1−j(Ωt)), j = 0, . . . , m− 1,

exists in Ω. The notation v ∈ C([0, T ], Hs(Ωt)) means that

• sup[0,T ] ‖v(., t)‖Hs(Ωt)
<∞,

• for all T ′, Ω′
0 with Ω′

0 × [0, T ′] b Ω it holds v ∈ C([0, T ′], Hs(Ω′)).

Here Hs(Ωt) denotes the Sobolev–Slobodeckij space W s
2 (Ωt), see [Tri78].

Proof. Remark 5.4.3 and Theorem 5.4.1 show that a small number T0 and a
solution u exist with

Dj
tσ

m−1−ju ∈ C([0, T0], H
s0+m−1−j(B0)), j = 0, . . . , m− 1.

The function u solves

P (u)
m,σu = f (u) in B0 × [0, T0],

Dj
tu = ϕj in B0.

We define the cone Ω := K(B0) over B0 as given in Example 5.2.2 with

Pm,1(x, t, τ, ξ) = τm +
∑

j+|α|=m,j<m
aj,α(x, t, {Dβ

xσ
|β|Dk

t u})ξατ j.

Then it follows that

Dj
tσ

m−1−ju ∈ C([0, T0], H
s0+m−1−j(K(B0)t)), j = 0, . . . , m− 1.

Let U∗ be another solution in Ω, i.e.,

P (u∗)
m,σ u

∗ = f (u∗) in B0 × [0, T0],

Dj
tu

∗ = ϕj in B0.
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Consequently, by Hadamard’s Formula,

P (u)
m,σ(u− u∗) = f (u) − f (u∗) + (P (u∗)

m,σ − P (u)
m,σ)u

∗

=
∑

k+|β|≤m−1

gk,β(x, t)D
β
x(σ

|β|Dk
t (u− u∗))

with gk,β ∈ C(Ω). Then Theorem 5.3.1 applied to the homogeneous Cauchy
problem reveals u− u∗ ≡ 0 in Ω.

If the equation is linear, we even have global existence:

Corollary 5.4.5 (Global existence). Let us consider the Cauchy problem
(5.2.1). We suppose Condition 1 and

σ ∈ C∞(Ω∗
0), Ω∗

0 c Ω0,

aj,α ∈
{
C1([0, T ], Hs0(Ω∗

0)) : j + |α| = m,

C([0, T ], Hs0(Ω∗
0)) : j + |α| < m,

s0 >
n

2
+ 1,

ϕj ∈ Hs0+m−1−j(Ω∗
0),

f ∈ C([0, T ], Hs0(Ω∗
0)).

Let Ω be a domain of dependence for the operator Pm,σ over the domain Ω0.
Then a unique solution u exists with

Dj
tσ

m−1−ju ∈ C([0, T ], Hs0+m−1−j(Ωt)).

Proof. We take a cut–off function ϕ(x) that is identical to 1 in a neighbourhood
of Ω0 and supported in Ω∗

0. Then a cube Q with suppϕ b Q is chosen.
We replace the functions σ(x), f(x, t), ϕj(x) by ϕ(x)σ(x), ϕ(x)f(x, t) and
ϕ(x)ϕj(x). The coefficients aj,α(., t) are extended from Ω∗

0 to Q \ Ω∗
0 by the

aid of the procedure from the end of the proof of Theorem 5.3.1. We gain a
linear Cauchy problem on a torus. Corollary 3.3.6 gives us a solution defined
in Q× [0, T ] which has the desired smoothness. Theorem 5.3.1 shows that this
solution is the only solution in Ω.

The following Extension Theorem can be seen as a statement about global
uniqueness for quasilinear Cauchy problems.

Theorem 5.4.6 (Extension of solutions). Let u1, u2 be two solutions of
(5.2.12), defined in domains Ω1, Ω2 over Ω0. Let Ωi be a domain of dependence

over Ω0 for the operator P
(ui)
m,σ , i = 1, 2. We assume

Dj
tσ

m−1−jui ∈ C([0, T ], Hs0+m−1−j(Ωi,t)), 0 ≤ j ≤ m− 1, i = 1, 2.

Then u1 ≡ u2 in Ω1 ∩ Ω2.
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Proof. From Theorem 5.4.4 we conclude that u1 ≡ u2 near the initial domain
Ω0. That is to say, a smooth function h(x) > 0 exists with the property that
u1(x, t) = u2(x, t) in

M := {(x, t) : x ∈ Ω0, 0 ≤ t ≤ h(x)}.

Let {Sr}0≤r<r∗ be the family of hypersurfaces which exhaust the domain Ω1.
We see that some r0 > 0 exists with

M(r0) :=
⋃

0≤r≤r0

Sr ⊂M.

It follows that u1(x, t) = u2(x, t) for (x, t) ∈ Sr, r ≤ r0. Furthermore, we know
that the solution of (5.2.12) is unique in M(r0). It will be shown that some
r1 > r0 exists with the property that the solution of (5.2.12) is unique in the
larger set M(r1).

Choose some arbitrary point (x0, t0) ∈ Sr0 and a neighbourhood B0 =
B0(y0, t0) on the surface Sr0 . We apply Theorem 5.4.4 to some larger set
B∗

c B0 and find a number T0 = T0(x0, t0, B0, B
∗
0) with the property that the

transformed Cauchy problem

P̃ (ũ)
m,σũ = f̃ (ũ)

with data on the surface r = r0 has a unique solution in

{(y, r) : (y, r0) ∈ B(x0, t0), r0 ≤ r ≤ r0 + T0}.

It is possible to cover Sr0 with M ∩Sr0 and a finite number of neighbourhoods
B(x0, t0). Then the infimum I0 of the T0 is positive, we may set r1 := r0 + I0.
By induction we see that the solution is unique in the whole domain Ω1. This
gives u1 ≡ u2 in Ω1 ∩ Ω2.

5.5 C∞ regularity

At first, let us show a local regularity result in C∞.

Lemma 5.5.1 (Local C∞–regularity). Let u be a function defined in Ω(u)

which is a domain of dependence over Ω0 for the operator P
(u)
m,σ. Let u with

Dj
tσ

m−1−ju ∈ C([0, T ], Hs0+m−1−j(Ωt)), j = 0, . . . , m− 1,

be a solution of (5.2.12). The coefficients aj,α and the right–hand side are
supposed to be C∞ with respect to all their arguments. We suppose that

u ∈ C∞(Ω(u) ∩ {(x, t) : t ≤ t0})
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for some t0 ≥ 0. Let B(x0, d) b Ωt0 be a ball. Then a number t1 =
t1(x0, t0, d) > t0 exists with

u ∈ C∞(B(x0, d) × [t0, t1]), B(x0, d) × [t0, t1] b Ω(u).

This number t1 continuously depends on t0 and x0 in the following sense: let
(x′0, t

′
0) ∈ Ω(u) be a point with t′0 ≤ t0. Then a number t′1 = t′1(x

′
0, t

′
0, d) > t′0

exists with

u ∈ C∞(B(x′0, d) × [t′0, t
′
1])

and it holds t′1 − t′0 ≥ t1 − t0 if |t0 − t′0| + |x0 − x′0| is sufficiently small.

Proof. We apply the procedure given in the proof of Theorem 5.4.1 and Re-
mark 5.4.3 to extend the Cauchy problem from B(x0, d) × [t0, T ] to the set
Q′ × [t0, T ], with Q′ being a torus. We get a quasilinear weakly hyperbolic
Cauchy problem on a torus with C∞ coefficients and C∞ data. Theorem 3.3.7
gives us a local C∞ solution. Theorem 5.4.4 shows that this solution is unique
in some domain of dependence which contains some set B(x0, d)× [t0, t1] with
small t1 − t0. This implies u ∈ C∞(B(x0, d) × [t0, t1]).

Let (x′0, t
′
0) be close to (x0, t0) with t′0 ≤ t0. Then we can apply the same

procedure again. We consider the ball B ′(x′0, d) b Ωt′0
. Following the path

described in the previous paragraph we get a new Cauchy problem on some
set Q′′ × [t′0, T ]. Here Q′′ is a torus and congruent to Q′. The set Q′′ × [t′0, T −
(t0 − t′0)] can be mapped onto Q′ × [t0, T ] by the aid of a translation. Let us
denote the solution to this translated Cauchy problem by u′′. Theorem 3.4.1
shows that u′′ is close to u and persists up to t1 if |t′0 − t0|+ |x′0 − x0| is small
enough. It follows that t′1 ≥ t1 − (t0 − t′0).

This lemma is an important tool to prove the following theorem:

Theorem 5.5.2 (Global C∞ regularity). Let u be a function defined in

Ω(u) which is a domain of dependence over Ω0 for the operator P
(u)
m,σ. We

suppose that u with

Dj
tσ

m−1−ju ∈ C([0, T ], Hs0+m−1−j(Ω
(u)
t )), j = 0, . . . , m− 1,

is a solution of (5.2.12). We suppose

aj,α, f ∈ C∞
b (Ω0 × [0, T ] × R

n0),

ϕj ∈ C∞
b (Ω0).

Then u ∈ C∞(Ω(u)).
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Proof. If B(x0, d) b Ω0 is a ball, Lemma 5.5.1 gives us a number t1(x0, d) with

u ∈ C∞(B(x0, d) × [0, t1(x0, d)]).

This implies that a smooth function h = h(x) > 0 and a set M exist with

M = {(x, t) : x ∈ Ω0, 0 ≤ t < h(x)}, u ∈ C∞(M).

The domain Ω(u) can be exhausted with hypersurfaces Sr. We transform the
variables in the same way as in the proof of Theorem 5.3.1. This results in a
quasilinear weakly hyperbolic initial value problem for the function v,

P̃ (v)
m,σv = f̃(y, r, {Dβ

yσ(y)|β|Dk
rv}), y ∈ Ω0, g(y, 0) ≤ r < r∗,

v(y, g(y, 0)) = ψ0(y), . . . , D
m−1
r v(y, g(y, 0)) = ψm−1(y).

If M̃ stands for the image of M under the transformation of variables, then

v ∈ C∞(M̃).

We denote the image of Ω(u) under the transformation by Ω̃(u) and introduce
the level sets Ω̃

(u)
r and the sets Ω̃

(u)
r− :

Ω̃(u)
r := Ω̃(u) ∩ {(y, r′) : r′ = r} Ω̃

(u)
r− := Ω̃(u) ∩ {(y, r′) : r′ ≤ r}.

We see that a small r0 > 0 exists with

v ∈ C∞(Ω̃
(u)
r0−)

and will prove that

v ∈ C∞(Ω̃
(u)
r− ) ∀r < r∗.

For this purpose two properties must be shown:

• If v ∈ C∞(Ω̃
(u)
r1−), then an r2 exists with r1 < r2 < r∗ and v ∈ C∞(Ω̃

(u)
r2−).

• If v ∈ C∞(Ω̃
(u)
r−) for every r < r2 < r∗, then v ∈ C∞(Ω̃

(u)
r2−).

Let v ∈ C∞(Ω̃
(u)
r1−) with 0 < r1 < r∗. The set Ω̃

(u)
r1 can be covered by M̃r1 :=

M̃ ∩ {(y, r) : r = r1} and a finite collection of open balls:

Ω̃(u)
r1

= M̃r1 ∪
l⋃

k=1

B(yk, dk).
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Lemma 5.5.1 gives us numbers r′1,k(r1, yk, dk) > r1 with

v ∈ C∞(B(yk, dk) × [r1, r
′
1,k]).

We take the smallest of these numbers,

r2 := min
k=1,...,l

r′1,k,

and obtain

v ∈ C∞(∪lk=1B(yk, dk) × [r1, r2]), v ∈ C∞(M̃).

It may happen that a gap between C∞(M̃r2) and ∪lk=1B(yk, dk) appears. In
this case we decrease r2 until

Ω̃(u)
r = M̃r ∪

l⋃

k=1

B(yk, dk), r1 ≤ r ≤ r2, r1 < r2.

This is possible since the function h(x) continuously depends on x. We get

v ∈ C∞(Ω̃
(u)
r2−).

Now we come to the second part.

We take numbers r1, r3 with 0 < r1 < r2 < r3 < r∗ and a collection of balls
B(yk, dk) (k = 1, . . . , l) with

Ω̃(u)
r = M̃r ∪

l⋃

k=1

B(yk, dk) ∀r1 ≤ r ≤ r3.

A number r3 ≥ r4 > r2 exists with the property that v(., r2) ∈ C∞
b (Ω̃

(u)
r2 ) would

imply v ∈ C∞([r2, r4], C
∞(Ω̃

(u)
r )), cf. Lemma 5.5.1 and the arguments of the

first step. Let us fix a sequence r2,1, r2,2, . . . with

r1 ≤ r2,j < r2, r2,j → r2.

For each r2,j we can choose r4,j with the property that v(., r2,j) ∈ C∞
b (Ω̃

(u)
r2,j )

implies v ∈ C∞([r2,j , r4,j], C
∞(Ω̃

(u)
r )). Lemma 5.5.1 reveals that the r4,j can be

chosen in such a way that

r4,j → r4.

This shows that some K exists with r4,K > r2. From v ∈ C∞(Ω̃
(u)
r2,K−) it follows

that

v ∈ C∞([r2,K, r4,K], C∞(Ω̃(u)
r )),

especially

v ∈ C∞(Ω̃
(u)
r2−).

The theorem is proved.



Chapter 6

Propagation of
Singularities for Semilinear
Weakly Hyperbolic Equations

6.1 Introduction

Let us recall some results from [Rau79]. We examine the wave equations

2u = f(u) =

N∑

j=1

fju
j, fi ∈ R, (6.1.1)

2v = 0 (6.1.2)

with (x, t) ∈ Rn
x × Rt and data

u(x, 0) = v(x, 0) = ϕ(x), ut(x, 0) = vt(x, 0) = ψ(x).

We suppose that the data are C∞ smooth outside the set B(0, R) := {|x| = R}
for some R > 0. Let us assume u ∈ Hs

loc(R
n × R) with s > (n + 1)/2. Since

the singularities of the data propagate with speed 1, we have

sing–supp(v) ⊂ {(x, t) : B(x, |t|) ∩ B(0, R) 6= ∅} =: Sv,

B(x, |t|) denoting the ball around (x, 0) with radius |t| in the initial surface
Rn × {0}. In particular, v is smooth in the lacuna L = {(x, t) : |x| < |t| −R}.
However, the solution u of the semilinear problem is not smooth in this domain,
it holds

u ∈ Hr(L),
n+ 1

2
< s ≤ r < 3s− n + 1,

107
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see [Rau79], Theorem 3.2 or [Kic96], Theorem 3.13. It can be seen that u has
singularities in the lacuna L, however, they are weaker than the singularities
on Sv, since 3s− n+ 1 > s.

But the strongest singularities of u and v coincide and are contained in the set
Sv. This can be seen as follows: we know

2(u− v) = f(u), (u− v)(x, 0) = 0, (u− v)t(x, 0) = 0

and f(u) ∈ Hs
loc(R

n × R), since this Sobolev space is an algebra. Then it is
well–known that u − v ∈ Hs+1

loc (Rn × R). Choose some arbitrary 0 < ε < 1.
Then we have sing–suppHs+ε(u− v) = ∅, hence

sing–suppHs+ε(u) = sing–suppHs+ε(v).

In other words, the singular support of the solution of the semilinear problem
coincides with the singular support of the solution of some suitably linearised
problem.

The aim of this chapter is to prove a similar result for weakly hyperbolic
Cauchy problems whose lower order terms satisfy sharp Levi conditions with
respect to t. That is to say, we have to take into account the loss of regularity of
the solution compared to the initial data. Let us consider the Cauchy problems

Lu = utt +
n∑

j=1

cj(t)λ(t)uxjt −
n∑

i,j=1

aij(t)λ(t)2uxixj
(6.1.3)

+

n∑

i=1

bi(t)λ
′(t)uxi

+ c0(t)ut = f(u),

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

Lv = vtt +
n∑

j=1

cj(t)λ(t)vxjt −
n∑

i,j=1

aij(t)λ(t)2vxixj
(6.1.4)

+

n∑

i=1

bi(t)λ
′(t)vxi

+ c0(t)vt = 0,

v(x, 0) = ϕ(x), vt(x, 0) = ψ(x).

To present the phenomena, we start with some special case. We take n = 1,
c1 = 0, a11 = 1, λ(t) = t, b1(t)λ

′(t) = −b, c0 = 0 and ψ = 0. Then v solves

vtt − t2vxx = bvx, v(x, 0) = ϕ(x), vt(x, 0) = 0.

If b = 4m + 1, m ∈ N0, we have the explicit representation

v(x, t) =
m∑

j=0

Cjt
2j∂jxϕ

(
x +

1

2
t2
)



6.1. INTRODUCTION 109

with some constants Cj, and Cm does not vanish, see [Qi58]. The assumption
ϕ ∈ Hs implies

v ∈ C
(
[0, T ], Hs−m) .

This phenomenon is called loss of Sobolev regularity and makes the investi-
gation of such Cauchy problems difficult, though interesting. If m > s, then
there is no classical solution v! The following problems and questions arise:

• Does the solution u of the corresponding semilinear problem

utt − t2uxx = bux + f(u), u(x, 0) = ϕ(x), ut(x, 0) = 0

exist locally (for small time)?

• Does this solution u (if it exists) belong to the same space as v? This
question seems to be open. We will give a positive answer.

• The explicit representation of v exhibits the surprising phenomenon that
propagation of singularities happens only along the characteristic x +
t2/2 = const. Does this special propagation behaviour also happen for
the solution u of the semilinear problem? This would be an analogue to
the above result for solutions of the linear/semilinear Cauchy problems
to the wave operator 2. We will give a positive answer by showing that
the difference u− v has higher smoothness than v.

These questions will be studied in the context of the rather general equations
(6.1.3), (6.1.4). In particular, we will have to deal with an unknown weight
function λ(t). This gives rise to another question:

To which space do the functions u and v belong ?

If one is interested in propagation of singularities, then a sharp space has to
be found. To make this point clear, let us consider (6.1.1), (6.1.2) with data
ϕ ∈ Hs, ψ ∈ Hs−1. It is a true statement to say that u and v belong to, e.g.,
C ([0, T ], Hs−5). However, it has no sense to investigate singularities in this
space, because the singular support is the empty set. The sharp answer to the
question for the space is C ([0, T ], Hs).

Let us come back to the weakly hyperbolic case. Up to now, the sharp spaces
have been known only for certain special cases. These special cases are λ(t) = tl

(see [TT80] and [Yag97a]) and λ(t) = ∂t(exp(−1/t)) (see [Ale84] and [Yag97a])
and will be presented more precisely below, see Subsection 6.2.2 and Subsec-
tion 6.2.3.

It turns out that the sharp spaces for u and v are no Sobolev spaces in the
second special case! It is necessary to generalise the classes of Sobolev spaces.
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We will proceed in the following way: if w(x, t) ∈ C([0, T ], Hs(Rn
x)), then

we obviously have 〈ξ〉sŵ(ξ, t) ∈ C([0, T ], L2(Rn
ξ )). The temperate weight 〈ξ〉s

will be replaced by some suitably chosen temperate weight ϑ(ξ, t), which also
depends on some parameters. Thus, we get a scale of spaces which heavily
depends on the coefficients of the weakly hyperbolic operator L. The idea to
assign a weight ϑ(ξ, t) to the operator L and to estimate a certain norm of the
product ϑ(ξ, t)ŵ(ξ, t) goes back to [RY99].

Using this scale of generalised Sobolev–like spaces we are able to introduce the
framework of optimal spaces assigned to weakly hyperbolic operators:

We call a framework of function spaces Sϕ for ϕ, Sψ for ψ, Sf for a right–hand
side f = f(x, t) and Su for the solution u optimal, if the following conditions
are satisfied:

• There is a general procedure that defines Sϕ, Sψ, Sf , Su if L is given.

• The assumptions ϕ ∈ Sϕ, ψ ∈ Sψ, f ∈ Sf imply the existence and
uniqueness of a solution u ∈ Su. This solution continuously depends on
ϕ, ψ, f in the topology of the given spaces.

• For certain operators L the spaces Sϕ, Sψ, Sf , Su coincide with the spaces
suggested by explicit representations of the solutions.

Let us list the assumptions on the functions λ(t), cj(t), aij(t), bi(t), c0(t) and
f(u):

With Λ(t) :=
∫ t
0
λ(τ) dτ we assume that

0 = λ(0) = λ′(0), λ′(t) > 0 (t > 0), (6.1.5)

d0
λ(t)

Λ(t)
≤ λ′(t)

λ(t)
≤ d1

λ(t)

Λ(t)
, 0 < t ≤ T, d0 >

1

2
, (6.1.6)

|λ′′(t)| ≤ d2λ(t)

(
λ(t)

Λ(t)

)2

, (6.1.7)

λ, cj, aij, bi, c0 ∈ C∞([0, T ]), (6.1.8)

α1|ξ|2 ≥
(

n∑

j=1

cj(t)ξj

)2

+ 4
n∑

i,j=1

aij(t)ξiξj ≥ α0|ξ|2 (6.1.9)

∀(t, ξ) ∈ [0, T ] × R
n, α0 > 0,

f(u) =
∞∑

j=1

fju
j ∀u ∈ R. (6.1.10)

The central results are the Theorems 6.6.1, 6.6.2 and 6.6.4 in Section 6.6.
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6.2 Examples

In this section we will give explicit representations for the partial Fourier trans-
forms of the solutions to some linear hyperbolic Cauchy problems with a ho-
mogeneous right–hand side. These examples will give us some hints how to
study weakly hyperbolic Cauchy problems of more general type.

6.2.1 The Strictly Hyperbolic Case

We consider the problem

vtt − vxx = 0, v(x, 0) = ϕ(x), vt(x, 0) = ψ(x), x ∈ R.

Partial Fourier transform gives

v̂tt + ξ2v̂ = 0, v̂(ξ, 0) = ϕ̂(ξ), v̂t(ξ, 0) = ψ̂(ξ).

The solution is

v̂(ξ, t) = cos(tξ)ϕ̂(ξ) + t
sin(tξ)

tξ
ψ̂(ξ).

We fix t > 0 and let |ξ| tend to ∞. Then we have asymptotically

v̂(ξ, t) = O(1)ϕ̂(ξ) +O(|ξ|−1)ψ̂(ξ), |ξ| → ∞.

6.2.2 Weakly Hyperbolic Case with Finite Degeneracy

We study the Cauchy problem

vtt − t2lvxx − htl−1vx = 0, v(x, 0) = ϕ(x), vt(x, 0) = ψ(x), x ∈ R.

The number h is a real constant. In [TT80] and [Yag97a] it is shown how to
construct the solution. Partial Fourier transform gives

v̂tt + ξ2t2lv̂ − ihξtl−1v̂ = 0, v̂(ξ, 0) = ϕ̂(ξ), v̂t(ξ, 0) = ψ̂(ξ).

The solution is

v̂(ξ, t) =e−iΛ(t)ξ
1F1

(
l + h

2(l + 1)
,

l

l + 1
, 2iΛ(t)ξ

)
ϕ̂(ξ)

+ te−iΛ(t)ξ
1F1

(
l + 2 + h

2(l + 1)
,
l + 2

l + 1
, 2iΛ(t)ξ

)
ψ̂(ξ).
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The terms 1F1(., ., z) are confluent hypergeometric functions (see [AS84] or
[EMO53]),

1F1(α, γ, z) =

∞∑

j=0

(α)j
(γ)j

zj

j!

with (α)j = α(α+ 1) . . . (α + j − 1), (α)0 = 1 and it holds

1F1(α, γ, 0) = 1, ∂z 1F1(α, γ, z) =
α

γ
1F1(α + 1, γ + 1, z).

For |z| → ∞ we have the asymptotic behaviour

1F1(α, γ, z) =
Γ(γ)

Γ(γ − α)
e±iπαz−α +O(|z|−α−1)

+
Γ(γ)

Γ(α)
ezzα−γ + O(|z|α−γ−1),

the upper sign being taken if −π/2 < arg z < 3π/2, the lower sign if −3π/2 <
arg z ≤ −π/2. We fix t > 0 and let |ξ| tend to ∞. Then

v̂(ξ, t) = O
(
|ξ|

−l+|h|
2(l+1)

)
ϕ̂(ξ) +O

(
|ξ|

−l−2+|h|
2(l+1)

)
ψ̂(ξ), |ξ| → ∞.

The exponents of ξ describe the loss of Sobolev regularity.

We emphasise that the difference of these exponents is not 1 as in the strictly
hyperbolic case, but 1/(l + 1).

6.2.3 Weakly Hyperbolic Case with Infinite Degeneracy

Let Λ(t) = exp(− 1
t
) and λ(t) := Λ′(t). Then this function λ satisfies all

assumptions (6.1.5)–(6.1.7). We reflect upon the Cauchy problem

vtt − λ(t)2vxx − h
λ(t)2

Λ(t)
vx = 0,

v(x, 0) = ϕ(x), vt(x, 0) = ψ(x), x ∈ R.

We note that the coefficient of vx is not λ′(t) times a constant as in the case of
finite degeneracy, but λ(t)2Λ(t)−1 times some constant. However, this differ-
ence does not play a large role, since this factor can be bounded from above
and below by λ′(t) times constants, see (6.1.6). In [Ale84] and [Yag97a] the
fundamental solution is constructed; we only list the results. After applying
partial Fourier transform we get

v̂tt + ξ2λ(t)2v̂ − ihξ
λ(t)2

Λ(t)
v̂ = 0, v̂(ξ, 0) = ϕ̂(ξ), v̂t(ξ, 0) = ψ̂(ξ).



6.2. EXAMPLES 113

The solution v̂ has the form

v̂(ξ, t) =

2∑

j=1

cj(ξ)te
−βjΛ(t)ξΨ(αj, 1, 2βjΛ(t)ξ), (6.2.1)

cj(ξ) =
Γ(αj)

γ3−j − γj
(ϕ̂(ξ)(ln |ξ| + γ3−j) + ψ̂(ξ)), j = 1, 2,

γj = ln 2 + βj sign ξ
π

2
+ ψ̃(αj) − 2ψ̃(1), j = 1, 2,

β1 = i, β2 = −i, α1 =
1 + h

2
, α2 =

1 − h

2
.

The term Ψ(α, 1, z) is a confluent hypergeometric function (logarithmic case,
see [AS84] or [EMO53]):

Ψ(α, n+ 1, z) =
(n− 1)!

Γ(α)

n−1∑

r=0

(α− n)r
(1 − n)r

zr−n

r!

+
(−1)n+1

n!Γ(α− n)

(
1F1(α, n+ 1, z) ln z

+
∞∑

r=0

(α)r
(n + 1)r

zr

r!
(ψ̃(α + r) − ψ̃(1 + r) − ψ̃(1 + n + r))

)
.

The function ψ̃(ζ) is the logarithmic derivative of Euler’s Γ–function, ψ̃(ζ) =
∂ζ ln Γ(ζ). The confluent hypergeometric function satisfies

∂zΨ(α, β, z) = −αΨ(α + 1, β + 1, z),

Ψ(α, β + 1, z) = Ψ(α, β, z) − ∂zΨ(α, β, z),

Ψ(α, 1, z) = − 1

Γ(α)
(ln z + ψ̃(α) − 2ψ̃(1)) +O(|z ln z|), z → 0,

Ψ(α, 2, z) =
1

zΓ(a)
+O(| ln z|), z → 0,

Ψ(α, β, z) =
N∑

n=0

(−1)n
(α)n(α− β + 1)n

n!
z−α−n +O(|z|−α−N−1),

|z| → ∞, −3π

2
< arg z <

3π

2
.

Utilising these formulas it is possible to verify the explicit representation
(6.2.1). For fixed t > 0 and large |ξ| we obtain the asymptotic behaviour

v̂(ξ, t) = O(|ξ|−1+|h|
2 ln |ξ|)ϕ̂(ξ) +O(|ξ|−1+|h|

2 )ψ̂(ξ), |ξ| → ∞.
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We point out that the coefficients of ϕ̂ and ψ̂ differ only by a factor ln |ξ|. This
observation leads us to the sharp spaces for ϕ, ψ and v immediately: For ϕ
and ψ we may choose the spaces of all functions Φ, Ψ with

〈ξ〉sΦ̂(ξ) ∈ L2(Rn
ξ ), 〈ξ〉s(ln〈ξ〉)−1Ψ̂(ξ) ∈ L2(Rn

ξ ).

The space for v consists of all functions V = V (x, t) with

〈ξ〉s−(|h|−1)/2(ln〈ξ〉)−1V̂ (ξ, t) ∈ L2(Rn
ξ ) ∀t.

6.2.4 Summary and Conclusions

Let us draw some conclusions from the above examples. In the first two cases,
the solution can be written as

v̂(ξ, t) = G1(Λ(t)ξ)ϕ̂(ξ) + tG2(Λ(t)ξ)ψ̂(ξ)

with G1(0) = G2(0) = 0. And in the third example we have the representation

v̂(ξ, t) = tG1(Λ(t)ξ)(ln |ξ| + C)ϕ̂(ξ) + tG2(Λ(t)ξ)ψ̂(ξ)

with the asymptotic behaviour Gj(s) = O(ln |s|) for s→ 0. It can be observed
that the sets {Λ(t)ξ = const} play a certain role. Furthermore, we have seen
that the coefficients G1 and G2 have different behaviour for |ξ| → ∞, t fixed.
Let us characterise this difference. This characterisation will work in any of
the three examples mentioned above.

We fix some large real number N > 0 and consider the set {(ξ, t) : Λ(t)〈ξ〉 =
N.} Since Λ is strictly monotonically increasing, we can define a mapping
ξ 7→ tξ by the formula

Λ(tξ)〈ξ〉 = N.

In the first example we have λ(t) ≡ 1, hence Λ(t) = t and tξ = C〈ξ〉−1. In the
second example Λ(t) = tl+1/(l + 1) holds, hence tξ = C〈ξ〉−1/(l+1). And in the
third example we have exp(−1/tξ) = N〈ξ〉−1, which gives us tξ = O((ln |ξ|)−1)
immediately. We observe that the difference in the asymptotic behaviours of
the weights G1 and G2 can be described by these tξ. For ϕ we could choose
the space Hs(Rn) and for ψ the space with the temperate weight 〈ξ〉stξ.
But what is the sharp space for the solution v ? The loss of smoothness
is a severe difficulty. If t = 0, then v coincides with ϕ and the temperate
weight ϑ(ξ, t) in the definition of the v–space should behave like 〈ξ〉s. If t > 0,
then the loss of regularity appears and the weight ϑ(ξ, t) should behave like
ϑ(ξ, t) = O(〈ξ〉s−K), K ∈ R, for large 〈ξ〉 (at least in the second example).
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And of course, the weight ϑ(ξ, t) should be continuous in ξ and t, even for
t→ 0.

This difficulty can be overcome by splitting the (ξ, t)–space into two zones, the
pseudodifferential zone Zpd(N) and the hyperbolic zone Zhyp(N):

Zpd(N) = {(ξ, t) ∈ R
n × [0, T ] : Λ(t)〈ξ〉 ≤ N},

Zhyp(N) = {(ξ, t) ∈ R
n × [0, T ] : Λ(t)〈ξ〉 ≥ N}.

It is possible to use a hyperbolic type approach in Zhyp(N), since in this zone
the influence of the principal symbol is dominating. On the other hand, in
the pseudodifferential zone Zpd(N) the influence of the subprincipal symbol
becomes important and one has to take a different approach. We will define the
temperate weight ϑ(ξ, t) in both zones in different ways in order to model the
loss of regularity. The splitting into two zones allows us to define a continuous
weight ϑ(ξ, t) with different growth (for |ξ| → ∞) in the 2 cases t = 0 and
t > 0.

6.3 A–priori Estimates

The main tool in this chapter is an a–priori estimate for solutions of linear
weakly hyperbolic Cauchy problems with an inhomogeneous right–hand side.
This estimate will be written in terms of spaces with suitably chosen temperate
weight for the Fourier transform. Let us sketch the proof. We assume for
a moment that the right–hand side does not depend on u. Partial Fourier
transform with respect to x results in

ûtt(ξ, t) +

(
n∑

i,j=1

aij(t)λ(t)2ξiξj + i
n∑

j=1

bj(t)λ
′(t)ξj

)
û(ξ, t)

+

(
i

n∑

j=1

cj(t)λ(t)ξj + c0(t)

)
ût(ξ, t) = f̂(ξ, t),

û(ξ, 0) = ϕ̂(ξ), ût(ξ, 0) = ψ̂(ξ).

This is an ODE of second order with parameter ξ ∈ R
n. The factor of the

function û(ξ, t) has two terms:
∑n

i,j=1 aijλ
2ξiξj, which is the dominating term

in the hyperbolic zone, and i
∑n

j=1 bjλ
′ξj, which dominates in the pseudodiffer-

ential zone. We transform this equation into a system of ODEs of first order.
The vector W of the unknown functions of this system has two components,
w2 = Dtû and w1 = G(ξ, t)û. In this case, G(ξ, t) is a weight which is chosen
differently in the two zones. We take G(ξ, t) = λ(t)|ξ| in the hyperbolic zone



116 CHAPTER 6. PROPAGATION OF SINGULARITIES

and a weight G(ξ, t) = %(ξ, t) =
√

1 + λ(t)2

Λ(t)
〈ξ〉 is chosen in the pseudodiffer-

ential zone. We note that λ2/Λ is equivalent to λ′, see (6.1.6).

The idea of splitting the (ξ, t) space into zones can be found, e.g., in [Kg76],
[Yos78], [Shi91], [Tar95] and [Yag97a]. Our approach is based on a theory
which was used in [RY]. All these steps lead to an estimate for û and Dtû.
From this estimate we will learn how to choose the temperate weight.

In a next step it is shown that this weight is a temperate weight in the sense
of [Hör69]. This allows us to apply the general theory developed in [Hör69],
Part I, Chapter 2.

6.3.1 Preliminaries

In this subsection our intention is to list some properties of the functions λ(t),
Λ(t), tξ, %(ξ, t) which will be needed later. The proofs can be found in the
Appendix C.

By definition, we have

λ(0) = λ′(0) = 0, λ′(t) > 0 (t > 0),

Λ(t) =

∫ t

0

λ(τ) dτ,

Λ(tξ)〈ξ〉 = N, 〈ξ〉 = (1 + |ξ|2)1/2,

%(ξ, t) =

√
1 +

λ(t)2

Λ(t)
〈ξ〉,

d0
λ(t)

Λ(t)
≤ λ′(t)

λ(t)
≤ d1

λ(t)

Λ(t)
, 0 < t ≤ T, d0 >

1

2
,

|λ′′(t)| ≤ d2λ(t)

(
λ(t)

Λ(t)

)2

.

With Λ(t0)〈0〉 = N we assume 0 < T ≤ t0. Then we have the following
proposition:

Proposition 6.3.1. It holds

Λ(t) ≤ tλ(t) ∀t ∈ [0, T ], (6.3.1)
(

Λ(t)

Λ(T0)

)d0
≥ λ(t)

λ(T0)
≥
(

Λ(t)

Λ(T0)

)d1
∀0 < t ≤ T0 ≤ T, (6.3.2)

d0 < 1, (6.3.3)
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dtξ
d〈ξ〉 = − N

λ(tξ)〈ξ〉2
= − Λ(tξ)

λ(tξ)〈ξ〉
∀ξ ∈ R

n, (6.3.4)

C1〈ξ〉−d0 ≥ λ(tξ) ≥ C2〈ξ〉−d1 ∀ξ ∈ R
n, (6.3.5)

p(〈ξ〉) := tξ〈ξ〉 is monotonically increasing in 〈ξ〉, (6.3.6)

C3〈ξ〉d0−1 ≥ tξ ≥ C4〈ξ〉−1 ∀ξ ∈ R
n, (6.3.7)

∫ tξ

0

%(ξ, t) dt ≤ C ∀ξ ∈ R
n, (6.3.8)

λ(t)〈ξ〉 ≤
√
N%(ξ, t) ∀(ξ, t) ∈ Zpd(N), (6.3.9)

1√
N
λ(tξ)〈ξ〉 ≤ %(ξ, tξ) ≤

C√
N
λ(tξ)〈ξ〉 ∀ξ ∈ R

n, (6.3.10)

∫ t

0

(t− s)2%(ξ, s)2 ds ≤ Ct ∀(ξ, t) ∈ Zpd(N), (6.3.11)

∂t%(ξ, t) > 0 ∀(ξ, t) ∈ Zpd(N), (6.3.12)

q(〈ξ〉) := λ(tξ)〈ξ〉d1 is monotonically increasing in 〈ξ〉. (6.3.13)

Proof. See the Appendix C.

The proof of the next lemma is left to the reader.

Lemma 6.3.2. Let g(t) be a continuous, positive and bounded function and
define

J(s, t) = exp

(∫ t

s

λ′(τ)

λ(τ)
g(τ) dτ

)
.

Then we have

J(s, t)J(t, r) = J(s, r) ∀0 < t, s, r ≤ T, (6.3.14)

J(s, t) is increasing in t, decreasing in s, (6.3.15)

1 ≤ J(s, t) ≤
(
λ(t)

λ(s)

)K0

, K0 = sup
[0,T ]

g(τ), 0 < s ≤ t ≤ T. (6.3.16)

6.3.2 A–priori Estimates for Solutions of ODEs

We start with the Cauchy problem

utt +

n∑

j=1

cj(t)λ(t)uxjt −
n∑

i,j=1

aij(t)λ(t)2uxixj

+
n∑

j=1

bj(t)λ
′(t)uxj

+ c0(t)ut = f(x, t), (6.3.17)
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u(x, 0) = ϕ(x), ut(x, 0) = ψ(x). (6.3.18)

Partial Fourier transform with respect to x gives

Dttû(ξ, t) −
n∑

i,j=1

aij(t)λ(t)2ξiξjû(ξ, t) − i

n∑

j=1

bj(t)λ
′(t)ξjû(ξ, t)

+

(
n∑

j=1

cj(t)λ(t)ξj − ic0(t)

)
Dtû(ξ, t) = −f̂ (ξ, t), (6.3.19)

û(ξ, 0) = ϕ̂(ξ), ût(ξ, 0) = ψ̂(ξ).

6.3.2.1 The Pseudodifferential Zone

In order to estimate û and Dtû in the pseudodifferential zone, we define

W (ξ, t) =

(
w1(ξ, t)
w2(ξ, t)

)
=

(
%(ξ, t)û(ξ, t)
Dtû(ξ, t)

)

and get DtW − AW = F with

A(ξ, t) =

(
Dt%
%

%
Pn

i,j=1 aijλ
2ξiξj+i

Pn
j=1 bjλ

′ξj

%
−∑n

j=1 cjλξj + ic0

)
,

F (ξ, t) =

(
0

−f̂ (ξ, t)

)
.

Let us estimate the components of A(ξ, t). From (6.3.9) and the definition of
%(ξ, t) we deduce that

n∑

i,j=1

aij(t)λ(t)2ξiξj ≤ α1λ(t)2〈ξ〉2 ≤ α1N%(ξ, t)
2,

n∑

j=1

|bj(t)λ′(t)ξj| ≤ d1
λ(t)2

Λ(t)

n∑

j=1

|bj(t)ξj| ≤ C%(ξ, t)2,

|c0(t)| +
n∑

j=1

|cj(t)λ(t)ξj| ≤ C(1 + %(ξ, t)) ≤ C ′%(ξ, t).

For the norm of A(ξ, t) (row sum norm or column sum norm) we obtain

‖A(ξ, t)‖ ≤ C%(ξ, t) +
%t(ξ, t)

%(ξ, t)
,
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compare (6.3.12). Now let us devote ourselves to the differential system for
the fundamental matrix X(t, s, ξ):

DtX(t, s, ξ) − A(ξ, t)X(t, s, ξ) = 0, X(s, s, ξ) = I, 0 ≤ s ≤ t ≤ tξ.

Then W allows the representation

W (ξ, t) =

∫ t

0

X(t, s, ξ)F (ξ, s) ds+X(t, 0, ξ)W (ξ, 0). (6.3.20)

The matrix X(t, s, ξ) can be estimated by

‖X(t, s, ξ)‖ ≤ exp

(∫ t

s

‖A(ξ, τ)‖ dτ
)
, 0 ≤ s ≤ t ≤ tξ,

which gives the inequality ‖X(t, s, ξ)‖ ≤ C %(ξ,t)
%(ξ,s)

, see (6.3.8). However,
this estimate is not sharp for all components of X. For instance, we have
|X12(s, s, ξ)| ≤ C %(ξ,s)

%(ξ,s)
= C, but we know that X12(s, s, ξ) = 0. For sharper es-

timates we have to study the differential system more carefully. We introduce
the notation

A(ξ, t) =

(
A11(ξ, t) A12(ξ, t)
A21(ξ, t) A22(ξ, t)

)
, A21(ξ, t) =

A0
21(ξ, t)

%(ξ, t)
.

From the definition of the pseudodifferential zone follows that |A0
21(ξ, t)| ≤

Cλ′(t)〈ξ〉. We get the differential equations

∂tX11(t, s, ξ) =
∂t%(ξ, t)

%(ξ, t)
X11(t, s, ξ) + i%(ξ, t)X21(t, s, ξ),

∂tX21(t, s, ξ) =
iA0

21(ξ, t)

%(ξ, t)
X11(t, s, ξ) − c̃(ξ, t)X21(t, s, ξ),

∂tX12(t, s, ξ) =
∂t%(ξ, t)

%(ξ, t)
X12(t, s, ξ) + i%(ξ, t)X22(t, s, ξ),

∂tX22(t, s, ξ) =
iA0

21(ξ, t)

%(ξ, t)
X12(t, s, ξ) − c̃(ξ, t)X22(t, s, ξ),

c̃(ξ, t) = i

n∑

j=1

cj(t)λ(t)ξj + c0(t),

(
X11(s, s, ξ) X12(s, s, ξ)
X21(s, s, ξ) X22(s, s, ξ)

)
=

(
1 0
0 1

)
.

From the equation for X21 it can be concluded that

X21(t, s, ξ) = i

∫ t

s

exp

(
−
∫ t

τ

c̃(ξ, σ) dσ

)
A0

21(ξ, τ)

%(ξ, τ)
X11(τ, s, ξ) dτ.
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From |X11(t, s, ξ)| ≤ C %(ξ,t)
%(ξ,s)

and |
∫ t
0
λ(τ)ξjdτ | = Λ(t)|ξj| ≤ N follows that

|X21(t, s, ξ)| ≤ C

∫ t

s

|A0
21(ξ, τ)|
%(ξ, s)

dτ ≤ C
(λ(t) − λ(s))〈ξ〉

%(ξ, s)
,

if 0 ≤ s ≤ t ≤ tξ. From the equation for X12 it can be deduced that

X12(t, s, ξ) = i%(ξ, t)

∫ t

s

X22(τ, s, ξ) dτ.

We set f(t, s) =
∫ t
s
X22(τ, s, ξ) dτ for fixed ξ and have

f(s, s) = 0, ft(t, s) = X22(t, s, ξ), ft(s, s) = 1,

ftt(t, s) = X22,t(t, s, ξ).

Consequently,

ftt(t, s) = −A0
21(ξ, t)f(t, s) − c̃(ξ, t)ft(t, s).

We define g(t, s) := f(t, s)β(t, s) with β(t, s) = exp( 1
2

∫ t
s
c̃(ξ, τ)dτ), resulting

in

gtt(t, s) = A0(ξ, t)g(t, s) :=

(
−A0

21(ξ, t) +
c̃(ξ, t)2

4
+
c̃′(ξ, t)

2

)
g(t, s),

g(s, s) = 0, gt(s, s) = 1.

From 0 < C−1
1 ≤ β(t, s) ≤ C1 we obtain |f(t, s)| ≤ C1|g(t, s)|. Furthermore, it

holds |A0(ξ, t)| ≤ CA(1 + λ′(t)〈ξ〉). Let h(t, s) be the solution of

htt(t, s) = CA(1 + λ′(t)〈ξ〉)h(t, s), h(s, s) = 0, ht(s, s) = 1.

Then Lemma B.0.6 shows that |g(t, s)| ≤ h(t, s). It is easy to see that h(t, s)
and ht(t, s) are positive if t > s. Consequently,

htt(t, s) ≤ CA((t+ λ(t)〈ξ〉)h(t, s))t.

Integration from s to t reveals

ht(t, s) − 1 ≤ CA(t+ λ(t)〈ξ〉)h(t, s).

By Gronwall’s Lemma and the choice of N we conclude that

h(t, s) ≤
∫ t

s

exp

(
CA

∫ t

τ

(σ + λ(σ)〈ξ〉) dσ
)
dτ

≤ (t− s) exp
(
CAT

2 + CAN
)
≤ C(t− s).
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This implies
∣∣∣∣
∫ t

s

X22(τ, s, ξ) dτ

∣∣∣∣ ≤ C(t− s).

Finally, we deduce that

|X12(t, s, ξ)| ≤ C%(ξ, t)(t− s).

The last component X22(t, s, ξ) can be represented by

X22(t, s, ξ) − 1 = i

∫ t

s

exp

(
−
∫ t

τ

c̃(ξ, σ) dσ

)
A0

21(ξ, τ)

%(ξ, τ)
X12(τ, s, ξ) dτ,

which results in

|X22(t, s, ξ) − 1| ≤ C

∫ t

s

λ′(τ)〈ξ〉(τ − s) dτ

≤ C(t− s)(λ(t) − λ(s))〈ξ〉.

Let us summarise these estimates: If 0 ≤ s ≤ t ≤ tξ, then

|X11(t, s, ξ)| ≤ C
%(ξ, t)

%(ξ, s)
,

|X12(t, s, ξ)| ≤ C%(ξ, t)(t− s),

|X21(t, s, ξ)| ≤ C
(λ(t) − λ(s))〈ξ〉

%(ξ, s)
,

|X22(t, s, ξ) − 1| ≤ C(t− s)(λ(t) − λ(s))〈ξ〉.

Using (6.3.20) we can estimate %û and Dtû:

|%(ξ, t)û(ξ, t)| ≤ C%(ξ, t)

(∫ t

0

(t− s)|f̂(ξ, s)| ds+ |ϕ̂(ξ)| + t|ψ̂(ξ)|
)
,

(6.3.21)

|Dtû(ξ, t)| ≤ C

∫ t

0

(1 + (t− s)(λ(t) − λ(s))〈ξ〉)|f̂(ξ, s)| ds

+ Cλ(t)〈ξ〉|ϕ̂(ξ)| + C(1 + tλ(t)〈ξ〉)|ψ̂(ξ)|. (6.3.22)

We immediately get

|û(ξ, t)| ≤ C

∫ t

0

(t− s)|f̂(ξ, s)| ds+ C|ϕ̂(ξ)| + Ct|ψ̂(ξ)|. (6.3.23)

Thus, we have proved:
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Proposition 6.3.3 (Estimate in Zpd(N)). Let the function u = u(ξ, .) be
a C2–solution of the ODE (6.3.19) with parameter ξ. Then the estimates
(6.3.21), (6.3.22) and (6.3.23) hold in the pseudodifferential zone Zpd(N). Es-
pecially, on the border {(ξ, tξ) : ξ ∈ Rn} of Zpd(N) we have the estimates

|λ(tξ)〈ξ〉û(ξ, tξ)| (6.3.24)

≤ C%(ξ, tξ)

(∫ tξ

0

(tξ − s)|f̂(ξ, s)| ds+ |ϕ̂(ξ)| + tξ|ψ̂(ξ)|
)
,

|Dtû(ξ, tξ)| ≤ C

∫ tξ

0

(1 + (tξ − s)(λ(tξ) − λ(s))〈ξ〉)|f̂(ξ, s)| ds (6.3.25)

+ Cλ(tξ)〈ξ〉(|ϕ̂(ξ)| + tξ|ψ̂(ξ)|), C = C(N).

For the proof we only note 1 ≤ N = Λ(tξ)〈ξ〉 ≤ λ(tξ)tξ〈ξ〉.

Remark 6.3.4. The estimates (6.3.22) and (6.3.23) are sharp (up to multi-
plicative constants) in the cases of the Examples 6.2.2 and 6.2.3.

Proof. In the Example 6.2.2 we could write the solution û in the form

û(ξ, t) = G1(Λ(t)ξ)ϕ̂(ξ) + tG2(Λ(t)ξ)ψ̂(ξ),

where G1(z) and G2(z) are e−iz times a confluent hypergeometric function
with argument 2iz. The arguments of Gj run between 0 and ±N , if (ξ, t) is
in Zpd(N). Hence, the terms Gj(Λ(t)ξ) are bounded factors. These factors
converge to 1 and Gj(±N), if t approaches 0, tξ, respectively. This shows that
at least in this case (6.3.23) is sharp.

For the first derivative we get

ût(ξ, t) = G′
1(Λξ)λξϕ̂(ξ) + (G2(Λξ) + tG′

2(Λξ)λξ)ψ̂(ξ)

with

G′
1(0) = i

h

l
, G′

2(0) = i
h

l + 2
.

We see again that the estimate (6.3.22) is optimal at least in this example.

In Example 6.2.3 the solution is represented by

û(ξ, t) =
2∑

j=1

cj(ξ)te
−βjΛ(t)ξΨ(αj, 1, 2βjΛ(t)ξ),

cj(ξ) =
Γ(αj)

γ3−j − γj
(ϕ̂(ξ)(ln |ξ| + γ3−j) + ψ̂(ξ)).
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From t ≤ tξ = O((ln〈ξ〉)−1) we deduce that
∣∣∣∣∣t ln |ξ|

2∑

j=1

Γ(αj)

γ3−j − γj
Ψ(αj, 1, 2βjΛ(t)ξ)

∣∣∣∣∣ ≤ C,

∣∣∣∣∣t
2∑

j=1

Γ(αj)

γ3−j − γj
Ψ(αj, 1, 2βjΛ(t)ξ)

∣∣∣∣∣ ≤ Ct,

which gives that (6.3.23) is sharp for t → tξ and t → 0. A more complicated
calculation shows the same result for ut and the estimate (6.3.22).

6.3.2.2 The Hyperbolic Zone

Our aim is to estimate û and Dtû in the hyperbolic zone. We define

U(ξ, t) =

(
λ(t)|ξ|û(ξ, t)
Dtû(ξ, t)

)

and obtain

DtU(ξ, t) =A(ξ, t)U(ξ, t) + A0(ξ, t)U(ξ, t) + A1(ξ, t)U(ξ, t) + F (ξ, t)

=

(
0 λ(t)|ξ|∑n

i,j=1 aij(t)λ(t)
ξiξj
|ξ| −∑n

j=1 cj(t)λ(t)ξj

)
U(ξ, t)

+
Dtλ(t)

λ(t)

(
1 0

−∑n
j=1 bj(t)

ξj
|ξ| 0

)
U(ξ, t)

+

(
0 0
0 ic0(t)

)
U(ξ, t) −

(
0

f̂(ξ, t)

)
.

The matrix A will be diagonalised. For this purpose we take

M−1(ξ, t) =

(
1 −c(ξ, t) −

√
c(ξ, t)2 + a(ξ, t)

1 −c(ξ, t) +
√
c(ξ, t)2 + a(ξ, t)

)T
,

M(ξ, t) =
1

2
√
c(ξ, t)2 + a(ξ, t)

(
−c(ξ, t) +

√
c(ξ, t)2 + a(ξ, t) −1

c(ξ, t) +
√
c(ξ, t)2 + a(ξ, t) 1

)
,

with a(ξ, t) :=
∑n

i,j=1 aij(t)
ξiξj
|ξ|2 and c(ξ, t) = 1

2

∑n
j=1 cj(t)

ξj
|ξ| , resulting in

MAM−1(ξ, t) =

(
τ1(ξ, t) 0

0 τ2(ξ, t)

)

:=λ(t)|ξ|
(
−c(ξ, t)−

√
c(ξ, t)2 + a(ξ, t) 0

0 −c(ξ, t)+
√
c(ξ, t)2 + a(ξ, t)

)
.
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For the matrix A0 we get

MA0M
−1(ξ, t) =

Dtλ(t)

2λ(t)




1 − b(ξ,t)+c(ξ,t)√
c(ξ,t)2+a(ξ,t)

1 − b(ξ,t)+c(ξ,t)√
c(ξ,t)2+a(ξ,t)

1 + b(ξ,t)+c(ξ,t)√
c(ξ,t)2+a(ξ,t)

1 + b(ξ,t)+c(ξ,t)√
c(ξ,t)2+a(ξ,t)




with b(ξ, t) := −∑n
j=1 bj(t)

ξj
|ξ| . Finally, MA1M

−1(ξ, t) has the representation

ic0(t)

2

(
1 −1
−1 1

)
+

ic0(t)c(ξ, t)

2
√
c(ξ, t)2 + a(ξ, t)

(
1 1
−1 −1

)
.

Defining U =: M−1V , V = MU we obtain

DtV = (DtM)M−1V +

(
τ1 0
0 τ2

)
V +

ic0c

2
√
c2 + a

(
1 1
−1 −1

)
V

+
Dtλ

2λ

(
1 − b+c√

c2+a
1 − b+c√

c2+a

1 + b+c√
c2+a

1 + b+c√
c2+a

)
V +

ic0
2

(
1 −1
−1 1

)
V +MF.

From Dt(M ·M−1) = 0 we deduce that

(DtM)M−1 = −M(DtM
−1)

= −Dt(c
2 + a)

4(c2 + a)

(
1 −1
−1 1

)
+

Dtc

2
√
c2 + a

(
−1 −1
1 1

)
.

The system for V can be rewritten in the form

DtV −DV +BV = MF,

D =

(
τ1 0
0 τ2

)
,

− B =
Dtλ

2λ

(
1 1
1 1

)
+
Dtλ

2λ

b + c√
c2 + a

(
−1 −1
1 1

)
(6.3.26)

+

(
ic0
2

− Dt(c
2 + a)

4(c2 + a)

)(
1 −1
−1 1

)
+
ic0c−Dtc

2
√
c2 + a

(
1 1
−1 −1

)
.

This is the first step of perfect diagonalisation. We will apply further steps of
perfect diagonalisation using a theory which was applied in [RY] and [Yag97a].
It turns out that the standard symbol classes cannot be used anymore, we have
to choose classes adapted to the weakly hyperbolic theory. Here we follow the
lines of [RY] and define the symbol class SN{m1, m2, m3} as the set of all
symbols a(ξ, t) ∈ C∞(Zhyp(N)) with

|Dk
tD

α
ξ a(ξ, t)| ≤ Ck,α〈ξ〉m1−|α|λ(t)m2

(
λ(t)

Λ(t)

)m3+k



6.3. A–PRIORI ESTIMATES 125

for all k ≥ 0, α ∈ Nn and all (ξ, t) ∈ Zhyp(N). The symbols of these classes
satisfy

SN{m1, m2, m3} ⊂ SN{m1 + k,m2 + k,m3 − k} ∀k ≥ 0, (6.3.27)

a(ξ, t) ∈ SN{m1, m2, m3}, b(ξ, t) ∈ SN{k1, k2, k3} (6.3.28)

=⇒ a(ξ, t)b(ξ, t) ∈ SN{m1 + k1, m2 + k2, m3 + k3},
a(ξ, t) ∈ SN{m1, m2, m3} =⇒ Dta(ξ, t) ∈ SN{m1, m2, m3 + 1}, (6.3.29)

a(ξ, t) ∈ SN{m1, m2, m3} =⇒ Dα
ξ a(ξ, t) ∈ SN{m1 − |α|, m2, m3}.

(6.3.30)

In our case D ∈ SN{1, 1, 0} and B ∈ SN{0, 0, 1}. We write

B =

(
b11 b12
b21 b22

)
=

(
b11 0
0 b22

)
+

(
0 b12
b21 0

)
=: F 0

0 + F 1
0 ,

N (1)(ξ, t) =

(
0 b12(ξ,t)

τ1(ξ,t)−τ2(ξ,t)
b21(ξ,t)

τ2(ξ,t)−τ1(ξ,t)
0

)
∈ SN{−1,−1, 1}.

It can be seen that N (1)(ξ, t) = O( λ′

λ2〈ξ〉) = O(1/(Λ〈ξ〉)). Hence
∥∥N (1)

∥∥ ≤ 1/2,
if the number N , which was used in the definition of zones, is sufficiently large.
Then the matrix N1 := I + N (1) is invertible. We observe that

DN1 −N1D = F 1
0 .

Then the following operator equations hold:

(Dt −D +B)N1 = −iN (1)
t +N1Dt −N1D − F 1

0 +B +BN (1)

= N1(Dt −D + F 0
0 +N−1

1 (−iN (1)
t −N (1)F 0

0 +BN (1)))

=: N1(Dt −D + F 0
0 +N−1

1 B(1)).

From (6.3.28) and (6.3.29) it follows that N−1
1 B(1) ∈ SN{−1,−1, 2}. The next

step of perfect diagonalisation is:

N−1
1 B(1) =

(
b
(1)
11 b

(1)
12

b
(1)
21 b

(1)
22

)
=

(
b
(1)
11 0

0 b
(1)
22

)
+

(
0 b

(1)
12

b
(1)
21 0

)

=: F 0
1 + F 1

1 ,

N (2) =


 0

b
(1)
12 (ξ,t)

τ1(ξ,t)−τ2(ξ,t)

b
(1)
21 (ξ,t)

τ2(ξ,t)−τ1(ξ,t)
0


 ∈ SN{−2,−2, 2},

N2 = I + N (2).
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We see again that DN2 −N2D = F 1
1 . Then it can be deduced that

(Dt −D + F 0
0 +N−1

1 B(1))N2

= −iN (2)
t +N2Dt −N2D − F 1

1 + F 0
0N2 + (F 0

1 + F 1
1 )(I + N (2))

= N2(Dt −D + F 0
0 + F 0

1

+N−1
2 (−iN (2)

t −N (2)(F 0
0 + F 0

1 ) + (F 0
0 + F 0

1 + F 1
1 )N (2)))

=: N2(Dt −D + F 0
0 + F 0

1 +N−1
2 B(2))

with N−1
2 B(2) ∈ SN{−2,−2, 3}, F 0

1 ∈ SN{−1,−1, 2}. By induction we get

(Dt −D + F 0
0 + F 0

1 + · · ·+ F 0
p−2 +N−1

p−1B
(p−1))Np

= Np(Dt −D + F 0
0 + F 0

1 + · · · + F 0
p−1 +N−1

p B(p)),

F 0
p−1 ∈ SN{−p+ 1,−p+ 1, p}, N−1

p B(p) ∈ SN{−p,−p, p + 1}.

Taking into account all operator equations we obtain

(Dt −D +B)N1N2 . . . Np

= N1N2 . . . Np(Dt −D + F 0
0 + F 0

1 + · · ·+ F 0
p−1 +N−1

p B(p)).

For V =: N1N2 . . . NpW and with F̃1 := F 0
1 + · · · + F 0

p−1, Rp := N−1
p B(p) we

get

(Dt −D + F 0
0 + F̃1 +Rp)W = N−1

p . . . N−1
1 MF =: F̃ , (6.3.31)

D =

(
τ1 0
0 τ2

)
, F 0

0 = diagB, F̃1 = diag F̃1 ∈ SN{−1,−1, 2},

Rp ∈ SN{−p,−p, p+ 1},
‖N1 . . . Np‖ ≤ C,

∥∥N−1
p . . . N−1

1 M
∥∥ ≤ C.

The last inequality is valid if the constant N , which was used in the definition
of zones, is sufficiently large. Later we will see that the number p depends only
on the functions λ, cj, aij and bj. The components of F 0

0 are given in (6.3.26).
Let us investigate the fundamental solution X(t, s, ξ) of the system (6.3.31).
This matrix function satisfies

(Dt −D + F 0
0 + F̃1 +Rp)X(t, s, ξ) = 0, X(s, s, ξ) = I.

Then we have the representation

W (ξ, t) =

∫ t

tξ

X(t, s, ξ)F̃ (ξ, s) ds+X(t, tξ, ξ)W (ξ, tξ). (6.3.32)
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For the fundamental solution X we make the ansatz

X(t, s, ξ) = E(t, s, ξ)Q(t, s, ξ),

E(t, s, ξ) = diag(E11(t, s, ξ), E22(t, s, ξ)),

Ejj(t, s, ξ) = exp

(
i

∫ t

s

(τj − f 0
0,jj − f̃1,jj)(ξ, σ)dσ

)
.

The matrix E satisfies DtE = (D − F 0
0 − F̃1)E, hence

DtX = (D − F 0
0 − F̃1)EQ+ EDtQ = (D − F 0

0 − F̃1)EQ−RpEQ.

This gives the initial value problem

DtQ(t, s, ξ) + E(t, s, ξ)−1Rp(ξ, t)E(t, s, ξ)Q(t, s, ξ) = 0,

Q(s, s, ξ) = I

for the matrix Q. In order to estimate X, we find estimates for E and Q.
Since τ1 and τ2 are real, it holds

‖E(t, s, ξ)‖ ≤ max
j=1,2

exp

(∣∣∣∣
∫ t

s

|f 0
0,jj(ξ, σ)|dσ

∣∣∣∣
)

exp

(∣∣∣∣
∫ t

s

|f̃ 0
1,jj(ξ, σ)|dσ

∣∣∣∣
)

for all s, t ∈ [tξ, T ]. For the computation of the first integral, we recall that

− f 0
0,jj(ξ, σ) =

Dσλ(σ)

2λ(σ)

(
1 ∓ b(ξ, σ) + c(ξ, σ)√

c(ξ, σ)2 + a(ξ, σ)

)

+
ic0(σ)

2
− Dσ(c(ξ, σ)2 + a(ξ, σ))

4(c(ξ, σ)2 + a(ξ, σ))
± ic0(σ)c(ξ, σ) −Dσc(ξ, σ)

2
√
c(ξ, σ)2 + a(ξ, σ)

.

Defining

K0 =
1

2
sup

[0,T ]×Rn

(
1 +

|b(ξ, t) + c(ξ, t)|√
c(ξ, t)2 + a(ξ, t)

)
,

J(s, t) = exp

(∫ t

s

sup
ζ

λ′(τ)

2λ(τ)

∣∣∣∣∣1 ± b(ζ, τ) + c(ζ, τ)√
c(ζ, τ)2 + a(ζ, τ)

∣∣∣∣∣ dτ
)

we observe that

exp

(∫ t

s

|f 0
0,jj(ξ, σ)|dσ

)
≤ CJ(s, t) ≤ C

(
λ(t)

λ(s)

)K0

, tξ ≤ s ≤ t ≤ T.



128 CHAPTER 6. PROPAGATION OF SINGULARITIES

It remains to estimate the second integral. From F̃1 ∈ SN{−1,−1, 2} follows

exp

(∫ t

s

|f̃ 0
1,jj(ξ, σ)|dσ

)
≤ C

∫ t

s

〈ξ〉−1 λ(σ)

Λ(σ)2
dσ

≤ C〈ξ〉−1

∫ T

tξ

λ(σ)

Λ(σ)2
dσ = C〈ξ〉−1(Λ(tξ)

−1 − Λ(T )−1) ≤ C

N
,

which results in ‖E(t, s, ξ)‖ ≤ CJ(s, t) ≤ C
(
λ(t)
λ(s)

)K0

for tξ ≤ s ≤ t ≤ T .

We come to the estimate of Q(t, s, ξ). For simplicity of notation we introduce

R̃p(t, s, ξ) = E(t, s, ξ)−1Rp(ξ, t)E(t, s, ξ) = E(s, t, ξ)Rp(ξ, t)E(t, s, ξ).

Then we have DtQ(t, s, ξ)+ R̃p(t, s, ξ)Q(t, s, ξ) = 0, Q(s, s, ξ) = I, which leads
to the estimate

‖Q(t, s, ξ)‖ ≤ exp

(∫ t

s

∥∥∥R̃p(τ, s, ξ)
∥∥∥ dτ

)
, tξ ≤ s ≤ t ≤ T.

It is known that
∥∥∥R̃p(τ, s, ξ)

∥∥∥ ≤ C

(
λ(τ)

λ(s)

)2K0

‖Rp(ξ, τ)‖

≤ C

(
λ(τ)

λ(s)

)2K0

〈ξ〉−pλ(τ)−p
(
λ(τ)

Λ(τ)

)p+1

.

In order to compute the integral I :=
∫ T
tξ
λ(t)2K0 λ(t)

Λ(t)p+1 dt, we employ partial

integration and (6.1.6) and obtain

I = λ(t)2K0
Λ(t)−p

−p
∣∣∣
T

tξ
−
∫ T

tξ

2K0λ(t)2K0−1λ′(t)
Λ(t)−p

−p dt

≤ 1

p
λ(tξ)

2K0Λ(tξ)
−p +

2K0d1

p
I.

If p is greater than 2K0d1, then I ≤ Cλ(tξ)
2K0Λ(tξ)

−p, hence
∫ T

tξ

∥∥∥R̃p(τ, s, ξ)
∥∥∥ dτ ≤ Cλ(tξ)

−2K0〈ξ〉−pλ(tξ)
2K0Λ(tξ)

−p ≤ C,

‖Q(t, s, ξ)‖ ≤ C, tξ ≤ s ≤ t ≤ T.

Finally, it follows that

‖X(t, s, ξ)‖ ≤ CJ(s, t) ≤ C

(
λ(t)

λ(s)

)K0

, tξ ≤ s ≤ t ≤ T.

Summarising these estimates we have the following proposition:
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Proposition 6.3.5 (Estimate in Zhyp(N)). Let u = u(ξ, .) be a C2–solution
of the ODE (6.3.19) with parameter ξ. Then the following estimate holds in
the hyperbolic zone:

|λ(t)ξû(ξ, t)| + |Dtû(ξ, t)|

≤ C

∫ t

tξ

J(s, t)|f̂(ξ, s)| ds+ CJ(tξ, t)(|λ(tξ)ξû(ξ, tξ)| + |Dtû(ξ, tξ)|),

J(s, t) = exp

(∫ t

s

sup
ζ

λ′(τ)

2λ(τ)

∣∣∣∣∣1 ± b(ζ, τ) + c(ζ, τ)√
c(ζ, τ)2 + a(ζ, τ)

∣∣∣∣∣ dτ
)
,

b(ξ, t) := −
n∑

j=1

bj(t)
ξj
|ξ| , c(ξ, t) :=

1

2

n∑

j=1

cj(t)
ξj
|ξ| ,

a(ξ, t) :=

n∑

i,j=1

aij(t)
ξiξj
|ξ|2 .

6.3.2.3 Comparison with the Examples

Let us check whether this estimate of the loss of regularity is sharp. We
compare the results of the Propositions 6.3.3 and 6.3.5 with the Examples 6.2.2
and 6.2.3. In these examples the loss of regularity is known, since we have an
explicit representation of the solution.

We assume that the right–hand side vanishes. The Propositions 6.3.3 and 6.3.5
give the following inequality in the hyperbolic zone:

|λ(t)ξû(ξ, t)| + |Dtû(ξ, t)| ≤ C%(ξ, tξ)J(tξ, t)(|ϕ̂(ξ)| + tξ|ψ̂(ξ)|).

In the case of the first example we have

b(ξ, t) = −h
l

ξ

|ξ|, c(ξ, t) ≡ 0, a(ξ, t) ≡ 1, J(s, t) =

(
λ(t)

λ(s)

)(1+
|h|
l )/2

.

Let t > 0 be fixed. Then the loss of ξû and Dtû in comparison to |ϕ̂(ξ)| +
|tξψ̂(ξ)| is

%(ξ, tξ)λ(tξ)
−(1+

|h|
l )/2 ∼ λ(tξ)〈ξ〉λ(tξ)

−(1+
|h|
l )/2 ∼ 〈ξ〉 l

2(l+1)(−1+
|h|
l )〈ξ〉.

This shows that (for ψ ≡ 0) the loss of u in comparison with ϕ is

〈ξ〉 l
2(l+1)(−1+ |h|

l ). This is exactly the result from Example 6.2.2. And for the
loss of u in comparison with ψ (for ϕ ≡ 0) we get

tξ〈ξ〉
l

2(l+1)(−1+
|h|
l ) ∼ 〈ξ〉

−l+2+|h|
2(l+1) ,
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which coincides with Example 6.2.2.

In the case of the other Example 6.2.3 we have

b(ξ, t) = − h

λ′(t)

λ(t)2

Λ(t)

ξ

|ξ| , c(ξ, t) ≡ 0, a(ξ, t) ≡ 1,

J(s, t) =

(
λ(t)

λ(s)

)1/2(
Λ(t)

Λ(s)

)|h|/2
.

In the hyperbolic zone we get the estimate

|λ(t)ξû(ξ, t)| + |Dtû(ξ, t)|

≤ C%(ξ, tξ)

(
λ(t)

λ(tξ)

)1/2(
Λ(t)

Λ(tξ)

)|h|/2
(|ϕ̂(ξ)| + tξ|ψ̂(ξ)|)

≤ Cλ(tξ)〈ξ〉
(
λ(t)

λ(tξ)

)1/2

(Λ(t)〈ξ〉)|h|/2 (|ϕ̂(ξ)| + tξ|ψ̂(ξ)|)

≤ C(t)〈ξ〉
(
Λ(tξ)t

−2
ξ

)1/2 〈ξ〉|h|/2(|ϕ̂(ξ)| + tξ|ψ̂(ξ)|)
= C(t)〈ξ〉〈ξ〉(|h|−1)/2(t−1

ξ |ϕ̂(ξ)| + |ψ̂(ξ)|).

Using tξ = O((ln〈ξ〉)−1) (for fixed t > 0) we regain the estimate from Subsec-
tion 6.2.3. This shows that the estimates for λ(t)|ξû| and |Dtû| are sharp in
the cases of the two examples.

6.4 A–priori Estimates in Suitable Spaces

Energy estimates in Sobolev spaces play an important role for the investi-
gation of hyperbolic Cauchy problems. Sobolev norms of a function can be
regarded as weighted L2–norms of the Fourier transform of this function. The
aim of this section is to derive estimates of certain weighted L2–norms of the
Fourier transform of the solution using the point-wise estimates of the Fourier
transform derived in the previous section. The structure of these point-wise
estimates motivates the following definition.

Definition 6.4.1 (Spaces with special weight). For L1, L2,M,K1, K2 ≥
0 let ϑL1L2MK1K2 be the function

ϑL1L2MK1K2(ξ, t) =





(
%(ξ,tξ)

%(ξ,t)

)L1

λ(tξ)
L2J(tξ, t0)〈ξ〉MtK1

ξ : 0 ≤ t ≤ tξ,

λ(t)L2J(t, t0)〈ξ〉MtK2
ξ : tξ ≤ t ≤ T,

J(s, t) = exp

(∫ t

s

sup
ζ

λ′(τ)

2λ(τ)

∣∣∣∣∣1 ± b(ζ, τ) + c(ζ, τ)√
c(ζ, τ)2 + a(ζ, τ)

∣∣∣∣∣ dτ
)
,
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b(ξ, t) := −
n∑

j=1

bj(t)
ξj
|ξ| , c(ξ, t) :=

1

2

n∑

j=1

cj(t)
ξj
|ξ| ,

a(ξ, t) :=

n∑

i,j=1

aij(t)
ξiξj
|ξ|2 .

The number t0 is defined by the formula Λ(t0)〈0〉 = N . By BL1L2MK1K2 we
denote the space

BL1L2MK1K2

:=
{
v ∈ C([0, T ],S ′(Rn)) : ϑL1L2MK1K2 v̂ ∈ C([0, T ], L2(Rn

ξ ))
}
,

‖v‖BL1L2MK1K2
:= sup

[0,T ]

‖ϑL1L2MK1K2(., t)v̂(., t)‖L2(Rn
ξ
) .

We will study the properties of these spaces in the next section. An important
special case is given by L1 = 1, L2 = 0. To simplify the notation, we write

ϑMK1K2(ξ, t) := ϑ10MK1K2(ξ, t), BMK1K2 := B10MK1K2 .

We will even have K1 = K2 in most applications.

For the initial data we take the following space:

Definition 6.4.2 (Spaces for the data). Let CL1L2MK1 be the space

CL1L2MK1 :=
{
v ∈ S ′(Rn) : ϑL1L2MK1K1(., 0)v̂(.) ∈ L2(Rn

ξ )
}
,

‖v‖CL1L2MK1
:= ‖ϑL1L2MK1K1(., 0)v̂(.)‖L2(Rn

ξ
) .

We introduce the abbreviation CMK1 in the special case L1 = 1, L2 = 0:

CMK1 := C10MK1 .

With these notations, we can now formulate the central energy estimate:

Theorem 6.4.3 (A–priori estimate). Let ϕ ∈ CMK, ψ ∈ CM(K+1) and f ∈
BMKK. Then the solution u of (6.3.19) satisfies

Hu ∈ BMKK , Dtu ∈ BM(K+1)K ,

‖Hu‖BMKK
+ ‖Dtu‖BM(K+1)K

≤ Capr

(
T ‖f‖BMKK

+ ‖ϕ‖CMK
+ ‖ψ‖CM(K+1)

)
,

where H(Dx, t) is a pseudodifferential operator with the symbol

h(ξ, t) = λ(t)|ξ|χ
(

Λ(t)|ξ|
N

)
+ %(ξ, t)

(
1 − χ

(
Λ(t)|ξ|
N

))
,

χ(s) = 0 (s ≤ 1/2), χ(s) = 1 (s ≥ 2), χ ∈ C∞(Rn).
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Remark 6.4.4. If t > 0 is fixed, then the operator H acts like λ(t)〈Dx〉 and
the above estimate shows that the first derivative of the solution with respect
to x and the right–hand side f are from the same space. In other words, this
result is an estimate of strictly hyperbolic type.

Proof. For fixed t > 0, let R0(t) be the positive real number with

Λ(t)〈R0(t)〉 = N.

In order to estimate ‖Hu‖BMKK
it is sufficient to show that

‖%(ξ, t)û(ξ, t)ϑMKK(ξ, t)‖L2(|ξ|≤R0(t))

+ ‖λ(t)ξû(ξ, t)ϑMKK(ξ, t)‖L2(|ξ|≥R0(t))

≤ C
(
T ‖f‖BMKK

+ ‖ϕ‖CMK
+ ‖ψ‖CM(K+1)

)
.

Here we used the fact that the computations in Section 6.3 remain true, if we
replace N by 2N or N/2 (if N is sufficiently large). Let us start with the first
term on the left. Due to (6.3.21) we have

|%(ξ, t)û(ξ, t)| ≤ C%(ξ, t)

(∫ t

0

(t− s)|f̂(ξ, s)| ds+ |ϕ̂(ξ)| + t|ψ̂(ξ)|
)
.

From (6.3.11) and the Inequality of Cauchy–Schwarz we conclude that

(∫ t

0

(t− s)|f̂(ξ, s)| ds
)2

≤ Ct

∫ t

0

|f̂(ξ, s)|2
%(ξ, s)2

ds.

It follows that

|%(ξ, t)û(ξ, t)ϑMKK(ξ, t)|2 ≤ C%(ξ, tξ)
2〈ξ〉2Mt2Kξ J(tξ, t0)

2

×
(
t

∫ t

0

|f̂(ξ, s)|2
%(ξ, s)2

ds+ |ϕ̂(ξ)|2 + t2ξ|ψ̂(ξ)|2
)
.

Integration over |ξ| ≤ R0(t) and %(ξ, 0) = 1 give

‖%(ξ, t)û(ξ, t)ϑMKK(ξ, t)‖2
L2(|ξ|≤R0(t))

≤ Ct

∫ t

0

∫

|ξ|≤R0(t)

|ϑMKK(ξ, s)f̂(ξ, s)|2 dξ ds

+ C ‖ϕ̂(ξ)ϑMKK(ξ, 0)‖2
L2(|ξ|≤R0(t))

+ C
∥∥∥ψ̂(ξ)ϑM(K+1)K(ξ, 0)

∥∥∥
2

L2(|ξ|≤R0(t))

≤ C(T 2 ‖f‖2
BMKK

+ ‖ϕ‖2
CMK

+ ‖ψ‖2
CM(K+1)

).
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For the second term we use Proposition 6.3.5 and (6.3.24), (6.3.25):

|λ(t)ξû(ξ, t)| ≤ C

∫ t

tξ

J(s, t)|f̂(ξ, s)| ds

+ CJ(tξ, t)

∫ tξ

0

(1 + (tξ − s)%(ξ, tξ))|f̂(ξ, s)| ds

+ CJ(tξ, t)%(ξ, tξ)(|ϕ̂(ξ)| + tξ|ψ̂(ξ)|).

The second integral on the right can be bounded by

∫ tξ

0

|f̂(ξ, s)| ds+ %(ξ, tξ)

∫ tξ

0

(tξ − s)|f̂(ξ, s)| ds (6.4.1)

≤ C%(ξ, tξ)

(
tξ

∫ tξ

0

|f̂(ξ, s)|2
%(ξ, s)2

ds

)1/2

,

see (6.3.11). As a consequence we obtain

|λ(t)ξû(ξ, t)ϑMKK(ξ, t)|2 ≤ C〈ξ〉2Mt2Kξ t

∫ t

tξ

|f̂(ξ, s)|2J(s, t0)
2 ds

+ C%(ξ, tξ)
2J(tξ, t0)

2〈ξ〉2M t2Kξ

×
(
tξ

∫ tξ

0

|f̂(ξ, s)|2
%(ξ, s)2

ds+ |ϕ̂(ξ)|2 + t2ξ |ψ̂(ξ)|2
)
.

Integration over |ξ| ≥ R0(t) gives

‖λ(t)ξû(ξ, t)ϑMKK(ξ, t)‖2
L2(|ξ|≥R0(t))

≤ C(T 2 ‖f‖2
BMKK

+ ‖ϕ‖2
CMK

+ ‖ψ‖2
CM(K+1)

).

Then the estimate for ‖Hu‖BMKK
is proved. It remains to consider

‖Dtu‖BM(K+1)K
. We have for Dtû and λ(t)|ξ|û the same estimate in the hyper-

bolic zone, see Propositions 6.3.5 and 6.3.3. The weights ϑMKK and ϑM(K+1)K

coincide in the hyperbolic zone. Then we immediately get that

∥∥Dtû(ξ, t)ϑM(K+1)K(ξ, t)
∥∥2

L2(|ξ|≥R0(t))

≤ C(T 2 ‖f‖2
BMKK

+ ‖ϕ‖2
CMK

+ ‖ψ‖2
CM(K+1)

).

So it suffices to study (Dtû)ϑM(K+1)K in the pseudodifferential zone. There the
estimate (6.3.22) holds. The additive term 1 in the coefficient (1 + tλ(t)〈ξ〉)
for |ψ̂| causes some difficulties, therefore we choose a higher tξ–exponent for
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ϑ in the pseudodifferential zone. We estimate the integral on the right in a
similar way as in (6.4.1) and get

∫ t

0

(1 + (t− s)(λ(t) − λ(s))〈ξ〉)|f̂(ξ, s)| ds

≤ C%(ξ, t)

(
t

∫ t

0

|f̂(ξ, s)|2
%(ξ, s)2

ds

)1/2

,

see (6.3.9) and (6.3.11). Then it follows that

|Dtû(ξ, t)ϑM(K+1)K(ξ, t)|2 ≤ C%(ξ, tξ)
2J(tξ, t0)

2〈ξ〉2Mt2K+2
ξ

×
(
t

∫ t

0

|f̂(ξ, s)|2
%(ξ, s)2

ds+ |ϕ̂(ξ)|2 + |ψ̂(ξ)|2
)
.

Integration over |ξ| ≤ R0(t) gives

∥∥Dtû(ξ, t)ϑM(K+1)K(ξ, t)
∥∥2

L2(|ξ|≤R0(t))

≤ C(T 2 ‖f‖2
BM(K+1)K

+ ‖ϕ‖2
CM(K+1)

+ ‖ψ‖2
CM(K+1)

)

≤ C(T 2 ‖f‖2
BMKK

+ ‖ϕ‖2
CMK

+ ‖ψ‖2
CM(K+1)

).

The theorem is proved.

Corollary 6.4.5. Under the assumptions of the previous theorem, it holds

u ∈ B01(M+1)KK,

‖u‖B01(M+1)KK
≤ C(T ‖f‖BMKK

+ ‖ϕ‖CMK
+ ‖ψ‖CM(K+1)

).

Proof. In the pseudodifferential zone, we have

|û(ξ, t)ϑ01(M+1)KK(ξ, t)| =

∣∣∣∣%(ξ, t)û(ξ, t)
λ(tξ)〈ξ〉J(tξ, t0)

%(ξ, t)
〈ξ〉MtKξ

∣∣∣∣
≤ C|%(ξ, t)û(ξ, t)ϑMKK(ξ, t)|,

see (6.3.10). Let us consider the hyperbolic zone. If T is small enough, then
we have the inequality 〈ξ〉 ≤ 2|ξ| for (ξ, t) ∈ Zhyp(N) . It follows that

|û(ξ, t)ϑ01(M+1)KK(ξ, t)| =
∣∣λ(t)〈ξ〉û(ξ, t)J(t, t0)〈ξ〉MtKξ

∣∣
≤ 2|λ(t)ξû(ξ, t)ϑMKK(ξ, t)|.
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6.5 Properties of the Spaces BL1L2MK1K2

In the previous section spaces BL1L2MK1K2 have been introduced. We did not
give any property of these spaces. For example, up to now nothing has been
said about the question of whether these spaces are Banach spaces. Therefore,
we devote this section to the study of spaces BL1L2MK1K2 . For this purpose
the theory of spaces with temperate weight is applied, which was developed in
[Hör69]. In 6.5.1 we show that the restrictions of the spaces BL1L2MK1K2 at the
sets {t = const} are spaces with temperate weight (if K1 = K2). In 6.5.2 we
prove that BL1L2MK1K2 is an algebra, if K1 = K2 and M is large enough. This
allows us to study the mapping of superposition operators u 7→ f(u), when f
is an entire analytic function.

6.5.1 Spaces with Temperate Weight

In [Hör69], Part I, Chapter 2, spaces Bp,ϑ were introduced. These spaces
consist of all functions u with û(ξ)ϑ(ξ) ∈ Lp. The function ϑ is called a
temperate weight function and has to satisfy a condition mentioned below. In
the following we recall results about such weight functions and such spaces
from [Hör69].

Definition 6.5.1 (Spaces with temperate weight). A positive function ϑ
defined in Rn will be called a temperate weight function, if there exist positive
constants C and m such that

ϑ(ξ + η) ≤ (1 + C|ξ|)mϑ(η) ∀ξ, η ∈ R
n.

The set of all such functions will be denoted by K. If ϑ ∈ K and 1 ≤ p ≤ ∞,
we denote by Bp,ϑ the set of all distributions u ∈ S ′ such that û is a function
and

‖u‖p,ϑ :=

(
(2π)−n

∫
|ϑ(ξ)û(ξ)|pdξ

)1/p

<∞.

When p = ∞, we shall interpret ‖u‖p,ϑ as ess-sup|ϑ(ξ)û(ξ)|.
We want to list some results about weight functions ϑ and spaces Bp,ϑ. For
details see [Hör69].

Lemma 6.5.2. If ϑ ∈ K, then ϑ is continuous. If ϑ ∈ K with constants C,
m, then

ϑ(0)(1 + C|ξ|)−m ≤ ϑ(ξ) ≤ ϑ(0)(1 + C|ξ|)m.

It holds 〈ξ〉 := (1 + |ξ|2)1/2 ∈ K with C = m = 1.
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Proposition 6.5.3. If ϑ1, ϑ2 ∈ K, then ϑ1 +ϑ2 ∈ K, ϑ1ϑ2 ∈ K, sup(ϑ1, ϑ2) ∈
K, inf(ϑ1, ϑ2) ∈ K. If ϑ ∈ K, then ϑs ∈ K for every real s.

Proposition 6.5.4. Bp,ϑ is a Banach space. It holds S ⊂ Bp,ϑ ⊂ S ′, also in
the topological sense. C∞

0 is dense in Bp,ϑ, if p <∞.

Proposition 6.5.5. If ϑ1, ϑ2 ∈ K and ϑ2(ξ) ≤ Cϑ1(ξ) for all ξ ∈ Rn, then
Bp,ϑ1 ⊂ Bp,ϑ2.

Proposition 6.5.6. If 1 < p < ∞, then the dual space of Bp,ϑ is Bp′,1/ϑ,
1/p+ 1/p′ = 1.

Proposition 6.5.7. Let ϕ ∈ C∞
0 ,
∫
ϕ(x) dx = 1, ψ ∈ C∞

0 , ψ(0) = 1. We set
ϕε(x) := ε−nϕ(x/ε) and ψε(x) = ψ(εx). If u ∈ Bp,ϑ and p < ∞, then u ∗ ϕε
and uψε converge to u in Bp,ϑ, as ε tends to 0.

Now we will utilise (some of) these cited properties to consider the spaces
BL1L2MK1K2 .

Proposition 6.5.8. For each fixed t > 0, ϑL1L2MKK(., t) is a temperate weight
in the sense of the Definition 6.5.1. The constants C and m are independent
of t.

Proof. We can write

ϑL1L2MKK(ξ, t) =max

((
%(ξ, tξ)

%(ξ, t)

)L1

, 1

)
max (λ(tξ), λ(t))L2

× min(J(tξ, t0), J(t, t0))〈ξ〉MtKξ .
If we are able to show that

%(ξ, tξ), %(ξ, t), λ(tξ), J(tξ, t0), tξ ∈ K,
then the proposition is proved. Let us start with λ(tξ). From (6.3.2) it can be
deduced that

λ(tξ+η)

λ(tη)
≤
(

Λ(tξ+η)

Λ(tη)

)d0
=

( 〈η〉
〈ξ + η〉

)d0
≤ (1 + |ξ|)d0, tξ+η ≤ tη,

λ(tξ+η)

λ(tη)
≤
(

Λ(tξ+η)

Λ(tη)

)d1
=

( 〈η〉
〈ξ + η〉

)d1
≤ (1 + |ξ|)d1, tη ≤ tξ+η.

(6.5.1)

Hence we conclude that λ(tξ) ∈ K with C = 1, m = d1. We know that 〈ξ〉 ∈ K
with C = m = 1. Then it follows that

%(ξ, tξ) =

(
1 +

1

N
λ(tξ)

2〈ξ〉2
)1/2

∈ K,
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with constants C and m independent of t. We also know that 1, λ(t)2/Λ(t) ∈ K
with C = m = 0. Hence %(., t) ∈ K and again the constants C and m do not
depend on t. By (6.3.14), (6.3.15), (6.3.16) and (6.5.1) we have

J(tξ+η, t0)

J(tη, t0)
= J(tξ+η, tη) ≤

(
λ(tη)

λ(t|ξ|+|η|)

)K0

≤ (1 + |ξ|)d1K0.

This gives J(tξ, t0) ∈ K. It remains to verify that tξ ∈ K. In order to prove
this, we show that tξ〈ξ〉 ∈ K. From (6.3.6) and the mean value theorem we
deduce that

tξ+η〈ξ + η〉 ≤ t|ξ|+|η|〈|ξ|+ |η|〉
= t|η|〈η〉 + (t|ζ|〈|ζ|〉)′|ξ| (|η| < |ζ| < |η| + |ξ|)

= t|η|〈η〉 +

( −Λ(t|ζ|)

λ(t|ζ|)〈|ζ|〉
+ t|ζ|

) |ζ|
〈ζ〉|ξ|

≤ t|η|〈η〉 + t|ζ||ξ| ≤ t|η|〈η〉 + t|η||ξ| ≤ (tη〈η〉)(1 + |ξ|).

Hence we obtain tξ〈ξ〉 ∈ K with C = m = 1.

Thus, we can conclude that the space with temperate weight ϑL1L2MKK =
ϑL1L2MKK(., t) is a Banach space for each frozen t ≥ 0. It is easy to see that
then BL1L2MKK is a Banach space, too.

In order to derive embedding results of the BL1L2MKK–spaces into the usual
spaces C ([0, T ], Hs) (and vice versa), we estimate the weight. From J(t, t0) ≥
1, (6.3.5), (6.3.6), (6.3.7), (6.3.10) and (6.3.13) we deduce that

ϑL1L2MKK(ξ, t) ≥ λ(tξ)
L2〈ξ〉MtKξ

= (λ(tξ)〈ξ〉d1)L2〈ξ〉M−K−d1L2(tξ〈ξ〉)K ≥ C〈ξ〉M−K−d1L2 ,

ϑL1L2MKK(ξ, t) ≤ %(ξ, tξ)
L1λ(t0)

L2J(tξ, t0)〈ξ〉MtKξ

≤ Cλ(tξ)
L1

(
λ(t0)

λ(tξ)

)K0

〈ξ〉M+L1+K(d0−1)

= Cλ(tξ)
L1−K0〈ξ〉M+L1+K(d0−1)

≤ C〈ξ〉M−K(1−d0)+L1+d1|L1−K0|.

Then it follows that

C
(
[0, T ], HM−K(1−d0)+L1+d1|L1−K0|) ⊂ BL1L2MKK

⊂ C
(
[0, T ], HM−K−d1L2

)
.
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Finally, we study embeddings from CL1L2MK into Sobolev spaces (and vice
versa). In a similar way as for the B–spaces we get

ϑL1L2MK1K2(ξ, 0) = %(ξ, tξ)
L1λ(tξ)

L2J(tξ, t0)〈ξ〉MtKξ
≥ Cλ(tξ)

L1+L2〈ξ〉M+L1tKξ

= C(λ(tξ)〈ξ〉d1)L1+L2〈ξ〉M+L1−d1(L1+L2)−K(tξ〈ξ〉)K

≥ C〈ξ〉M−K+L1−d1(L1+L2),

ϑL1L2MK1K2(ξ, 0) ≤ Cλ(tξ)
L1+L2

(
λ(t0)

λ(tξ)

)K0

〈ξ〉M+L1+K(d0−1)

= Cλ(tξ)
L1+L2−K0〈ξ〉M+L1+K(d0−1)

≤ C〈ξ〉M−K(1−d0)+L1+d1|L1+L2−K0|.

This implies

HM−K(1−d0)+L1+d1|L1+L2−K0| ⊂ CL1L2MK ⊂ HM−K+L1−d1(L1+L2).

6.5.2 The Algebra Property

The aim of this subsection is to show that BL1L2MKK is an algebra, if M is
sufficiently large. We split the proof into three lemmata.

Lemma 6.5.9. Let B2,ϑ(t) be a space with temperate weight ϑ(ξ, t). If

sup
[0,T ]×Rn

ξ

∫

Rn
η

ϑ(ξ, t)2

ϑ(η, t)2ϑ(ξ − η, t)2
dη =: C2

ϑ <∞,

then B2,ϑ(t) is an algebra and it holds

‖uv‖B2,ϑ(t)
≤ Cϑ ‖u‖B2,ϑ(t)

‖v‖B2,ϑ(t)
.

Proof. The idea of this proof is taken from [BR84]. Let w(ξ) ∈ L2(Rn) be an
arbitrary function. Then, by the Inequality of Cauchy–Schwarz, we have

∣∣∣∣∣

∫

R
n
ξ

ϑ(ξ, t)(uv) (̂ξ, t)w(ξ) dξ

∣∣∣∣∣

=

∣∣∣∣∣

∫

R
n
ξ

∫

Rn
η

ϑ(ξ, t)û(η, t)v̂(ξ − η, t)w(ξ) dη dξ

∣∣∣∣∣
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=

∣∣∣∣
∫

R
n
ξ

∫

Rn
η

ϑ(ξ, t)

ϑ(η, t)ϑ(ξ − η, t)
(û(η, t)ϑ(η, t))

× (v̂(ξ − η, t)ϑ(ξ − η, t))w(ξ) dη dξ

∣∣∣∣

≤
(∫

R
n
ξ

∫

Rn
η

ϑ(ξ, t)2

ϑ(η, t)2ϑ(ξ − η, t)2
|w(ξ)|2 dη dξ

)1/2

×
(∫

Rn
η

∫

R
n
ξ

|û(η, t)ϑ(η, t)|2 |v̂(ξ − η, t)ϑ(ξ − η, t)|2 dξ dη
)1/2

≤ Cϑ ‖w‖L2 ‖u‖B2,ϑ(t)
‖v‖B2,ϑ(t)

.

This gives the assertion.

Lemma 6.5.10. Let the temperate weight ϑ(ξ, t) fulfil the conditions

sup
[0,T ]

∫

Rn
η

ϑ(η, t)−2 dη =: C1 <∞,

ϑ(ξ, t) ≤ C2ϑ(ξ/2, t) ∀(t, ξ) ∈ [0, T ] × R
n,

ϑ(ξ, t) = ϑ(|ξ|, t) is monotonically increasing in |ξ| for each fixed t.

Then a constant Cϑ exists with

sup
[0,T ]×R

n
ξ

∫

Rn
η

ϑ(ξ, t)2

ϑ(η, t)2ϑ(ξ − η, t)2
dη =: C2

ϑ <∞.

Proof. Let ξ ∈ Rn be fixed. We split Rn
η into three parts:

A = {η ∈ R
n : |η| ≥ 2|ξ|},

B = {η ∈ R
n : |η| ≤ 2|ξ|, |ξ − η| ≤ |η|},

C = {η ∈ R
n : |η| ≤ 2|ξ|, |ξ − η| ≥ |η|}.

In A we have |ξ| ≤ |η|/2 ≤ |ξ − η| ≤ 3|η|/2. This gives
∫

A

ϑ(ξ, t)2

ϑ(η, t)2ϑ(ξ − η, t)2
dη ≤

∫

A

ϑ(ξ, t)2

ϑ(η, t)2ϑ(η/2, t)2
dη

≤
∫

A

dη

ϑ(η, t)2
≤ C1.

In B it holds |η| ≥ |ξ|/2, hence
∫

B

ϑ(ξ, t)2

ϑ(η, t)2ϑ(ξ − η, t)2
dη ≤

∫

B

ϑ(ξ, t)2

ϑ(ξ/2, t)2ϑ(ξ − η, t)2
dη

≤ C2
2

∫

B

dη

ϑ(ξ − η, t)2
≤ C1C

2
2 .



140 CHAPTER 6. PROPAGATION OF SINGULARITIES

And in C we have |ξ − η| ≥ |ξ|/2, which similarly gives

∫

C

ϑ(ξ, t)2

ϑ(η, t)2ϑ(ξ − η, t)2
dη ≤ C1C

2
2 .

The lemma is proved.

Lemma 6.5.11. If M is sufficiently large, then ϑL1L2MKK fulfils the condi-
tions mentioned in the previous lemma.

Proof. The estimate ϑL1L2MKK(ξ, t) ≥ C〈ξ〉M−K−d1L2 has been proved in the
above subsection. If M > K + d1L2 + n/2, then

sup
[0,T ]

∫

Rn
η

ϑL1L2MKK(η, t)−2 dη <∞.

To consider the second assertion, we distinguish three cases. If (ξ, t) ∈ Zhyp(N)
and (ξ/2, t) ∈ Zhyp(N), then it is clear that

λ(t)L2J(t, t0)〈ξ〉MtMξ ≤ Cλ(t)L2J(t, t0)〈ξ/2〉M tMξ/2.

Now let (ξ, t) ∈ Zpd(N) and (ξ/2, t) ∈ Zpd(N). Then it is to show that

(
%(ξ, tξ)

%(ξ, t)

)L1

λ(tξ)
L2J(tξ, t0)〈ξ〉MtMξ (6.5.2)

≤ C

(
%(ξ/2, tξ/2)

%(ξ/2, t)

)L1

λ(tξ/2)
L2J(tξ/2, t0)〈ξ/2〉M tMξ/2.

We have %(ξ/2, t) ≤ %(ξ, t) ≤
√

2%(ξ/2, t). From (6.3.2) we get

(〈ξ/2〉
〈ξ〉

)d1
≤ λ(tξ)

λ(tξ/2)
≤
(〈ξ/2〉

〈ξ〉

)d0
,

hence C1λ(tξ/2) ≤ λ(tξ) ≤ C2λ(tξ/2). From this result and (6.3.10) follows

C ′
1%(ξ/2, tξ/2) ≤ %(ξ, tξ) ≤ C ′

2%(ξ/2, tξ/2).

Furthermore, due to (6.3.2) it holds

J(tξ, t0)

J(tξ/2, t0)
= J(tξ, tξ/2) ≤

(
λ(tξ/2)

λ(tξ)

)K0

≤
(

Λ(tξ/2)

Λ(tξ)

)d1K0

=

( 〈ξ〉
〈ξ/2〉

)d1K0

≤ C.
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Finally, tξ ≤ tξ/2. Thus, (6.5.2) is proved. In the last case we have (ξ/2, t) ∈
Zpd(N) and (ξ, t) ∈ Zhyp(N). Then tξ ≤ t ≤ tξ/2 and, consequently,

λ(t)L2 ≤ λ(tξ/2)
L2 ≤ λ(tξ/2)

L2

(
%(ξ/2, tξ/2)

%(ξ/2, t)

)L1

.

With 〈ξ〉M ≤ C〈ξ/2〉M , J(tξ, t0) ≤ CJ(tξ/2, t0) and tξ ≤ tξ/2 we get
ϑL1L2MKK(ξ, t) ≤ ϑL1L2MKK(ξ/2, t) in this case, too.

Finally, we prove that ϑL1L2MKK(ξ, t) is monotonically increasing in |ξ|. In the
hyperbolic zone, the weight can be written as

λ(t)L2〈ξ〉M−K(〈ξ〉tξ)K.
Because 〈ξ〉tξ is increasing in 〈ξ〉 (see (6.3.6)), we have the assertion, if M ≥ K.
Now let us consider the pseudodifferential zone. We can write the weight in
the form

(
%(ξ, tξ)〈ξ〉d1

)L1
(λ(tξ)〈ξ〉d1)L2J(tξ, t0) (〈ξ〉tξ)K

× 〈ξ〉M−K−d1L1−d1L2%(ξ, t)−L1.

From (6.3.13) we gain the monotonicity of the first two factors. The term
J(tξ, t0) is obviously increasing in 〈ξ〉. Due to (6.3.6) we know that (〈ξ〉tξ)K
is increasing, too. It remains to show that the last factor r(〈ξ〉, t) :=
〈ξ〉M ′

%(ξ, t)−L1 increases in 〈ξ〉, M ′ := M −K− d1L1 − d1L2. We compute the
derivative:

r〈ξ〉(〈ξ〉, t) = M ′r(〈ξ〉, t)〈ξ〉−1 − r(〈ξ〉, t)
L1

λ(t)2

Λ(t)

2%(ξ, t)2

≥M ′r(〈ξ〉, t)〈ξ〉−1 − L1

2
r(〈ξ〉, t)〈ξ〉−1 > 0,

if M > K + (d1 + 1/2)L1 + d1L2.

From these lemmata we immediately get:

Theorem 6.5.12 (Algebra). Let M > max(K + d1L2 + n/2, K + (d1 +
1/2)L1 + d1L2), then BL1L2MKK is an algebra and it holds

‖uv‖BL1L2MKK
≤ Calg ‖u‖BL1L2MKK

‖v‖BL1L2MKK

for all functions u, v from BL1L2MKK.

Corollary 6.5.13 (Compositions). Let the assumptions of the previous the-
orem be satisfied and let f(u) =

∑∞
j=1 fju

j be an entire analytic function with
f(0) = 0. Then f maps bounded sets from BL1L2MKK into bounded sets from
BL1L2MKK and it holds

‖f(u)‖BL1L2MKK
≤ C(‖u‖BL1L2MKK

) ‖u‖BL1L2MKK
.
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6.6 Existence of Solutions and Regularity

In Section 6.4 we have proved:

Theorem 6.6.1 (Linear case). Let v be a solution of

Lv = f(x, t), v(x, 0) = ϕ(x), vt(x, 0) = ψ(x),

L = ∂tt +

n∑

j=1

cj(t)λ(t)∂xj t −
n∑

i,j=1

aij(t)λ(t)2∂xixj

+
n∑

j=1

bj(t)λ
′(t)∂xj

+ c0(t)∂t.

Let ϕ ∈ CMK, ψ ∈ CM(K+1) and f ∈ BMKK, see the Definitions 6.4.1
and 6.4.2.

Then Hv ∈ BMKK, vt ∈ BM(K+1)K , v ∈ B01(M+1)KK and

‖Hv‖BMKK
+ ‖vt‖BM(K+1)K

+ ‖v‖B01(M+1)KK

≤ Capr(T ‖f‖BMKK
+ ‖ϕ‖CMK

+ ‖ψ‖CM(K+1)
).

For the definition of the first order operator H see Proposition 6.3.3. The
spaces are sharp in the cases of the Examples 6.2.2 and 6.2.3.

The following theorem is devoted to the semilinear case.

Theorem 6.6.2 (Semilinear case). Let f(u) be an entire analytic function
with f(0) = 0 and let L, ϕ, ψ, H be as in the previous theorem. If T > 0 is
small enough and M is sufficiently large, then a local solution u of

Lu = f(u), u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)

exists. This solution and its first derivatives lie in the same spaces as the
solution v of the linear problem

Lv = 0, v(x, 0) = ϕ(x), vt(x, 0) = ψ(x) :

Hu ∈ BMKK, ut ∈ BM(K+1)K , u ∈ B01(M+1)KK .

Remark 6.6.3. It is possible to prove the same result, if the right–hand side
f(u) is replaced by f(u,Hu).

Proof. In the Banach space B := BMKK ×BM(K+1)K we choose the closed set

MD ={(u1, u2) : u1(x, 0) = ϕ(x), u2(x, 0) = ψ(x),

‖u1‖BMKK
+ ‖u2‖BM(K+1)K

≤ D}.
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If the constant D is large enough, then MD is not empty. Then we consider
the mapping T : MD → B, T : (v1, v2) 7→ (u1, u2) = (Hu, ut) with

Lu = f(v), v = H(Dx, t)
−1v1, u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

From % ≥ 1 and λ(t)〈ξ〉 ≥ λ(tξ)〈ξ〉 ≥
√
N%(ξ, tξ)/C ≥ C ′ we deduce that

0 < H(ξ, t)−1 ≤ C ′′, which results in v ∈ BMKK , hence f(v) ∈ BMKK and
‖f(v)‖BMKK

≤ C(D) ‖v‖BMKK
. The estimate from Theorem 6.6.1 implies

(u1, u2) ∈ MD if T is small enough. Hence, T maps MD into itself. If
V, V ′ ∈ MD, V = (v1, v2), V

′ = (v′1, v
′
2) and v = H−1v1, v

′ = H−1v′1, then

‖f(v) − f(v′)‖BMKK
≤ C(D)′ ‖v − v′‖BMKK

≤ C(D)′′ ‖V − V ′‖B ,
since BMKK is an algebra and f is an entire analytic function. If T V = (u1, u2)
and T V ′ = (u′1, u

′
2), then Theorem 6.6.1 implies

‖u1 − u′1‖BMKK
+ ‖u2 − u′2‖BM(K+1)K

≤ CaprTC(D)′′ ‖V − V ′‖B .

If T is sufficiently small, then the mapping T is contractive. The fixed point
theorem of Banach gives the assertion.

Finally, let us study the difference u− v. It satisfies

L(u− v) = f(u), (u− v)(x, 0) = 0, (u− v)t(x, 0) = 0.

Theorem 6.6.4. Under the assumptions of Theorem 6.6.2 it holds

H(u− v) ∈ BM(K−1)(K−1), (u− v)t ∈ BM(K−1)(K−1),

u− v ∈ B01(M+1)(K−1)(K−1).

Proof. Corollary 6.4.5 gives u ∈ B01(M+1)KK . Since this space is an algebra, we
have f(u) ∈ B01(M+1)KK. Similar to the proof of Theorem 6.4.3, we estimate
‖H(u− v)‖BM(K−1)(K−1)

and ‖(u− v)t‖BM(K−1)(K−1)
. In the pseudodifferential

zone it holds

|%(ξ, t)(û− v̂)(ξ, t)| ≤ C

∫ t

0

%(ξ, t)(t− s)|(f ◦ u) (̂ξ, s)| ds

≤ C%(ξ, t)tξ
√
t

(∫ t

0

|(f ◦ u) (̂ξ, s)|2 ds
)1/2

.

From (6.3.10) it can be concluded that
∥∥%(ξ, t)(û− v̂)(ξ, t)ϑM(K−1)(K−1)

∥∥2

L2(|ξ|≤R0(t))

≤ Ct

∫ t

0

∫

|ξ|≤R0(t)

|(f ◦ u) (̂ξ, s)|2J(tξ, t0)
2λ(tξ)

2〈ξ〉2〈ξ〉2Mt2Kξ dξ ds

≤ Ct2 ‖f(u)‖2
B01(M+1)KK

.
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The derivative Dt(u− v) fulfils the estimate

|Dt(û− v̂)(ξ, t)| ≤ C

∫ t

0

(1 + (λ(t) − λ(s))(t− s)〈ξ〉)|(f ◦ u) (̂ξ, s)| ds

≤ C
√
t

(∫ t

0

|(f ◦ u) (̂ξ, s)|2 ds
)1/2

+ C%(ξ, t)t
√
t

(∫ t

0

|(f ◦ u) (̂ξ, s)|2 ds
)1/2

in the pseudodifferential zone. From (6.3.10) we obtain

∥∥Dt(û− v̂)ϑM(K−1)(K−1)

∥∥2

L2(|ξ|≤R0(t))
≤ C ‖f‖2

BMKK

+ Ct

∫ t

0

∫

|ξ|≤R0(t)

|(f ◦ u) (̂ξ, s)|2t2λ(tξ)
2〈ξ〉2J(tξ, t0)

2〈ξ〉2Mt2K−2
ξ dξ ds

≤ C ‖f‖2
BMKK

+ Ct2 ‖f‖B01(M+1)KK
.

In the hyperbolic zone we have

|λ(t)ξ(û− v̂)(ξ, t)| + |(û− v̂)t(ξ, t)|

≤ C

∫ t

tξ

J(s, t)|(f ◦ u) (̂ξ, s)| ds

+ CJ(tξ, t)

∫ tξ

0

(1 + %(ξ, tξ)(tξ − s))|(f ◦ u) (̂ξ, s)| ds

≤ C
√
t

(∫ t

tξ

|(f ◦ u) (̂ξ, s)|2J(s, t)2 ds

)1/2

+ CJ(tξ, t)
√
tξ

(∫ tξ

0

|(f ◦ u) (̂ξ, s)|2 ds
)1/2

+ CJ(tξ, t)%(ξ, tξ)tξ
√
tξ

(∫ tξ

0

|(f ◦ u) (̂ξ, s)|2 ds
)1/2

.

Making use of

1 ≤ N = Λ(tξ)〈ξ〉 ≤ λ(tξ)tξ〈ξ〉 ≤
√
N%(ξ, tξ)tξ

we can drop the second term on the right. Then it follows that

∥∥λ(t)ξ(û− v̂)ϑM(K−1)(K−1)

∥∥2

L2(|ξ|≥R0(t))

+
∥∥(û− v̂)tϑM(K−1)(K−1)

∥∥2

L2(|ξ|≥R0(t))
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≤ Ct

∫

|ξ|≥R0(t)

∫ t

tξ

|(f ◦ u) (̂ξ, s)|2
λ(s)2J(s, t)2〈ξ〉2(M+1)t2Kξ

λ(s)2〈ξ〉2t2ξ
ds dξ

+ Ct

∫

|ξ|≥R0(t)

∫ tξ

0

|(f ◦ u) (̂ξ, s)|2λ(tξ)
2J(tξ, t)

2〈ξ〉2(M+1)t2Kξ ds dξ

≤ Ct

∫ t

0

∫

|ξ|≥R0(t)

|(f ◦ u) (̂ξ, s)|2ϑ01(M+1)KK(ξ, s)2 dξ ds

≤ Ct2 ‖f‖2
B01(M+1)KK

,

since λ(s)〈ξ〉tξ ≥ Λ(s)〈ξ〉tξ/s ≥ N in Zhyp(N). Using the ideas from the proof
of Corollary 6.4.5 we deduce that u− v ∈ B01(M+1)(K−1)(K−1).

6.7 An Example

Let us illustrate the results of this chapter by an example. In [DR98b], Section
6, Example 3, the Example of Qi Min-You has been extended to a Cauchy
problem of the type

Lv = vtt + ctlvxt − at2lvxx − bltl−1vx = 0, l ∈ N, l ≥ 2,

v(x, 0) = ϕ(x), vt(x, 0) = 0.

The ansatz v(x, t) =
∑m

k=0 Ckt
(l+1)k∂kxϕ(x+ µtl+1) leads to

m =
−l(l + 1)µ+ bl

2(l + 1)2µ+ (l + 1)c
, µ1,2 = − 1

2(l + 1)

(
c∓

√
c2 + 4a

)
.

This gives

m1,2 =
l

2(l + 1)

(
−1 ± 2b+ c√

c2 + 4a

)
.

Let us assume that the constants l, a, b and c are chosen in such a way that
either m1 or m2 is a positive integer. It is not possible that both numbers
m1 and m2 are positive integers, because m1 + m2 = −l/(l + 1) and −1 <
−l/(l+1) < 0. Under this assumption, singularities of the datum ϕ propagate
along one characteristic only and the loss of Sobolev regularity is given by
max(m1, m2); that is, ϕ ∈ Hs(R) implies v ∈ C(R, Hs−max(m1 ,m2)(R)) and
these are the sharp spaces.
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Let us now apply the general theory developed in this chapter. We have

b(ξ, t) = b
ξ

|ξ| , c(ξ, t) =
1

2
c
ξ

|ξ| , a(ξ, t) = a,

J(s, t) = exp

(∫ t

s

sup
ζ

λ′(τ)

2λ(τ)

∣∣∣∣∣1 ± b(ζ, τ) + c(ζ, τ)√
c(ζ, τ)2 + a(ζ, τ)

∣∣∣∣∣ dτ
)

= exp

(∫ t

s

λ′(τ)

2λ(τ)

(
1 +

|2b+ c|√
c2 + 4a

)
dτ

)
=

(
λ(t)

λ(s)

) 1
2
+

|2b+c|

2
√

c2+4a

,

tξ = O
(
〈ξ〉− 1

l+1

)
,

λ(tξ) = O
(
〈ξ〉− l

l+1

)
.

This implies for the weight ϑMKK(ξ, t):

ϑMKK(ξ, 0) = %(ξ, tξ)J(tξ, t0)〈ξ〉MtKξ
= O(λ(tξ)〈ξ〉)O(λ(tξ))

− 1
2
− |2b+c|

2
√

c2+4a 〈ξ〉MO(〈ξ〉− K
l+1 )

= O

(
〈ξ〉M+1+ l

2(l+1)

„

−1+ |2b+c|√
c2+4a

«

− K
l+1

)
,

ϑMKK(ξ, t) = J(t, t0)〈ξ〉MtKξ = O(〈ξ〉M− K
l+1 )

if t > 0 is fixed and 〈ξ〉 is large. We know that ‖Hv‖BMKK
≤ C ‖ϕ‖CMK

,
where H is a pseudodifferential operator that behaves like λ(t)∂x if t > 0 is
fixed. Then the theory presented in this chapter says that the loss of Sobolev
regularity is

l

2(l + 1)

(
−1 +

|2b + c|√
c2 + 4a

)
.

But this value is exactly max(m1, m2). In other words, the results of this
chapter are sharp in the case of this linear model problem.

However, our theory says more, namely that the solution u of the semilinear
problem

Lu = f(u) =
∞∑

j=1

fju
j,

u(x, 0) = ϕ(x), ut(x, 0) = 0

has the same regularity as v, and that the difference u − v has higher reg-
ularity than u and v. The difference in the regularities is described by
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t−1
ξ = O(〈ξ〉1/(l+1)), cf. Theorems 6.6.2 and 6.6.4. Summarising, we have

u, v ∈ C([0, T ], Hs−max(m1 ,m2)(R)),

u− v ∈ C([0, T ], Hs−max(m1 ,m2)+1/(l+1)(R))

if T > 0 is sufficiently small and s is sufficiently large.

This allows to draw some conclusions about the propagation of singularities.
Let us assume ϕ ∈ Hs(R) and ϕ ∈ C∞(R\{x0}). There is no loss of generality
if we assume m1 > m2. From the explicit representation of v(x, t) we know
that the singularity of ϕ at the point x0 propagates along the characteristic

C = {(x, t) : x + µ1t
l+1 = x0}.

The function v is smooth in the complement set of this characteristic. From
the above statements we get that

∅ 6= sing–suppHs−m1+ε(v(., t)) = sing–suppHs−m1+ε(u(., t)),

if 0 ≤ t ≤ T and 0 < ε ≤ 1/(l + 1). In other words, u has Hs−m1 singularities
on C. The function u may have singularities away from C, but these are weaker,
at least of order 1/(l + 1). The strongest singularities of u coincide with the
singularities of v.

Remark 6.7.1. The results of this chapter tell us that the strongest singu-
larities of solutions to semilinear equations propagate in the same way as the
singularities of solutions to linear equations. The linear case has been studied,
e.g., in [TT80] and [Ale84].



Appendix A

The Spherical Harmonics

For the study of the properties of classical pseudo–differential operators with
symbols of limited smoothness it is very useful to expand the homogeneous
components of the symbols into a series

aj(x, ξ) = 〈ξ〉j
∞∑

l=0

h(l,n−2)∑

m=1

ajlm(x)Ylm(ξ),

where Ylm(ξ) are the spherical harmonics and (ajlm(x))l, in some sense, is a
rapidly decreasing sequence in l. In this section we will give a precise descrip-
tion of the spherical harmonic functions and such expansions. We restrict us
to the case of at least 3 space dimensions. The spherical harmonics on the
unit circle are the well known functions sin(lξ), cos(lξ), l = 0, 1, . . . . The unit
sphere in the space R1 consists of two points. These two cases are trivial.

The following results, definitions and notations are taken from [EMO53], Vol-
ume II.

Let x = (x1, . . . , xp+2) be a point in the Euclidean space Rp+2, p ≥ 1. A
polynomial Hn(x) of degree n in x1, . . . , xp+2 is called a harmonic polynomial
of degree n, if it satisfies the Laplace equation in R

p+2,

4Hn(x) = 0 ∀x ∈ R
p+2,

and is homogeneous of degree n,

Hn(λx) = λnHn(x) ∀λ ∈ R, ∀x ∈ R
p+2.

There are

h(n, p) = (2n+ p)
(n+ p− 1)!

p!n!
= O(〈n〉p)

148
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linearly independent homogeneous polynomials of degree n, see Section 11.2
in [EMO53], Volume II. They have the following form (Theorem 1 in Sec-
tion 11.2 of [EMO53]):

Let m0, . . . , mp be integers with

n = m0 ≥ m1 ≥ · · · ≥ mp−1 ≥ |mp|,

and let rk be defined by

rk =
(
x2
k+1 + · · · + x2

p+2

)1/2
, k = 0, . . . , p, r0 = r.

Then

H(mk, x) := h(n,m1, . . . , mp, x) =

=

(
xp+1

rp
+ i

xp+2

rp

)mp

rmp
p

p−1∏

k=0

r
mk−mk+1

k C
mk+1+(p−k)/2
mk−mk+1

(
xk+1

rk

)

form a complete set of h(n, p) linearly independent harmonic polynomials of

degree n. The functions C
mk+1+(p−k)/2
mk−mk+1

are the Gegenbauer polynomials (cf.
Section 3.5 of [EMO53], Volume I) and can be defined using hypergeometric
functions 2F1(a, b; c; z):

n!Cλ
n(x) = (2λ)n 2F1

(
−n, n + 2λ;λ+

1

2
;
1 − x

2

)
,

2F1(a, b; c; z) =

∞∑

k=0

(a)k(b)k
(c)kk!

zk,

(a)n =
Γ(a + n)

Γ(a)
.

Their restrictions on the unit sphere {|x| = 1} form a complete set of orthogonal
functions. In other words, they are an orthogonal basis of L2({|x| = 1}). These
functions are called the spherical harmonics Y (mk, θ, ϕ),

Y (mk, θ, ϕ) := r−nH(mk, x),

where (r, θ, ϕ) = (r, θ1, . . . , θp, ϕ) are the polar coordinates in Rp+2:

x1 = r cos θ1,

x2 = r sin θ1 cos θ2,

x3 = r sin θ1 sin θ2 cos θ3,

. . . ,
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xp = r sin θ1 sin θ2 . . . sin θp−1 cos θp,

xp+1 = r sin θ1 sin θ2 . . . sin θp−1 sin θp cosϕ,

xp+2 = r sin θ1 sin θ2 . . . sin θp−1 sin θp sinϕ,

0 ≤ r <∞, 0 ≤ θ1, . . . , θp ≤ π, 0 ≤ ϕ ≤ 2π.

The Laplace operator becomes (see [EMO53], Section 11.1)

4 = 4r +
1

r2
4S

= r−p−1 ∂

∂r

(
rp+1 ∂

∂r

)

+
1

r2

1

(sin θ1)p
∂

∂θ1

(
(sin θ1)

p ∂

∂θ1

)

+
1

r2

1

(sin θ1)2

1

(sin θ2)p−1

∂

∂θ2

(
(sin θ2)

p−1 ∂

∂θ2

)

+
1

r2

1

(sin θ1 sin θ2)2

1

(sin θ3)p−2

∂

∂θ3

(
(sin θ3)

p−2 ∂

∂θ3

)

. . .

+
1

r2

1

(sin θ1 sin θ2 . . . sin θp−1)2

1

(sin θp)1

∂

∂θp

(
(sin θp)

1 ∂

∂θp

)

+
1

r2

1

(sin θ1 sin θ2 . . . sin θp)2

∂2

∂ϕ2
.

The operator 4r differentiates with respect to r only and the operator 4S

operates on the sphere.

The following proposition states that the spherical harmonics Y (mk, θ, ϕ) are
not only an L2–basis on the sphere, they are even eigenfunctions of the spherical
Laplacian 4S.

Proposition A.0.1. Let Y (mk, θ, ϕ) be a spherical harmonic function of de-
gree n. Then,

4SY (mk, θ, ϕ) = −n(n + p)Y (mk, θ, ϕ).

Proof. The function H(mk, x) = rnY (mk, θ, ϕ) is a harmonic polynomial of
degree n, 4H(mk, x) = 0. Hence we obtain

0 = 4H = 4(rnY ) = (4rr
n)Y + rn−2 4S Y

= rn−2(n(n+ p) + 4S)Y.
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We come back to our style of notation:

p+ 2 7−→ n,

(n,m1, . . . , mp) 7−→ (l, m), 1 ≤ m ≤ h(l, n− 2) = O(〈l〉n−2),

(x1, . . . , xp+2) 7−→ ξ ∈ R
n,

(θ1, . . . , θp, ϕ) 7−→ ξ

|ξ| ∈ Sn−1,

Y (mk, θ, ϕ) 7−→ Ylm(ξ) or Ylm(θ, ϕ).

Remark A.0.2. We should write Ylm(ξ/|ξ|), but we want to keep the notation
simple. The reader should keep in mind that the argument of Ylm is normalised
without further notice.

We rewrite the results in the new notation:

{Ylm(ξ)}l=0,...,∞, m=1,...,h(l,n−2) form an orthogonal basis of L2(Sn−1),

h(l, n− 2) = O(〈l〉n−2),

Ylm(ξ) ∈ C∞(Sn−1) ∀l, m,
−4SYlm(ξ) = l(l + n− 2)Ylm(ξ).

There is no loss of generality in assuming that ‖Ylm‖L2(Sn−1) = 1 for all l, m.
From [Mic78], Section 14.6, we take the estimate of the L∞ norm:

‖Ylm(ξ)‖L∞(Sn−1) ≤ Cn〈l〉
n
2
−1. (A.0.1)

Now we are in a position to formulate the main result of this section.

Theorem A.0.3. Let a(x,D) ∈ OPXsSjcl(M) with Xs = Cs
b or Xs = Hs

be a positive homogeneous symbol of order j for |ξ| ≥ 1/2. Then there is a
constant C0 with

a(x, ξ) = 〈ξ〉j
∞∑

l=0

h(l,n−2)∑

m=1

alm(x)Ylm(ξ)

for all |ξ| ≥ C0 and

‖alm(x)‖Xs ≤ C(n, k)〈l〉−2k sup
{∥∥∥Dβ

ξ a(., ξ)
∥∥∥
Xs

: |β| ≤ 2k, |ξ| = 1
}
.

for all k, l,m. Additionally, it holds

‖Ylm(D)‖Ht→Ht ≤ C〈l〉n/2−1 ∀t ∈ R.
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Proof. The notation a(x, ξ) ∈ XsSjcl(M) for homogeneous a(x, ξ) means

a(x, λξ) = λja(x, ξ), |ξ| ≥ 1

2
, λ ≥ 1,

∥∥Dα
ξ a(., ξ)

∥∥
Xs ≤ Cα〈ξ〉j−|α|.

If |ξ| ≥ C0 and C0 is sufficiently large, then

a(x, ξ) = |ξ|ja
(
x,

ξ

|ξ|

)
= 〈ξ〉ja

(
x,

ξ

|ξ|

)
.

For each fixed x from M , a
(
x, ξ

|ξ|

)
can be regarded as a function defined on

the unit sphere Sn−1. Hence it can be written as

a

(
x,

ξ

|ξ|

)
=

∞∑

l=0

h(l,n−2)∑

m=1

alm(x)Ylm(ξ),

alm(x) =

∫

Sn−1

a(x, ξ)Ylm(ξ) dSξ.

In the following step we derive the decay properties of the sequence (alm(x))l,m.
Let us consider the case of Xs = Cs

b first. For simplicity we assume s ∈ N0. It
holds (for |γ| ≤ s)

Dγ
xalm(x) =

∫

Sn−1

Dγ
xa(x, ξ)Ylm(ξ) dξ

=

∫

Sn−1

Dγ
xa(x, ξ)

( −4S,ξ +1

l(l + n− 2) + 1

)k
Ylm(ξ) dξ

= (l(l + n− 2) + 1)−k
∫

Sn−1

(
Dγ
x (−4S,ξ +1)k a(x, ξ)

)
Ylm(ξ) dξ.

Exploiting the Cauchy–Schwarz Inequality, we conclude that

‖Dγ
xalm(x)‖L∞
≤ C(n, k)〈l〉−2k sup{|Dγ

x(−4S,ξ +1)ka(x, ξ)| : x ∈M, |ξ| = 1}.

Second, we consider the case Xs = Hs. We have

〈Dx〉salm(x) =

∫

Sn−1

〈Dx〉sa(x, ξ)Ylm(ξ) dξ

=

∫

Sn−1

〈Dx〉sa(x, ξ)
( −4S,ξ +1

l(l + n− 2) + 1

)k
Ylm(ξ) dξ

= (l(l + n− 2) + 1)−k
∫

Sn−1

(
〈Dx〉s (−4S,ξ +1)k a(x, ξ)

)
Ylm(ξ) dξ.
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Then it follows that

‖〈Dx〉salm(x)‖2
L2(M)

≤ C〈l〉−4k

∫

M

(∫

Sn−1

(
〈Dx〉s (−4S,ξ +1)k a(x, ξ)

)
Ylm(ξ) dξ

)2

dx

≤ C〈l〉−4k

∫

M

∫

Sn−1

(
〈Dx〉s (−4S,ξ +1)k a(x, ξ)

)2

dξ ‖Ylm‖2
L2 dx

≤ C〈l〉−4k sup
{∥∥〈Dx〉s(−4S,ξ +1)ka(x, ξ)

∥∥
L2(M)

: |ξ| = 1
}2

.

It remains to estimate the suprema. If we express the spherical Laplacian 4S

by means of the Laplacian in R
n
ξ and the radial Laplacian 4r,

4S = r24−r2 ∂
2

∂r2
− (n− 1)r

∂

∂r
, |ξ| = r,

then we see that (−4S,ξ +1)ka(x, ξ) ∈ XsSjcl(M). It can be concluded that

sup{|Dγ
x(−4S,ξ +1)ka(x, ξ)| : x ∈M, |ξ| = 1}

≤ C(n, k) sup{|Dγ
xD

β
ξ a(x, ξ)| : x ∈M, |ξ| = 1, β ≤ 2k},

sup
{∥∥〈Dx〉s(−4S,ξ +1)ka(x, ξ)

∥∥
L2(M)

: |ξ| = 1
}

≤ C(n, k) sup

{∥∥∥Dβ
ξ a(x, ξ)

∥∥∥
Hs(M)

: |ξ| = 1, β ≤ 2k

}
.

Taking into account all the above estimates we get

‖alm(x)‖Xs ≤ C(n, k)〈l〉−2k sup
{∥∥∥Dβ

ξ a(., ξ)
∥∥∥
Xs

: |ξ| = 1, β ≤ 2k
}

for all k ≥ 0. Finally, we have to study the mapping properties

Ylm(D) : H t(Rn) → H t(Rn), t ∈ R.

By the estimate (A.0.1) it follows that

‖Ylm(D)u‖Ht =
∥∥〈ξ〉t(Ylm(D)u) (̂ξ)

∥∥
L2

=
∥∥〈ξ〉tYlm(ξ)û(ξ)

∥∥
L2

≤ Cn〈l〉n/2−1
∥∥〈ξ〉tû(ξ)

∥∥
L2

= Cn〈l〉n/2−1 ‖u‖Ht .

The theorem is proved for a(x,D) ∈ OPCsSjcl(M) with integer s ≥ 0 and
a(x,D) ∈ OPHsSjcl(M) with arbitrary s > n/2.
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Miscellaneous

Here we provide some auxiliary results.

Proposition B.0.1. Let Ω ⊂ Rn
ξ be a bounded domain with smooth boundary.

Then there is a basis {βl(ξ)}∞l=0 of L2(Ω) with the property that every a(x, ξ) ∈
Cm(M × Ω) can be decomposed in a series

a(x, ξ) =
∞∑

l=0

al(x)βl(ξ).

Furthermore, the following statements hold:

al(x) =

∫

Ω

a(x, ξ)βl(ξ) dξ,

‖βl‖L2 = 1,

‖βl‖L∞ ≤ C〈l〉,
‖al‖Cm ≤ Ck〈l〉1−

2
n
k sup{

∥∥Dα
ξ a(., ξ)

∥∥
Cm : |α| = 2k, ξ ∈ Ω} ∀k.

Proof. We consider the operator (−4)|Ω with homogeneous Dirichlet condi-
tions. This operator has eigenvalues 0 < λ1 ≤ λ2 ≤ . . . and eigenfunctions
β1, β2, . . . which form an orthonormal basis for L2(Ω). It is well–known (see
e.g. [ES91], Volume II, Part I, formula 8.23) that

λl ∼ (2π)2

(
l

ωn meas Ω

)2/n

(1 +O(l−1/n)), l → ∞.

First we estimate ‖βl‖L∞ . From (−4)nβl = λnl βl and the Sobolev Embedding
Theorem it can be deduced that

c ‖βl‖2
L∞ ≤ ‖βl‖2

Hn ≤ Cλnl ≤ C〈l〉2.
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To estimate al, we take some |γ| ≤ m. Then

|Dγ
xal(x)| =

∣∣∣∣
∫

Ω

Dγ
xa(x, ξ)βl(ξ) dξ

∣∣∣∣

=
1

λkl

∣∣∣∣
∫

Ω

Dγ
xa(x, ξ)(−4ξ)

kβl(ξ) dξ

∣∣∣∣

≤ 1

λkl

∫

Ω

|Dγ
x(4ξ)

ka(x, ξ)||βl(ξ)| dξ

≤ Ck〈l〉−
2
n
k sup{

∥∥Dα
ξ a(x, ξ)

∥∥
Cm : |α| = 2k, ξ ∈ Ω} · 〈l〉.

The proof is complete.

Proposition B.0.2. Let the homogeneous differential operator P (x,D) of or-
der m be strictly hyperbolic at the point x0 in the direction N , |N | = 1. By
λmax we denote the largest absolute value of the characteristic roots, i.e.,

λmax = sup{|τ | : P (x0, τN + ξ) = 0, |ξ| = 1, ξ ⊥ N}.

Then P is strictly hyperbolic at x0 in any direction N + e with N ⊥ e, |e|−1 >
λmax.

Proof. We have to check two conditions:

P (x0, N + e) 6= 0,

P (x0, τ(N + e) + ξ) = 0, |ξ| = 1, ξ ⊥ N + e,

has m real and distinct roots τ1(ξ), . . . , τm(ξ).

The first condition holds obviously:

P (x0, N + e) = |e|mP
(
x0,

1

|e|N +
e

|e|

)
6= 0,

since |e|−1 > λmax.

It remains to show the second condition: We consider the set of zeroes of
P (x0, .):

Z = {τN + ξ : P (x0, τN + ξ) = 0, ξ ⊥ N}.

It consists of m parts,

Z = Z1 ∪ · · · ∪ Zm, Zi ∩ Zj = {0} (i 6= j), (B.0.1)

Zj = {τj(ξ)N + ξ : P (x0, τj(ξ)N + ξ) = 0, ξ ⊥ N}, τj continuous.
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The functions τj(ξ) are homogeneous functions of order 1,

τj(ξ) = |ξ|τj
(
ξ

|ξ|

)
, ξ ⊥ N, ξ 6= 0.

The choice of λmax gives |τj(ξ)| ≤ λmax|ξ|. We fix a vector ξ, |ξ| = 1, ξ ⊥ N+e.
It will be shown that the line

G = {%(N + e) + ξ : % ∈ R}
intersects each set Zj. The vector ξ can be decomposed as ξ = ξ⊥ + 〈ξ, N〉N
with 〈ξ⊥, N〉 = 0. Then we can write

%(N + e) + ξ = (%+ 〈ξ, N〉)N + (%e + ξ⊥).

For large |%| we have

%2 + 2%〈ξ, N〉 + 〈ξ, N〉2
%2|e|2 + 2%〈e, ξ⊥〉 + |ξ⊥|2

> λ2
max,

since |e|−2 > λ2
max. This gives

|%+ 〈ξ, N〉|
|%e+ ξ⊥|

> λmax

for large |%|. It follows that the point

%(N + e) + ξ = (%+ 〈ξ, N〉)N + (%e + ξ⊥)

lies “above” the set

{τN + η : τ = λmax|η|, η ⊥ N}
for %� 1 and “below” the set

{τN + η : τ = −λmax|η|, η ⊥ N}
for % � −1. Hence, the line G intersects each Zj. We get m different inter-
section points, since (B.0.1) and 0 6∈ G.

The next lemma allows to extend a function a(x, p) which is defined inQ×G (Q
is a rectangular parallelepipedon in Rn, G ⊂ Rr is a domain for the parameters
p = (p1, . . . , pn)) to a function aε(x, p) which can be regarded as being periodic
with respect to x. The functions a(x, p) and aε(x, p) coincide in the interior
of Q if the point x is not near the boundary. The function aε has the same
smoothness with respect to x and p as the function a. We will apply this lemma
to the coefficients aj,α(x, t) and aj,α(x, t, {Dβ

xck,βD
k
t u}) of weakly hyperbolic

equations. The parameters p in these applications are t and the weighted
derivatives of u.
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Lemma B.0.3. Let Q = [a1, b1] × · · · × [an, bn] ⊂ Rn be a rectangular par-
allelepipedon (RP for short) and a(x, p) be a function defined in Q × G
with G ⊂ R

r being a compact domain for the parameters p = (p1, . . . , pr);
a is supposed to be continuous with respect to (x, p). Let Q′ be the RP
Q′ = [a1, 2b1 − a1] × · · · × [an, 2bn − an]. Then for every ε > 0 a positive
δ and a function aε(x, p) (defined in Q′ ×G) exist with

aε(x, p) = a(x, p) if x ∈ Q and dist(x, ∂Q) ≥ δ, (B.0.2)

|aε(x, p) − a(x, p)| ≤ ε if x ∈ Q and dist(x, ∂Q) ≤ δ, (B.0.3)

∂

∂n
aε(x, p) = 0, dist(x, ∂Q′) < δ/2, (B.0.4)

(n is the direction of the shortest connection from x to ∂Q′)

aε(., p) ∈ C∞(Q′ ∩ {dist(x, ∂Q′) < δ/2}) for each fixed p, (B.0.5)

aε(x1, . . . , xi−1, ai, xi+1, . . . , xn)

= aε(x1, . . . , xi−1, 2bi − ai, xi+1, . . . , xn)

∀i = 1, . . . , n, xj ∈ (aj, 2bj − aj). (B.0.6)

We write Q′ = ∪2n

i=1Qi with congruent RPs Qi intersecting each other only at
their boundaries. Then for each i, i = 1, . . . , 2n, an isometric bijective mapping
ϕi : Q→ Qi exists with

aε(ϕix, p) = aε(x, p) ∀(x, p) ∈ Q×G.

Proof. At first we construct a function aε(x, p) which is defined in Q×G and
satisfies (B.0.2), (B.0.3) and (B.0.4), (B.0.5) with Q′ replaced by Q. Then we
will extend this function by means of reflections to Q′×G, which are the above
mentioned bijective mappings.

For 0 < δ < (bi − ai)/2 we define functions χ+
i (s), χ−

i (s) ∈ C∞(R) with

χ+
i (s) =

{
0 : s ≤ bi − δ,

1 : s ≥ bi − δ/2,

χ−
i (s) =

{
0 : s ≥ ai + δ,

1 : s ≤ ai + δ/2,

0 ≤ χ+
i (s), χ−

i (s) ≤ 1.

We recursively define functions a0, a
−
0 , a+

0 , a1, . . . , a
+
n−1, a

−
n−1, an by the

following procedure:
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• a0(x, p) := a(x, p),

• i := 1,

• choose a+
i−1(., p) ∈ C∞(Q ∩ {xi = bi}) and (B.0.7)

a−i−1(., p) ∈ C∞(Q ∩ {xi = ai}) (p is fixed) with

|a−i−1(x1, . . . , xi−1, xi+1, . . . , xn, p)

− ai−1(x1, . . . , xi−1, ai, xi+1, . . . , xn, p)| <
ε

2n
,

|a+
i−1(x1, . . . , xi−1, xi+1, . . . , xn, p)

− ai−1(x1, . . . , xi−1, bi, xi+1, . . . , xn, p)| <
ε

2n
,

• ai(x, p) := a+
i−1(x1, . . . , xi−1, xi+1, . . . , xn, p)χ

+
i (xi)

+ (ai−1(x, p)(1 − χ−
i (xi)) + a−i−1(x1, . . . , xi−1, xi+1, . . . , xn, p)χ

−
i (xi))

× (1 − χ+
i (xi)),

• replace i by i + 1,

• if i ≤ n then goto (B.0.7).

The functions a±i (., p) can be defined, e.g., by means of convolution with
Friedrich’s mollifiers. Then it is clear that the a±i (., p) have the same smooth-
ness with respect to p as a(., p).

Then we can define

aε(x, p) := an(x, p) (x, p) ∈ Q×G.

This function has the desired properties in Q × G. Now we are in a position
to define aε in (Q′ \Q) ×G by means of reflections. This is done recursively:

• j := 1,

• ∀x ∈
j−1∏

k=1

[ak, 2bk − ak] × [bj, 2bj − aj] ×
n∏

k=j+1

[ak, bk] (B.0.8)

we define:

aε(x1, . . . , xn, p) := aε(x1, . . . , xj−1, 2bj − xj, xj+1, . . . , xn, p),

• replace j by j + 1,

• if j ≤ n then goto (B.0.8).

The bijective mappings mentioned in the lemma are suitable compositions of
these reflections.
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The following lemma is a generalisation of Gronwall’s Lemma to differential
inequalities with a singular coefficient, see [Ner66].

Lemma B.0.4 (Nersesyan). Let y(t) ∈ C([0, T ])∩C1(0, T ) be a solution of
the differential inequality

y′(t) ≤ K(t)y(t) + f(t), 0 < t < T,

where the functions K(t) and f(t) belong to C(0, T ). We assume for every
t ∈ (0, T ) and every δ ∈ (0, t) that

∫ δ

0

K(τ) dτ = ∞,

∫ T

δ

K(τ) dτ <∞,

lim
δ→+0

∫ t

δ

exp

(∫ t

s

K(τ) dτ

)
f(s) ds exists,

lim
δ→+0

y(δ) exp

(∫ t

s

K(τ) dτ

)
= 0. (B.0.9)

Then it holds

y(t) ≤
∫ t

0

exp

(∫ t

s

K(τ) dτ

)
f(s) ds.

For the estimate of solutions of ODEs we need the following two lemmata.

Lemma B.0.5. Let g, h ∈ C2([s, T ]) be the solutions of

h′′(t) = B(t)h(t), h(s) = H0 ≥ 0, h′(s) = H1 ≥ 0,

g′′(t) = A(t)g(t), g(s) = G0 ≥ 0, g′(s) = G1 ≥ 0

with |A(t)| ≤ B(t), G0 < H0, G1 < H1. Then it holds

|g(t)| < h(t) ∀s ≤ t ≤ T.

Proof. (indirect)

Let |g(t0)| ≥ h(t0) for some s < t0 ≤ T . We set

t1 = inf{t ∈ [s, T ] : |g(t)| ≥ h(t)}

and it follows that

|g(t1)| = h(t1), |g(t)| < h(t) s ≤ t < t1.

In the following we show |g(t1)| < h(t1) which gives a contradiction. For
s ≤ t ≤ t1 it holds

g′′(t) = A(t)g(t) ≤ |A(t)| · |g(t)| ≤ B(t)h(t) = h′′(t).



160 APPENDIX B. MISCELLANEOUS

We integrate twice from s to t and get

g′(t) −G1 ≤ h′(t) −H1, s ≤ t ≤ t1,

g(t) −G1(t− s) −G0 ≤ h(t) −H1(t− s) −H0, s ≤ t ≤ t1,

g(t) < h(t), s ≤ t ≤ t1.

On the other hand, we have

g′′(t) = A(t)g(t) ≥ −|A(t)| · |g(t)| ≥ −B(t)h(t) = −h′′(t).

We integrate twice and obtain

g′(t) −G1 ≥ H1 − h′(t), s ≤ t ≤ t1,

g(t) −G1(t− s) −G0 ≥ H1(t− s) +H0 − h(t), s ≤ t ≤ t1,

g(t) > −h(t), s ≤ t ≤ t1.

Especially it is true that |g(t1)| < h(t1).

We use this result to prove the following lemma.

Lemma B.0.6. Let g, h ∈ C2([s, T ]) be the solutions of

h′′(t) = B(t)h(t), h(s) = H0 ≥ 0, h′(s) = H1 ≥ 0,

g′′(t) = A(t)g(t), g(s) = G0 ≥ 0, g′(s) = G1 ≥ 0

with |A(t)| ≤ B(t), G0 ≤ H0, G1 ≤ H1. Then it holds

|g(t)| ≤ h(t) ∀s ≤ t ≤ T.

Proof. Let hε be the solution of

hε′′(t) = B(t)hε(t), hε(s) = H0 + ε, hε′(s) = H1 + ε

with ε > 0. Then the previous lemma reveals

|g(t)| < hε(t), s ≤ t ≤ T.

Further, let h1,1(t) be the solution of

h′′1,1(t) = B(t)h1,1(t), h1,1(s) = 1, h′1,1(s) = 1.

Then we have h1,1(t) > 0 in [s, T ] and it holds

hε(t) = h(t) + εh1,1(t).

If ε tends to zero, we deduce that |g(t)| ≤ h(t).
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Propagation of Singularities —
Auxiliary Results

Let us give the proof of Proposition 6.3.1.

Proof. The function λ is strictly monotonically increasing, hence

Λ(t) =

∫ t

0

λ(τ) dτ ≤ tλ(t).

Integrating (6.1.6) from t to T0 we get (6.3.2). It follows that

Λ(t) ≤ tλ(t) ≤ t
λ(T0)

Λ(T0)d0
Λ(t)d0 ,

const =
Λ(T0)

d0

λ(T0)
≤ tΛ(t)d0−1 ∀0 < t ≤ T0.

This implies (6.3.3). If we differentiate the equation Λ(tξ)〈ξ〉 = N with respect
to 〈ξ〉, (6.3.4) follows. If we set T0 := T and t = tξ in (6.3.2), we gain (6.3.5).
The derivative of the function p(〈ξ〉) with respect to 〈ξ〉 satisfies

p′(〈ξ〉) =t′ξ〈ξ〉 + tξ = −Λ(tξ)

λ(tξ)
+ tξ ≥ −tξλ(tξ)

λ(tξ)
+ tξ = 0.

From p(〈ξ〉) ≥ p(〈0〉) we conclude that tξ ≥ C4〈ξ〉−1. From (6.3.4) and (6.3.5)
we see that

t′ξ ≤ −C〈ξ〉d0−2.

Using tξ =
∫ 〈ξ〉
〈∞〉 t

′
ηd〈η〉 =

∫ 〈ξ〉
∞ t′ηd〈η〉 and (6.3.3) it can be deduced that

tξ ≤ C3〈ξ〉d0−1.

161
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By the inequality
√

1 + a ≤ 1 +
√
a, it follows that

∫ tξ

0

%(ξ, t) dt ≤ tξ +
√

〈ξ〉
∫ tξ

0

λ(t)√
Λ(t)

dt

= tξ + 2
√

〈ξ〉Λ(tξ) ≤ t0 + 2
√
N = C.

It holds Λ(t)〈ξ〉 ≤ N in Zpd(N), hence

%(ξ, t)2 = 1 +
λ(t)2

Λ(t)
〈ξ〉 ≥ λ(t)2〈ξ〉2

N
.

Then it immediately follows that

%(ξ, tξ) ≥
1√
N
λ(tξ)〈ξ〉.

We have N2 = 〈ξ〉2Λ(tξ)
2 ≤ 〈ξ〉2t2ξλ(tξ)

2, thus,

1 ≤
〈ξ〉2t2ξλ(tξ)

2

N2
.

Then it can be seen that

%(ξ, tξ)
2 ≤ 〈ξ〉2λ(tξ)

2

N

(
t20
N

+ 1

)
≤ C

N
λ(tξ)

2〈ξ〉2.

This proves (6.3.10). Employing partial integration twice and (6.1.6) we get
∫ t

0

(t− s)2%(ξ, s)2 ds =

∫ t

0

(t− s)2 ds+ 〈ξ〉
∫ t

0

(t− s)2λ(s)2

Λ(s)
ds

≤ t3 + C〈ξ〉
∫ t

0

(t− s)2λ′(s) ds = t3 + C〈ξ〉
∫ t

0

Λ(s) ds

≤ t3 + C〈ξ〉Λ(t)t ≤ Ct.

Since d0 > 1/2, the derivative ∂t%(t, ξ) fulfils

∂t%(ξ, t) =
〈ξ〉

2%(ξ, t)

λ(t)

Λ(t)

(
2λ′(t) − λ(t)2

Λ(t)

)

≥ 〈ξ〉
2%(ξ, t)

λ(t)

Λ(t)
(2d0 − 1)

λ(t)2

Λ(t)
> 0.

This proves (6.3.12). Finally, the derivative of q(〈ξ〉) satisfies

q′(〈ξ〉) = λ′(tξ)t
′
ξ〈ξ〉d1 + d1λ(tξ)〈ξ〉d1−1

=

(
−Λ(tξ)

λ(tξ)
λ′(tξ) + d1λ(tξ)

)
〈ξ〉d1−1 ≥ 0.
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[Dio62] Dionne, P. A. Sur les problèmes hyperboliques bien posés. J. Analyse
Math., 10:1–90, 1962.

[DR97] Dreher, M. and Reissig, M. About the C∞–well posedness of fully
nonlinear weakly hyperbolic equations of second order with spatial
degeneracy. Adv. Diff. Eq., 2(6):1029–1058, 1997.

[DR98a] D’Ancona, P. and Racke, R. Weakly hyperbolic equations in domains
with boundaries. Nonl. Anal., 33(5):455–472, 1998.

[DR98b] Dreher, M. and Reissig, M. Local solutions of fully nonlinear weakly
hyperbolic differential equations in Sobolev spaces. Hokk. Math. J.,
27(2):337–381, 1998.

[DS91] D’Ancona, P. and Spagnolo, S. On the life span of the analytic
solutions to quasilinear weakly hyperbolic equations. Indiana Univ.
Math. J., 40(1):71–99, 1991.

[EMO53] Erdelyi, A., Magnus, and Oberhettinger. Higher Transcendental
Functions. Bateman Manuscript Project . McGraw–Hill, New York,
1953.

[ES91] Egorov, Yu. and Shubin, M.A. (editors). Partial Differential Equa-
tions. Springer, 1991.

[Gar57] Garding, L. Cauchy’s Problem for Hyperbolic Equations. University
Chicago, 1957.
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