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Abstract

We compare the singularities for solutions to linear and semilinear
weakly hyperbolic equations with sharp Levi conditions. !

1 Introduction

It is known that the strongest singularities of a solution to a semilinear wave
equation coincide with the singularities of a solution to the corresponding
linear wave equation. This means the following. Consider the Cauchy prob-
lems

Ou = (0 — Do)u = f(u), u(z,0) =p(z), ulz,0)=(2),
Ov=0, v(z,0)=¢(x), v(z,0)=1(z),
where (z,t) € R"" and f € C* with f(0) = 0. Assume that ¢ € H*(R"),

¢ € H*7'(R™) with s > n/2+1. Then it is well-known that unique solutions
exist,

v,u€ C((-T,7),H)nC" ((-T,T7),H"), T>0.

Suppose that the initial data ¢(z), 1 (x) are smooth for |z| > R. Clearly, the
singularities for |x| < R propagate with speed 1. If two singularities, starting
from two different points in the initial plane, meet at some (positive) time,
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they ignore each other in the linear case and continue their track. This implies
that the function v(z,t) is smooth in the lacuna L = {(z,1) : |z| < |t| — R}.
However, in the semilinear case, the nonlinearity induces the two singular-
ities to interact and new singularities in Lx are generated. But these new
singularities are weaker, which can be seen as follows. We have

O(u—v) = f(u) € C((WT,T), 1), (u—v)(0) = (u—v);(0) =0,

which implies v —v € C'((=T,T), H*™'). Hence the singularities of u in the
lacuna L are at least one Sobolev order weaker than the singularities of v.
(Actually, a more detailed microlocal analysis shows that the difference of
smoothness is about s — n/2 Sobolev orders [Rau79].)
Our goal is to show that the same comparison between solutions of linear
and semilinear equations holds also in the weakly hyperbolic case.
Let us recall the definition of weak and strict hyperbolicity: An Operator
P =05 =3y aij(2,1)0,,0,; is called weakly hyperbolic if

D ay(x, )68 >0 V(o tE) €R" xR xR™

ij=1
The operator P is strictly hyperbolic if

> a(@, )& > ol V(w6 eR"XRX R, a>0.

ij=1

Singularities of solutions to weakly hyperbolic equations are particularly in-
teresting for the following reason. In [TT80], Taniguchi and Tozaki studied
equations of the form

vy — g, — bt lu, =0, zeRY, leN,. (1.1)

Among other results, they proved that the propagation of singularities de-
pends on the value of the real constant b in a very sensitive way. Assume
that the data at ¢ = 0 are singular at one isolated point. In general, this sin-
gularity propagates along both characteristics that start at this point. But
for certain discrete values of b and for certain initial data, the singularity
propagates along one characteristic only.

On the other hand, the propagation of singularities in the semilinear case

Uy — tH gy — bty = f(u) (1.2)

seems to be a completely open problem. We are not aware of any results in
this direction.



In this paper, we will answer this open question for (1.2) and for much
more general equations. Roughly speaking, we can show that the strongest
singularities of u coincide with the singularities of v.

The reader might argue that the choice of coefficients in (1.1) seems to be
a bit artificial. However, our choice of exponents reflects the so—called Levi
conditions. These are algebraical conditions between principal part and lower
order terms and are necessary and sufficient for C* well-posedness, see [IP74]
or [Miz85]. If, e.g., the exponent of the coefficient of v, is less than [ — 1,
then one can construct C'* data ¢, ¢ with the property that no solution v
from C?(R,C*(R)) exists.

In order to describe the main obstacle in the investigations of (1.2), we study
(1.1) more closely. As it is shown in [TT80], one can construct the solution v
explicitly. To do so, we apply partial Fourier transform with respect to x to
(1.1) and get a family of ODEs with parameter . After several changes of
variables one obtains a confluent hypergeometric differential equation. Thus,
it can be shown that

, [+b l
o(et) = e 0y (Gl g 69 (1)

, [+240b0 1+2 A
—iA () :

where A(t) := [, 7ldr = t"*1/(1+ 1). The confluent hypergeometric function
1F1(a, B, z) behaves asymptotically like

1Fi(a, B, 2) ~ %eﬂmza + %ezzaﬁ, |z| — o0. (1.4)

This can be interpreted in the following way. The factor exp(z) in the second
item on the right distinguishes between the two characteristics. If 5 — « (or
a) is a negative integer, then the first (or the second) item on the right
of (1.4) vanishes. Consequently, there are situations in which singularities
propagate along one characteristic only. But, (1.4) contains also factors £,
€278 Generally, one of the exponents —ca, a — 3 will be positive. In other
words, a pseudodifferential operator of positive order is applied to ¢ and
in (1.3), leading to a reduced smoothness of v in comparison with ¢, 1.
This so—called loss of reqularity is a severe difficulty for studying semilinear
equations. To explain this observation more clearly, we consider a special
case. Let usfix [ =1, b=4m+ 1, m € Ny and ¢ = 0. Then we have

Vg — 20 — (dm 4+ v, =0, v(z,0) = ¢(x), vi(z,0) =0. (1.5)



Qi Min—You [Qi58] constructed the solution explicitly:
ZC]mt2]8j<p r+12/2), Cum #0.

We observe the following:
e Singularities propagate along the characteristic x + t2/2 = const only.

e The solution has lost m derivatives. If ¢ € H®, then v(.,t) € H* ™.
There is no classical solution for m > s —5/2!

Let us have a look at the corresponding semilinear problem:

Uy — 2 Ugy — (4m + D, = f(u), u(z,0) = @(x), uz,0)=0.
(1.6)

It is clear that the usual iteration approach cannot work: consider a sequence
(uk) with u°(z,t) = o(z) and

utt tu k (4m + 1)“52 = f(ukil)a uk(x7 0) = @(I)v uf(l‘7 0) = 0.
(1.7)

We see that u*(.,t) € H*~™*. In other words, even the mere existence of a
solution w is not clear.

There are two approaches to overcome this problem. The first approach is
based on the observation that the loss of regularity does not happen if the
Cauchy problem has a very special structure: the initial data must vanish,
and the right—hand side must go to zero sufficiently fast, as ¢ approaches
zero. It is possible to transform (1.2) into such a special Cauchy problem.
During this transformation procedure, a lot of derivatives of the solution are
lost. Finally, the usual iteration scheme can be applied to the new semilinear
problem. This idea has been widely used in the past, compare [Ner66],
[Ole70], [KY98], [DR98], [DDF98]. However, this approach gives only rough
information on the smoothness of the solution u. Since we want to describe
the smoothness and singularities of u precisely, we have to find other ideas.
The second approach seems to be quite new, the only reference we know is
[RY97]. Its main idea is to construct a Banach space B that absorbs the loss
of regularity. This means that the mapping u*~! +— u* from (1.7) maps B
continuously into itself. The elements of B have H?® smoothness with respect
to x for t = 0 and H*~™ smoothness for every ¢ > 0. This space B consists
of functions w(z,t) for those

9(& 1) (8, 1) € C([0,T], X(Ry))
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holds, where ¥ = (&, t) is a continuous temperate weight function with

19<5,t>={g§§?:) B

T s >0,
Let us formulate the consequences of the main result (Theorem 1) in the
special cases of (1.5), (1.6):

€] — o0

Proposition 1 Let f = f(u) be an entire analytic function. Suppose ¢ €
H*(RY) with a sufficiently large s. Then there is a T > 0 with the property
that solutions v, u to (1.5) and (1.6) exist and

u,v € C ([O,T], Hsfm) , u—ved ([O7T]7Hsfm+1/2) '

2 The main result

Now we devote ourselves to the general case. We want to compare smoothness
and singularities of the solutions to the Cauchy problems

Lv=0, v(z,0)=¢(x), wv(z,0)=1(x), (2.1)
Lu = f(u), u(z,0) = (), ut(ﬂf 0) = ¢(x),

L:=0} — 22)\ ci(t 82t+2)\ %a(t

2,7=1

+ Z N ()b (1)0s, + co(t).

The function A = A(t) describes the degeneracy and has a zero of finite or
infinite order at ¢t = 0. Let us list the assumptions:

A(t), ¢5(t), aij(t), b;(t), co(t) € C*([0, T7),

A0)=0, N(t)>0, 0<t<T,
A(t) _ N() A?) 1 _ [
b3 <50 SR 0<tST dizg AW ._/OMT)dT,
k
OFA()] < di (%) , 0<t<T, k=2,3,...,
n 2 n
<Z Cj(t)£j> + ) a(t)&g > alel’, a>0, V(1)
j=1 i,j=1



u) = ijuj Vu € R.
=1

Examples for the weight function A = \(¢) are
Mt)=1t, €N, Mt)=exp(—exp...explt|™), recR,.

Special linear cases with A(¢) = t' and A\(t) = 0; exp(—|t|~!) have been stud-
ied by Taniguchi and Tozaki [TT80] and Aleksandrian [Ale84].

Before we can formulate the main result, we need some preparations.

We have to fix the temperate weight function 9(&, ¢) mentioned in the intro-
duction. This weight function shall have different asymptotic behaviours for
|£] — oo in the two cases t = 0 and ¢ > 0. Therefore we split the (&, t)-space
into two zones, the so—called hyperbolic zone and the pseudodifferential zone:

Znyp = 1{(5;0) €] = 1, A(E)(§) = N,
Zpa:={(&1) €] 2 L, A SN}, (&) := (L+ ¢}

Here, N > 1 is some suitably chosen number. The border between the two
zones consists of points (&,t¢), where t¢ is defined by A(t¢)(§) = N. In
the examples of [TT80] and [Ale84], A\(t) = t! and \(t) = &, exp(—[t|™}),
respectively, we have t; = O((£) VD) ¢, = O(1/In(€)), respectively. We
will define the weight ¥(¢,t) in the two zones differently in order to describe
the loss of regularity.

In Z,4, we define the auxiliary function

= 1+ (©AB?/A).

(The conditions on A\ imply that g is continuous for ¢ — 0.) And for the
considerations in Zp,,, we introduce the function
dT) ,

J(s,t) :=exp (/t sup i)

b(¢, 7) + (¢, 7)

¢t 2M(7) V€, )2 +alC,T)
where
NS NS
b, t) D bt el&t) = o),
2" Tg =
a6t =3 ay) S



Now we are in a position to fix the weight function J(£,¢). In depends on
nonnegative real parameters M, Ky, Ks:

LE J(te, to) (EYMEET (1) € Z
_ RE) &5 00 ¢ ) pd>
19MK1K2<£7t) {J(t,t0)<§>Mt?2 : (f,t) S Zhyp-

Here, t¢ is given by A(ty)(0) = N. Then we can set

BMKlKg = {U S C([O T] S/(

HU||B]\JK1K2 : [SuI)} H,ﬁMKlK2< t)

") s Ok, k0 € C([0, T, F(RE))},
00 Ol 2 ey -

Finally, we introduce a pseudodifferential operator H(D,,t) with symbol

h(&, ) AWDIEXA@DIEN/N) + o€, 1)(1 = x(A®)[E]/N)),
X(s)=0 (s<1), x(s)=1 (s=2), xeC*R).

For fixed t > 0, H(D,,t) behaves like \(¢)(D,).
Now we have all notations for the main result.

Theorem 1 Suppose that M, N are sufficiently large and assume that
H(D;,0)p € Bygk and H(D,,0)Y € Byxsnyx- If T > 0 is small enough,
then there exist solutions v, u to (2.1), (2.2) and

H(Dg, t)u, H(D,,t)v € Bygk, Dwu, Dw € Bykik,
H(D,,t)(u—v) € Buk-1)(x-1), Dy(u—v) € Bur—1)(x-1)-

Remark 1 In the cases in which an explicit representation of v is known
(compare [TT80] and [Ale84]), this theorem yields exactly the same loss of
reqularity as predicted by the explicit representation.

Remark 2 The reqularity of u—v is higher than that of w, v. The difference
of regularity is given by the pseudodifferential operator with symbol t.

3 Sketch of proof

For details, we refer the reader to [DR]. We start from the Cauchy problem

Lw:g(l‘,t), w(a:,O) :(p(lli), wt('rv()) :w(x)



Employing partial Fourier transform with respect to x gives us an ODE with
parameter . We study this ODE in the two zones separately. In Z,4, we
transform the ODE into a first order system for the vector of unknowns

W(§7t) = (Q(f,t)’[f)(g,t), th(€7t))T'

A quite technical investigation of this system reveals that

0§, )w(&, )] < Col, 1) (/0 (t = 5)|9(&, 8)] ds + |p(E)] +t|1/3(§)|) ,

| Dy (€, )] < C/O (14 (2 = 5)(A() = A5))(€D)IG(E, 5)| ds
+ CAENEGE)] + C(L+EADENID(E)].

In Z,,, we obtain a first order system for the vector

W(§7t) = ()\(t)|f|12}(f,t), th(€7t))T'

Using ideas from [Yag97], we perform a diagonalization process and obtain
A (E, )] + [ Dy (€, 1)]

<c / T(s,0)lg(€, 8)] ds + O (te, DA LED(E, te) + | Drib (&, te)]).

Exploiting these pointwise estimates, one can show

HH(D$7 t)wHB]MKK + Hth”BM(K-H)K
< CTNgllyy e + 1 (D2, 0l + 1H (D2 0, o)

This proves the statements for v.

We observe that the norms of Hw and ¢ in that estimate are the same. This
means that our choice of function spaces has absorbed the loss of regularity.
One can show that B,k is a multiplicative algebra if M is large. Then the
function w — f(u) maps By kg into itself. Consequently, a solution u to
(2.2) exists for small 7" > 0 and has the claimed smoothness.

It remains to study v — v. Obviously, v — v solves L(u — v) = f(u) with
vanishing initial data. The function u belongs to a slightly better space
than Hwu; namely the space for u is described by the temperate weight
Uik (& t)/h(E, t). This space for u is also a multiplicative algebra. By
proving a similar a—priori—estimate to that for w, it is possible to show that
u — v has higher regularity than v and v.
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