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ANOMALOUS SINGULARITIES FOR HYPERBOLIC

EQUATIONS WITH DEGENERACY OF INFINITE ORDER

Michael Dreher

Abstract. We consider weakly hyperbolic operators with degeneracy of
infinite order and study the Sobolev regularity of solutions to semi-linear
Cauchy problems in the lacunas.

1. Introduction

The purpose of this paper is to describe singularities for semi-linear weakly hy-
perbolic equations with characteristics of variable multiplicity. A typical Cauchy
problem is

Lu = f(u), u(0, x) = u0(x), ut(0, x) = u1(x)(1)

where L is a hyperbolic operator, like, for instance,

L = ∂2
t − t−4 exp(−2t−1)∂2

x − bt−2 exp(−t−1)∂x, b ∈ R.(2)

More general operators are possible. The characteristic roots τ1(t, x, ξ), τ2(t, x, ξ)
of the principal part of this operator are distinct for t 6= 0, and coincide on the
plane t = 0. This phenomenon is called ”weak hyperbolicity with characteristics
of variable multiplicity”. Moreover, the difference τ1 − τ2 goes to zero of infinite
order as t → 0.
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The coefficient of the lower order derivative ∂x is chosen in such a way that
the operator satisfies the necessary and sufficient conditions for the C∞ well–
posedness of the Cauchy problem, see [8]. The Cauchy problem is no longer
well–posed in C∞ if we replace that coefficient by, say, t−2−ε exp(−t−1), ε > 0.

Equations of this type, with a lower order term exactly on the borderline
between well–posedness and ill–posedness, are interesting for the following two
reasons:

First, singularities of the initial data may propagate in a non–standard way:
if b is an odd integer, then one of the both characteristic curves carries no in-
formation at all. The corresponding term in the parametrix vanishes identically.
For the details, see [1] or [8].

Second, the solution suffers from a loss of Sobolev regularity if we pass from
the region {t = 0} to {t > 0}, or vice versa. Initial data u0, u1 with ln〈Dx〉u0 ∈
Hs+m, u1 ∈ Hs+m, where m = max(0, (|b| − 1)/2), give only a solution u(t, ·) ∈
Hs, see [4], [6], [7], [8].

At first glance, it is not clear how to investigate the nonlinear equation Lu =
f(u). Usual fixed point arguments in standard function spaces are not applicable,
due to the loss of regularity. The remedy is to choose specially constructed
function spaces which are able to absorb the loss of regularity, in the sense that
the elements v = v(t, x) of these function spaces have different Sobolev regularity
for {t = 0} and {t 6= 0}, respectively. This idea has been exploited in [3], [4], [5].

Making use of such function spaces, in [4] it has been shown that the solution
u to the equation Lu = f(u) has the same regularity as the solution v to the linear
equation Lv = 0, where u and v have the same initial data u0, u1 at t = 0. For u0,
u1 with ln〈Dx〉u0 ∈ Hs+m, u1 ∈ Hs+m, that means u(t > 0, ·), v(t > 0, ·) ∈ Hs.

Moreover, u and v share the same set of strongest singularities, in the sense
that the difference u − v has slightly better regularity than u and v alone, i.e.,
(ln〈Dx〉)(u − v)(t > 0, ·) ∈ Hs.

The purpose of this paper is to substantially improve this result. The main
result, formulated for the special case (2), is the following:

Theorem 1. Let L be the operator from (2), m = max(0, (|b| − 1)/2), and

(ln〈Dx〉)u0 ∈ Hs+m(R), u1 ∈ Hs+m(R),

(u0, u1) ∈ C∞(R \ {x0}),

where s is sufficiently large. Here Hs+m(R) = 〈Dx〉
−s−mL2(R), and 〈Dx〉 is the

pseudodifferential operator with the symbol 〈ξ〉 = (1 + |ξ|2)1/2.
Let f = f(u) be an entire analytic function with f(0) = 0. Denote the two

characteristic curves emanating from (0, x0) ∈ Rt × Rx by Γ+ and Γ−. Then,
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for sufficiently small T > 0, a unique solution u to (1) exists and belongs to
C([−T, T ],Hs(R)), and

u ∈ Hr
loc(Rt × Rx \ (Γ+ ∪ Γ−)), r < 3s − 1.

2. Main Result

We consider weakly hyperbolic operators of the form

L = ∂2
t +

n
∑

j=1

2cj(t)λ(t)∂xj t −
n
∑

i,j=1

aij(t)λ(t)2∂xixj

+

n
∑

i=1

bi(t)λ
′(t)∂xi

+ c0(t)∂t,

where all function in the coefficients belong to C∞([0, T ]), and hyperbolicity
means





n
∑

j=1

cj(t)ξj





2

+

n
∑

i,j=1

aij(t)ξiξj ≥ α0|ξ|
2, α0 > 0.

The functions Λ = Λ(t) and λ = λ(t) = Λ′(t) describe the degeneracy, and are
supposed to satisfy

λ(0) = 0, λ′(t) > 0 (t > 0),

d0
λ(t)

Λ(t)
≤

λ′(t)

λ(t)
≤ d1

λ(t)

Λ(t)
, 0 < t ≤ T, d0 ≥

1

2
,

|∂k
t λ(t)| ≤ dkλ(t)

(

λ(t)

Λ(t)

)k

, 0 < t ≤ T, k = 2, 3, . . . .

Typical examples of infinite degeneracy type are

Λ(t) = exp(−t−r), Λ(t) = exp(− exp exp . . . exp(t−r)), r > 0.

For ξ ∈ R
n, we define a symbol tξ by the implicit formula

Λ(tξ)〈ξ〉 = 1.

Then we define a weight function

J(s, t) = exp

(

∫ t

s
sup

ζ

λ′(τ)

2λ(τ)

∣

∣

∣

∣

∣

1 ±
b(ζ, τ) + c(ζ, τ)
√

c(ζ, τ)2 + a(ζ, τ)

∣

∣

∣

∣

∣

dτ

)

,
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where a = a(t, ξ), b = b(t, ξ), c = c(t, ξ) are given by a(t, ξ) =
∑n

i,j=1 aij(t)
ξiξj

|ξ|2
,

b(t, ξ) = −
∑n

j=1 bj(t)
ξj

|ξ| , and c(t, ξ) =
∑n

j=1 cj(t)
ξj

|ξ| .

Let the right–hand side f = f(u) be an entire analytic function with f(0) = 0.
Finally, we assume that the initial data u0, u1 satisfy

λ(tξ)J(tξ , T )〈ξ〉M+1û0(ξ) ∈ L2(Rn
ξ ),

λ(tξ)J(tξ , T )〈ξ〉M+1tξû1(ξ) ∈ L2(Rn
ξ ),

where M is sufficiently large. Then it has been shown in [4] that the solution
u = u(t, x) to the Cauchy problem (1) exists for small T > 0, and satisfies

sup
t∈[0,T ]

‖h(t, ξ)θM (t, ξ)û(t, ξ)‖L2(Rn
ξ
) < ∞,(3)

where

h(t, ξ) = λ(t)〈ξ〉 + %(t, ξ),

%(t, ξ) =

√

1 +
λ(t)2

Λ(t)
〈ξ〉,

θM (t, ξ) =

{

1
h(t,ξ)λ(tξ)J(tξ, T )〈ξ〉M+1 : 0 ≤ t ≤ tξ,

1
h(t,ξ)λ(t)J(t, T )〈ξ〉M+1 : tξ ≤ t ≤ T.

Observe that λ(t)〈ξ〉 ≤ C%(t, ξ) for t ≤ tξ, and %(t, ξ) ≤ Cλ(t)〈ξ〉 for tξ ≤ t.
This expression, which might look complicated at first glance, gives exactly

the loss of regularity in case of (2): then we have Λ(t) = exp(−t−1),

J(s, t) = exp

(∫ t

s

λ′(τ)

2λ(τ)

(

1 + |b|
λ(τ)2

Λ(τ)λ′(τ)

)

dτ

)

=

(

λ(t)

λ(s)

)1/2 (Λ(t)

Λ(s)

)|b|/2

,

θM(0, ξ) = λ(tξ)J(tξ, T )〈ξ〉M+1 = λ(tξ)

(

λ(T )

λ(tξ)

)1/2 (Λ(T )

Λ(tξ)

)|b|/2

〈ξ〉M+1

= C(T )t−1
ξ 〈ξ〉M+1+(|b|−1)/2,

h(t, ξ)θM (t, ξ) = λ(t)J(t, T )〈ξ〉M+1 = λ(t)

(

λ(T )

λ(t)

)1/2 (Λ(T )

Λ(t)

)|b|/2

〈ξ〉M+1

= C(T )t−1Λ(t)−(|b|−1)/2〈ξ〉M+1.
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We recall that t−1
ξ = ln〈ξ〉 in the special case of (2).

Moreover, let v be the solution to the linear Cauchy problem

Lv = 0, v(0, x) = u0(x), vt(0, x) = u1(x).

Then it has been shown (in the general case) that

sup
t∈[0,T ]

∥

∥

∥h(t, ξ)θM (t, ξ)t−1
ξ (û − v̂)(t, ξ)

∥

∥

∥

L2(Rn
ξ
)
< ∞.

In this sense, the functions u and v share the same singularities. The function
u may have additional singularities, which arise from the nonlinear interaction
f = f(u). However, these (so–called anomalous) singularities are weaker, at least
by the temperate weight t−1

ξ .

The following main result will give us more information about these anoma-
lous singularities.

Theorem 2. Suppose u0, u1 ∈ C∞(Rn \ {x0}), denote the characteristic
cones with tips (0, x0) by Γ+, Γ−. Then the solution u to (1) satisfies

u ∈ Hr
loc((0, T ) × R

n \ (Γ+ ∪ Γ−)), r < 3M − n.

3. Proof of the Main Result

It is clear that Theorem 1. follows from Theorem 2..

3.1. Estimates for Linear Cauchy Problems

Let w = w(t, x) be the solution to

(4) Lw = f(t, x), w(0, x) = u0(x), wt(0, x) = u1(x).

Our goal is to estimate the partial Fourier transform ŵ(t, ξ) in the two zones

Zpd = {(t, ξ) ∈ [0, T ] × R
n : 0 ≤ t ≤ tξ},

Zhyp = {(t, ξ) ∈ [0, T ] × R
n : tξ ≤ t ≤ T}.

These zones are called ”pseudodifferential zone” and ”hyperbolic zone”, respec-
tively. In particular, we would like to extend an estimate of the type (3) to an
estimate of M derivatives in both variables, t and x.
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The following estimates were proved in [4]: in Zpd, we have

|ŵ(t, ξ)| ≤ C

(

|û0(ξ)| + t|û1(ξ)| +

∫ t

0
(t − s)|f̂(s, ξ)| ds

)

,

|∂tŵ(t, ξ)| ≤ Cλ(t)〈ξ〉

(

|û0(ξ)| + t|û1(ξ)| +

∫ t

0
(t − s)|f̂(s, ξ)| ds

)

+ C|û1(ξ)| + C

∫ t

0
|f̂(s, ξ)| ds.

And in Zhyp, we have

|λ(t)〈ξ〉ŵ(t, ξ)| + |∂tŵ(t, ξ)|

≤ C

(

J(tξ, t)(λ(tξ)〈ξ〉|ŵ(tξ, ξ)| + |∂tŵ(tξ, ξ)|) +

∫ t

tξ

J(s, t)|f̂ (s, ξ)| ds

)

.

For a unification of these estimates, we define (instead of % = %(t, ξ)) a new weight
function,

σ = σ(t, ξ) =

√

t−2
ξ +

λ(t)2

Λ(t)
〈ξ〉.

Similarly, we introduce k = k(t, ξ), replacing h = h(t, ξ):

k(t, ξ) = λ(t)〈ξ〉 + σ(t, ξ).

Assuming 0 ≤ t ≤ tξ, we then find

|σ(t, ξ)ŵ(t, ξ)|2 ≤ Cσ(t, ξ)2

(

|û0(ξ)|
2 + t2ξ |û1(ξ)|

2 + t

∫ t

0

|f̂(s, ξ)|2

σ(s, ξ)2
ds

)

,

where we have used

∫ t

0
(t − s)2σ(s, ξ)2 ds ≤ Ct, 0 ≤ t ≤ tξ.

From λ(t)〈ξ〉 ≤ Cσ(t, ξ) in Zpd we then get

|∂tŵ(t, ξ)|2 ≤ Cσ(t, ξ)2

(

|û0(ξ)|
2 + t2ξ |û1(ξ)|

2 + t

∫ t

0

|f̂(s, ξ)|2

σ(s, ξ)2
ds

)

.
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And in the hyperbolic zone, we obtain

|k(t, ξ)ŵ(t, ξ)|2 + |∂tŵ(t, ξ)|2

≤ C

(

J(tξ, t)
2(|k(tξ , ξ)ŵ(tξ, ξ)|

2 + |∂tŵ(tξ, ξ)|
2) + t

∫ t

tξ

J(s, t)2|f̂(s, ξ)|2 ds

)

.

Next, we set

ζM (t, ξ) =

{

1
k(t,ξ)λ(tξ)J(tξ , T )〈ξ〉M+1 : 0 ≤ t ≤ tξ,

1
k(t,ξ)λ(t)J(t, T )〈ξ〉M+1 : tξ ≤ t ≤ T,

and conclude that

ζM (t, ξ)2
(

|k(t, ξ)ŵ(t, ξ)|2 + |∂tŵ(t, ξ)|2
)

≤ C

(

ζM(0, ξ)2
(

|k(0, ξ)û0(ξ)|
2 + |û1(ξ)|

2
)

+ t

∫ t

0
ζM(s, ξ)2|f̂(s, ξ)|2 ds

)

,

where we have used that

J(t1, t2)J(t2, t3) = J(t1, t3), 0 < t1, t2, t3 < T.

Now we introduce the norms

‖v(·, ·)‖M,N,T ′ =







∥

∥ζM(t, ξ)k(t, ξ)N v̂(t, ξ)
∥

∥

L2([0,T ′]×R
n
ξ
)

: T ′ > 0,
∥

∥ζM(0, ξ)k(0, ξ)N v̂(0, ξ)
∥

∥

L2(Rn
ξ
)

: T ′ = 0,

and deduce that

‖w‖M,1,T ′ + ‖wt‖M,0,T ′ ≤ C(T )
(

‖u0‖M,1,0 + ‖u1‖M,0,0 + ‖f‖M,0,T ′

)

.

Differentiating (4) up to M−1 times (assuming M ∈ N), we then get by induction
that

M
∑

j=0

∥

∥

∥∂
j
t w
∥

∥

∥

2

M,1−j,T ′

≤ C(T )



‖u0‖
2
M,1,0 + ‖u1‖

2
M,0,0 +

M−1
∑

j=0

∥

∥

∥∂
j
t f
∥

∥

∥

2

M,−j,T ′



 ,

see also [5]. Ultimately, we define a norm

‖w‖2
N,T ′ =

N
∑

j=0

∥

∥

∥
∂j

t w
∥

∥

∥

2

N,−j,T ′

, N ∈ N,

and get

‖k(t,Dx)w‖2
M,T ≤ C

(

‖u0‖
2
M,1,0 + ‖u1‖

2
M,0,0 + ‖f‖2

M,T

)

.
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3.2. Estimates for Semilinear Cauchy Problems

Let BM,T be the closure of C∞([0, T ], C∞
0 (Rn)) in the ‖·‖M,T norm, for M ∈ N.

In case M ∈ R+, we define BM,T by the complex interpolation method.
Lemma 4.9 of [5] then yields

‖w1w2‖M,T ≤ C ‖w1‖M,T ‖w2‖M,T

for large M ∈ N. An interpolation argument then gives the same estimate for
large M ∈ R+. Then we conclude that a nonlinear superposition operator u 7→
f(u) maps BM,T into itself, provided that M is large.

This way, we are able to show that the solution u to (1) belongs to k(t,Dx)−1BM,T .
Details of the method of proof can be found in [5].

3.3. Completion of the Proof

The following observation is crucial:

BM,T
∣

∣

∣[T ′,T ]×Rn
= HM ([T ′, T ] × R

n), 0 < T ′ < T,

algebraically and topologically.
We now fix a point z1 = (T 1, x1) in the interior of the lacuna over x0, i.e.,

T 1 > 0, and the intersection of the cone of dependence C−(z1) with the initial
surface {t = 0} has x0 as interior point. Then we want to show u ∈ H r(V ), where
V ⊂ R

1+n is a small neighborhood of z1, and r < 3M − n.
We choose a null bicharacteristic through z1. If we back-trace it, we arrive

at a certain point z2 = (T 2, x2) with 0 < T 2 < T 1 and u ∈ H∞
loc near z2.

We know that u ∈ HM ([T 2, T ]×R
n), and L is an operator of second order and

principal type. Applying the well–known technique of [2] completes the proof.
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