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1. Introduction

The flow of charged particles in a semi-conductor can be simulated using differ-

ent models. Typical examples are the quantum energy transport models (QET),

the quantum drift diffusion model (QDD) or the quantum hydrodynamic model

(QHD). Derivations of the quantum QET and QDD models can be found in Ref. 4.

The quantum hydrodynamic models can be derived directly from the Schrödinger–

Poisson system by WKB wave functions7; or from the collision Wigner equation by

the momentum method and closing the system with the quantum thermal equilib-

rium distribution5; or by the entropy minimization method9.

In this paper, we study the viscous QHD model, a model which is derived from

1
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the Wigner equation with the Fokker–Planck collision operator:

∂tn − div J = ν0 4n,

∂tJ − div

(

J ⊗ J

n

)

− T∇n + n∇V +
ε2

2
n∇

(4√
n√

n

)

= ν0 4J − J

τ
,

λ2 4V = n − C(x),

n(0, x) = n0(x), J(0, x) = J0(x),































(1.1)

where (t, x) ∈ (0,∞) × Ω and Ω is a domain in R
d.

Our boundary conditions are either

∂νn(t, x) = 0, (t, x) ∈ (0,∞) × ∂Ω,

J(t, x) = 0, (t, x) ∈ (0,∞) × ∂Ω,

∂νV (t, x) = 0, (t, x) ∈ (0,∞) × ∂Ω,











(1.2)

where ∂ν denotes the normal derivative, or we assume periodic boundary conditions,

i.e.,

Ω = T
d is a d–dimensional torus. (1.3)

Moreover, we suppose

inf
x∈Ω

n0(x) > 0, (1.4)
∫

Ω

(

n0(x) − C(x)
)

dx = 0. (1.5)

The last condition is necessary; the Poisson equation for V would not be solvable

otherwise.

The unknown functions in this system are the particle density n =

n(t, x) : [0,∞) × Ω → R+, the current density J = J(t, x) : [0,∞) × Ω → R
d,

and the electrostatic potential V = V (t, x) : [0,∞) × Ω → R. The given function

C = C(x) : Ω → R is the doping profile of background charges.

The scaled physical constants are a viscosity constant ν0 describing the strength

of the collisions, a temperature constant T , the Planck constant ε, the momentum

relaxation time τ , and the Debye length λ. All these constants are assumed to be

positive.

For quantum macroscopic models, some results on local or global existence or

long time asymptotics are known. For the QDD model, the existence of weak so-

lutions was shown in Refs. 2, 3, 10; and the semiclassical limit and the long time

behaviour were studied in Refs. 2, 3. Concerning the QHD model without viscous

terms, the existence of smooth solutions and their long time asymptotics for small

initial data were investigated in Refs. 8, 13.

It seems that there are less mathematical results for the system (1.1). The au-

thors are only aware of Ref. 6, where the exponential stability of a constant steady

state to (1.1) in a one-dimensional setting with a certain boundary condition was
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proved, based on the entropy dissipation method1. Most of the difficulties arise from

the Bohm potential term

B(n) =
4√

n√
n

,

which introduces a third order perturbation to a system which could otherwise be

interpreted as a parabolic system coupled to an elliptic equation. In this paper, we

follow the approach of Ref. 6 and generalize those results to domains of dimension

two and three, see Theorem 2.1. Our key ingredient is an estimate on a certain term

containing the Bohm potential, Proposition Appendix A.1.

Additionally, we are able to prove the local in time existence of sufficiently

smooth solutions to (1.1). The proof relies on the observation that the third-order

perturbation term has a good sign, which makes standard energy estimates for

parabolic systems possible after having introduced a fourth order viscous regular-

ization.

Physically spoken, the periodic boundary conditions are of restricted interest;

however, they enable us to prove the local in time existence of solutions in a one-

dimensional setting with boundary conditions (1.2) immediately, see Theorem 2.3.

In the course of proving the local existence results of the Theorems 2.2 and 2.3,

we will obtain a certain a priori estimate of the solution, from which we then will

be investigating the semiclassical limit ε → +0, compare Theorem 2.4.

2. Main Results

Our notations are standard: Lp denote the usual Lebesgue spaces, and Hk(Ω) :=

W k
2 (Ω) are the L2–based Sobolev spaces, for k ∈ N0. The brackets 〈·, ·〉 stand for

the scalar product in R
d, and J ⊗ J is a d × d matrix with entry JkJl at position

(k, l).

We list our results:

Theorem 2.1 (Exponential stability). Let d = 1, 2, 3 and Ω =
∏d

j=1(aj , bj)

be a box. Let the triple (n, J, V ) be a solution to (1.1) under the boundary condi-

tions (1.2), and suppose that

n ∈ H1((0, t∗), H1(Ω))
⋂

L2((0, t∗), H3(Ω)),

J ∈ H1((0, t∗), L2(Ω))
⋂

L2((0, t∗), H2(Ω)),

V ∈ H1((0, t∗), H2(Ω)).

We assume that C = C(x) ≡ C0 > 0 in Ω and

inf
(t,x)∈(0,t∗)×Ω

n(t, x) > 0.
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Define an energy as follows:

E(t) =

∫

Ω

(

ε2

2
(∇

√
n)2 + T

(

n

(

ln
n

C0
− 1

)

+ C0

)

+
λ2

2
(∇V )2 +

|J |2
2n

)

dx.

(2.1)

Let µ1 denote the first positive eigenvalue of −4 on Ω with Neumann boundary

conditions, and fix

σ := min

{

8Tν0

ε2
,

µ1C0

µ1λ2T + C0
,

2

τ

}

.

Then this energy satisfies the inequality

∂tE(t) ≤ −σE(t)

− ε2

2
ν0

(

c1,d

∫

Ω

(4
√

n)2 dx + c2,d

∫

Ω

|∇n|4
n3

dx

)

− ν0

∑

l

∫

Ω

n

(

∇
(

Jl

n

))2

dx,

where the numbers c1,d and c2,d are given in the following table:

d 1 2 3

c1,d 2 1
3

1
9

c2,d
1
24

1
24

7
144

Remark 2.1. Physically spoken, the four terms in the energy (2.1) are the quantum

energy, the thermodynamic entropy, the electric energy and the kinetic energy. We

note that the energy of the steady state (n, J, V ) = (C0, 0, 0) is zero, and that E

can not become negative.

From the above differential inequality of the physical energy we then easily derive

decay estimates:

Corollary 2.1. Assume that the solution mentioned in Theorem 2.1 exists up to
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t = ∞. Then the function (n, J,∇V ) decays to the steady state (C0, 0, 0) as follows:

ε2

2

∥

∥

∥∇
(√

n(t, ·) −
√

C0

)∥

∥

∥

2

L2(Ω)
≤ e−σtE(0), (2.2)

T
∥

∥

∥

√
n(t, ·) −

√

C0

∥

∥

∥

2

L2(Ω)
≤ e−σtE(0), (2.3)

∥

∥

∥

√
n(t, ·) −

√

C0

∥

∥

∥

2

Lp(Ω)
≤ C2

p,d,Ω

(

2

ε2
+

1

T

)

e−σtE(0), (2.4)

ε2

2
ν0c1,d

∫ ∞

t=0

∥

∥

∥4
(√

n(t, ·) −
√

C0

)∥

∥

∥

2

L2(Ω)
dt ≤ E(0), (2.5)

1

2

∥

∥

∥

∥

∥

J(t, ·)
√

n(t, ·)

∥

∥

∥

∥

∥

2

L2(Ω)

≤ e−σtE(0), (2.6)

λ2

2
‖∇V (t, ·)‖2

L2(Ω) ≤ e−σtE(0), (2.7)

where Cp,d,Ω is the norm of the embedding H1(Ω) ⊂ Lp(Ω), with 1 ≤ p ≤ ∞ for

d = 1, 1 ≤ p < ∞ for d = 2, and 1 ≤ p ≤ 6 for d = 3.

Theorem 2.2 (Local existence and uniqueness on a torus). Let d be a pos-

itive integer and Ω = T
d be a torus. Let b be the smallest integer greater than 1

2d,

and s ≥ b be an integer. Suppose

n0 ∈ Hs+1(Ω), J0 ∈ Hs(Ω), C ∈ Hs−1(Ω)

and (1.4), (1.5). Then the problem (1.1) has a solution (n, J, V ), local in a time

interval [0, t∗], with the regularity properties

n ∈ H1((0, t∗), Hs(Ω))
⋂

L2((0, t∗), Hs+2(Ω)),

J ∈ H1((0, t∗), Hs−1(Ω))
⋂

L2((0, t∗), Hs+1(Ω)),

V ∈ H1((0, t∗), Hs+2(Ω))
⋂

L2((0, t∗), Hs+4(Ω)),

(n,∇n, J) ∈ C([0, t∗] × Ω).































(2.8)

The solution is unique and persists as long as n(t, ·) and J(t, ·) stay in L∞(Ω) and

n remains positive. The life span t∗ does not depend on the Sobolev regularity s.

Having shown the local existence in the periodic case, we can take advantage

from geometric arguments and consider the case Ω ⊂ R
1 effortlessly:

Theorem 2.3 (Local existence and uniqueness in one dimension). Let Ω ⊂
R

1 be an open and bounded interval. Suppose

n0 ∈ H2(Ω), J0 ∈ H1(Ω), C ∈ L2(Ω)

and (1.4), (1.5). The initial functions are assumed to satisfy the compatibility con-

ditions

∂νn0(x) = 0, J0(x) = 0, x ∈ ∂Ω.
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Then the problem (1.1) with the boundary conditions (1.2) has a local solution

(n, J, V ), with

n ∈ H1((0, t∗), H1(Ω))
⋂

L2((0, t∗), H3(Ω)),

J ∈ H1((0, t∗), L2(Ω))
⋂

L2((0, t∗), H2(Ω)),

V ∈ H1((0, t∗), H3(Ω))
⋂

L2((0, t∗), H5(Ω)),

(n,∇n, J) ∈ C([0, t∗] × Ω).

This solution is unique and persists as long as n(t, ·) and J(t, ·) stay in L∞(Ω) and

n remains positive.

Remark 2.2. The local in time existence in the one-dimensional case can also

be proved for solutions of higher regularity provided that the usual compatibility

conditions on the initial data are satisfied.

Theorem 2.4 (Semiclassical limit). Let Ω be either an open and bounded inter-

val in R
1 or a d-dimensional torus. Suppose that the given data (n0, J0, C) of (1.1)

satisfy

n0 ∈ Hb+1(Ω), J0 ∈ Hb(Ω), C ∈ Hb−1(Ω)

and (1.4), (1.5). Let (nε, Jε, Vε), ε > 0, denote the solutions to (1.1) with boundary

conditions (1.2) or (1.3), existing on a domain [0, t∗] × Ω.

As ε tends to +0, a sub-sequence (nε, Jε, Vε)ε then converges to a limit (n, J, V ),

(nε, Jε,∇Vε) −→ (n, J,∇V ) in C([0, t∗] × Ω),

nε ⇀ n in L2((0, t∗), Hb+2(Ω)),

Jε ⇀ J in L2((0, t∗), Hb+1(Ω)),

(nε, Jε) ⇀∗ (n, J) in L∞((0, t∗), Hb(Ω)),

which is a solution to the initial value problem






























∂tn − div J = ν0 4n,

∂tJ − div

(

J ⊗ J

n

)

− T∇n + n∇V = ν0 4J − J

τ
,

λ2 4V = n − C(x),

n(0, x) = n0(x), J(0, x) = J0(x)

with boundary conditions (1.2) or (1.3), respectively. The regularity of (n, J, V ) is

given by

n ∈ H1((0, t∗), Hb(Ω))
⋂

L2((0, t∗), Hb+2(Ω)),

J ∈ H1((0, t∗), Hb−1(Ω))
⋂

L2((0, t∗), Hb+1(Ω)),

V ∈ H1((0, t∗), Hb+2(Ω))
⋂

L2((0, t∗), Hb+1(Ω)).
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3. Exponential Stability

In this section, we prove Theorem 2.1, following an approach of Ref. 6. Rewrite the

energy from (2.1) as follows:

E(t) =

∫

Ω

(

ε2

2
(∇

√
n)2 + T

(

n

(

ln
n

C0
− 1

)

+ C0

)

+
λ2

2
(∇V )2 +

|J |2
2n

)

dx

= E1 + E2 + E3 + E4.

We compute the time derivatives. In the sequel, the zeroes denote boundary integrals

that vanish due to the boundary conditions:

∂tE1 = ε2

∫

∂Ω

(∂ν

√
n)(∂t

√
n) dσ − ε2

∫

Ω

(4
√

n)(∂t

√
n) dx

= 0 − ε2

2

∫

Ω

B(n)∂tn dx = −ε2

2

∫

Ω

B(n) (div J + ν0 4n) dx.

Next, we have

∂tE2 = T

∫

Ω

nt ln
n

C0
dx = T

∫

Ω

(ln n) (div J + ν0 4n) dx

= 0 − T

∫

Ω

1

n
〈∇n, J〉 dx − Tν0

∫

Ω

|∇n|2
n

dx

= −T

∫

Ω

1

n
〈∇n, J〉 dx − 8Tν0

ε2
E1.

Further, we get

∂tE3 = λ2

∫

Ω

(∇V )(∇Vt) dx = λ2

∫

∂Ω

V (∂νVt) dσ − λ2

∫

Ω

V (4Vt) dx

= 0 −
∫

Ω

V nt dx = −
∫

Ω

V (div J + ν0 4n) dx

= 0 +

∫

Ω

〈∇V , J〉 dx + ν0

∫

Ω

〈∇V ,∇n〉 dx.

Finally, the identity

∂t

(

1

2
n−1|J |2

)

= ν0

(

1

n
〈J,4 J〉 − 1

2n2
(4n)|J |2

)

+ div

(

1

2n2
J |J |2

)

− 1

nτ
|J |2 + T

1

n
〈∇n, J〉 − 〈∇V , J〉 − ε2

2
(div(BJ) − B div J)

implies

∂tE4 = ν0

∫

Ω

(

1

n
〈J,4J〉 − 1

2n2
(4n)|J |2

)

dx +

∫

∂Ω

1

2n2
J |J |2 d~σ − 2

τ
E4

+ T

∫

Ω

1

n
〈∇n, J〉 dx −

∫

Ω

〈∇V , J〉 dx − ε2

2

∫

∂Ω

BJ d~σ +
ε2

2

∫

Ω

B div J dx.
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The two boundary integrals vanish, due to J = 0 on ∂Ω. Concerning the first

integral, we can deduce, after partial integration, that

∑

l

∫

Ω

(

1

n
Jl 4 Jl −

1

2n2
J2

l 4n

)

dx = −
∑

l

∫

Ω

n

(

∇
(

Jl

n

))2

dx.

Summing up, we then find

∂tE = −ε2

2
ν0

∫

Ω

(4n)B(n) dx − 8Tν0

ε2
E1 + ν0

∫

Ω

〈∇V ,∇n〉 dx

− ν0

∑

l

∫

Ω

n

(

∇
(

Jl

n

))2

dx − 2

τ
E4.

For the third term, we bring the constance of the doping profile into play:
∫

Ω

〈∇V ,∇n〉 dx =

∫

Ω

〈∇V ,∇(n − C0)〉 dx

=

∫

∂Ω

(∂νV )(n − C0) dσ −
∫

Ω

(4V )(n − C0) dx = 0 − 1

λ2

∫

Ω

(n − C0)
2 dx,

∫

Ω

〈∇V ,∇n〉 dx = −λ2

∫

Ω

(4V )2 dx

= −α0λ
2

∫

Ω

(4V )2 dx − 1 − α0

λ2

∫

Ω

(n − C0)
2 dx.

One easily checks that x(ln x − 1) + 1 ≤ (x − 1)2, for x > 0, which implies

C−1
0 (n − C0)

2 ≥ n

(

ln
n

C0
− 1

)

+ C0,

− 1 − α0

λ2

∫

Ω

(n − C0)
2 dx ≤ − (1 − α0)C0

λ2T
E2, 0 < α0 < 1.

If µ1 denotes the first positive eigenvalue of −4 on Ω with Neumann boundary

conditions, then

‖∇V ‖2
L2 ≤ 1

µ1
‖4V ‖2

L2 , ∂νV = 0 on ∂Ω.

As a consequence,

−α0λ
2

∫

Ω

(4V )2 dx ≤ −α0λ
2µ1 ‖∇V ‖2

L2 = −α0µ1E3.

Exploiting Proposition Appendix A.1, we then find

∂tE ≤ −8Tν0

ε2
E1 −

(1 − α0)C0

λ2T
E2 − α0µ1E3 −

2

τ
E4

− ε2

2
ν0c1,d

∫

Ω

(4
√

n)2 dx − ε2

2
ν0c2,d

∫

Ω

|∇n|4
n3

dx −
∑

l

∫

Ω

n

(

∇
(

Jl

n

))2

dx,

where the numbers c1,d and c2,d are as in the theorem.
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We choose α0 = C0

µ1λ2T+C0
, and obtain

∂tE ≤ −8Tν0

ε2
E1 −

µ1C0

µ1λ2T + C0
(E2 + E3) −

2

τ
E4

− ε2

2
ν0c1,d

∫

Ω

(4
√

n)2 dx − ε2

2
ν0c2,d

∫

Ω

|∇n|4
n3

dx −
∑

l

∫

Ω

n

(

∇
(

Jl

n

))2

dx.

This completes the proof of Theorem 2.1.

Proof. [Proof of Corollary 2.1] We directly have E(t) ≤ exp(−σt)E(0), which gives

us (2.2) and (2.7) immediately. Next, it is easy to check that

(y − 1)2 ≤ y2(ln y2 − 1) + 1, 0 < y < ∞,

which then yields

(
√

n(t, x) −
√

C0)
2 ≤ n(t, x)

(

ln
n(t, x)

C0
− 1

)

+ C0,

and (2.3) follows quickly, as well as (2.4). The remaining estimates are proved

similarly.

4. Existence on the Torus

The purpose of this section is to prove Theorem 2.2.

To this end, we choose numbers γ with 0 < γ < 1, and consider a family of

parabolic initial value problems






























∂tn − div J = ν0 4n − γ 42 n,

∂tJ − div

(

J ⊗ J

n

)

− T∇n + n∇V +
ε2

2
n∇

(4√
n√

n

)

= ν0 4J − γ 42 J − J

τ
,

λ2 4V = n − Cγ(x),

n(0, x) = n0
γ(x), J(0, x) = J0

γ (x),
(4.1)

where (t, x) ∈ R × Ω. We assume that the functions Cγ , n0
γ , and J0

γ belong to

C∞(Ω), satisfy the compatibility condition
∫

Ω

(n0
γ(x) − Cγ(x)) dx = 0,

and converge to C, n0, J0 in Sobolev norms as follows, for γ tends to zero:

Cγ −→ C in Hs−1(Ω),

n0
γ −→ n0 in Hs+1(Ω),

J0
γ −→ J0 in Hs(Ω).

The system (4.1) is a fourth order nonlinear parabolic system with third order

lower terms. It is standard to show that this problem has a unique solution

(nγ , Jγ , Vγ) ∈ C∞([0, tγ) × Ω) × C∞([0, tγ) × Ω) × C∞([0, tγ) × Ω),



January 15, 2006 14:1 WSPC/INSTRUCTION FILE chen-dreher

10 Li Chen and Michael Dreher

for some tγ > 0. The solution persists as long as nγ stays positive and (nγ , Jγ , Vγ)

remain bounded. A proof will be sketched in Lemma Appendix B.2.

Our approach is as follows:

• shrink the interval [0, tγ) to guarantee some boundedness assumptions on

(nγ , Jγ , Vγ);

• derive uniform in γ a priori estimates of the solutions (nγ , Jγ , Vγ);

• show that tγ can not go to zero for γ → 0;

• prove convergence of a sub-sequence of (nγ , Jγ , Vγ)γ for γ → 0;

• study the limit of that sub-sequence.

Fix a number δ0 by the conditions

0 < δ0 < min
x∈Ω

n0(x), max
x∈Ω

n0(x) < δ−1
0 .

In the following computations, we always assume that

δ0 ≤ nγ(t, x) ≤ δ−1
0 .

For a multi-index α ∈ N
d
0, define

nγ,α := ∂α
x nγ , Jγ,α := ∂α

x Jγ , Vγ,α := ∂α
x Vγ .

Then we obtain

∂tJγ,α − ν0 4 Jγ,α + γ 42 Jγ,α +
1

τ
Jγ,α

= div ∂α
x

(

Jγ ⊗ Jγ

nγ

)

+ T∇nγ,α − ∂α
x (nγ∇Vγ) − ε2

2
∂α

x (nγ∇B(nγ)) .

Multiplying this equation with Jγ,α, integrating over Ω, performing partial integra-

tion, and taking advantage from the periodic boundary conditions, we find

1

2
∂t ‖Jγ,α‖2

L2 + ν0 ‖∇Jγ,α‖2
L2 + γ ‖4 Jγ,α‖2

L2 +
1

τ
‖Jγ,α‖2

L2

=

∫

Ω

Jγ,α div ∂α
x

(

Jγ ⊗ Jγ

nγ

)

dx − T

∫

Ω

(div Jγ,α)nγ,α dx

−
∫

Ω

Jγ,α∂α
x (nγ∇Vγ) dx − ε2

2

∫

Ω

Jγ,α∂α
x (nγ∇B(nγ)) dx.
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The integrals on the right-hand side are treated as follows:

∫

Ω

Jγ,α div ∂α
x

(

Jγ ⊗ Jγ

nγ

)

dx = −
∑

k,l

∫

Ω

(∂kJγ,α,l) ∂α
x

(

Jγ,lJγ,k

nγ

)

dx,

− T

∫

Ω

(div Jγ,α)nγ,α dx = −T

∫

Ω

(

∂tnγ,α − ν0 4nγ,α + γ 42 nγ,α

)

nγ,α dx

= −T

2
∂t ‖nγ,α‖2

L2 − Tν0 ‖∇nγ,α‖2
L2 − Tγ ‖4nγ,α‖2

L2 ,

nγ∇B(nγ) =
1

2
∇4nγ − 1

2

∑

l

∂l

(

(∂lnγ)∇nγ

nγ

)

,

− ε2

2

∫

Ω

Jγ,α∂α
x (nγ∇B(nγ)) dx

=
ε2

4

∫

Ω

(div Jγ,α)4nγ,α dx − ε2

4

∑

k,l

∫

Ω

(∂lJγ,α,k)∂α
x

(

(∂lnγ)(∂knγ)

nγ

)

dx

=
ε2

4

∫

Ω

(∂tnγ,α − ν0 4nγ,α + γ 42 nγ,α)4nγ,α dx − ε2

4

∑

k,l

∫

Ω

. . . dx

= −ε2

8
∂t ‖∇nγ,α‖2

L2 −
ε2

4
ν0 ‖4nγ,α‖2

L2 −
ε2

4
γ ‖∇4nγ,α‖2

L2 −
ε2

4

∑

k,l

∫

Ω

. . . dx.

Then it follows that

T

2
∂t ‖nγ,α‖2

L2 + Tν0 ‖∇nγ,α‖2
L2 + Tγ ‖4nγ,α‖2

L2 (4.2)

+
ε2

8
∂t ‖∇nγ,α‖2

L2 +
ε2

4
ν0 ‖4nγ,α‖2

L2 +
ε2

4
γ ‖∇4nγ,α‖2

L2

+
1

2
∂t ‖Jγ,α‖2

L2 + ν0 ‖∇Jγ,α‖2
L2 + γ ‖4Jγ,α‖2

L2 +
1

τ
‖Jγ,α‖2

L2

= −
∑

k,l

∫

Ω

(∂kJγ,α,l) ∂α
x

(

Jγ,lJγ,k

nγ

)

dx −
∫

Ω

Jγ,α∂α
x (nγ∇Vγ) dx

− ε2

4

∑

k,l

∫

Ω

(∂lJγ,α,k)∂α
x

(

(∂lnγ)(∂knγ)

nγ

)

dx

= I1,α + I2,α +
ε2

4
I3,α.

We define an energy:

Ek(t) =
∑

|α|=k

(

T

2
‖nγ,α‖2

L2 +
ε2

8
‖∇nγ,α‖2

L2 +
1

2
‖Jγ,α‖2

L2

)

, k ≥ 0, (4.3)

E0,...,k :=

k
∑

l=0

El. (4.4)
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This energy is related to Sobolev space norms via

‖nγ‖2
L2 ≤ 2

T
E0,

∑

|α|=k

‖nγ,α‖2
L2 ≤ C

ε2
Ek−1, k ≥ 1,

‖nγ‖2
Hk ≤ C

(

1

T
+

1

ε2

)

E0,...,k−1.

The identity (4.2) then yields

∂tEk +
∑

|α|=k

(

Tν0 ‖∇nγ,α‖2
L2 +

ε2

4
ν0 ‖4nγ,α‖2

L2 + ν0 ‖∇Jγ,α‖2
L2 +

1

τ
‖Jγ,α‖2

L2

)

≤
∑

|α|=k

(

|I1,α| + |I2,α| +
ε2

4
|I3,α|

)

.

Next we estimate the integrals I1,α, I2,α, I3,α in terms of E0,...,k. The constants

C in the following computations may change from one line to another, and can

depend on the order of differentiation k = |α|, the space dimension d and the lower

bound δ0 of n0, but are independent of ν0, γ, ε, τ , and λ. Recall the embedding

Hb(Ω) ⊂ L∞(Ω). We will make free use of the estimates

‖fg‖Hk ≤ C (‖f‖L∞ ‖g‖Hk + ‖f‖Hk ‖f‖L∞) , k ≥ 0,

‖f(u(·))‖Hk ≤ C(‖u‖L∞) ‖u‖Hk , k ≥ 0, f(0) = 0.

Then we can conclude that

|I1,α| ≤
∑

l,m

‖∂mJγ,α,l‖L2

∥

∥n−1
γ Jγ,lJγ,m

∥

∥

H|α|

≤ C ‖∇Jγ,α‖L2

(

∥

∥n−1
γ

∥

∥

H|α| ‖Jγ‖2
L∞ +

∥

∥n−1
γ

∥

∥

L∞ ‖Jγ‖H|α| ‖Jγ‖L∞

)

≤ C ‖∇Jγ,α‖L2

(

‖nγ‖H|α| ‖Jγ‖2
L∞ + ‖Jγ‖H|α| ‖Jγ‖L∞

)

≤ C ‖∇Jγ,α‖L2

((

1 + T−1
)

E0,...,|α|

)
1
2

(

E0,...,b +
√

E0,...,b

)

≤ ν0

4
‖∇Jγ,α‖2

L2 +
C

ν0

(

E2
0,...,b + E0,...,b

) (

1 + T−1
)

E0,...,|α|.

Concerning the second integral, we have

|I2,α| ≤ ‖Jγ,α‖L2 ‖nγ∇Vγ‖H|α|

≤ C ‖Jγ,α‖L2

(

‖nγ‖L∞ ‖∇Vγ‖H|α| + ‖nγ‖H|α| ‖∇Vγ‖L∞

)

≤ C ‖Jγ,α‖L2

(

‖Vγ‖H|α|+1 + ‖nγ‖H|α| ‖Vγ‖Hb+1

)

≤ C

λ2
‖Jγ,α‖L2

(

‖nγ − Cγ‖H|α|−1 + ‖nγ‖H|α| ‖nγ − Cγ‖Hb−1

)

≤ C

λ2
‖Jγ,α‖L2

(

‖nγ‖H|α| + ‖Cγ‖H|α|−1 + ‖nγ‖H|α|

(

‖nγ‖Hb−1 + ‖Cγ‖Hb−1

))
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≤ C

λ2

(

‖Jγ,α‖2
L2 + ‖nγ‖2

H|α|

(

1 + ‖Cγ‖2
Hb−1 + ‖nγ‖2

Hb−1

)

+ ‖Cγ‖2
H|α|−1

)

≤ C

λ2

(

E0,...,|α| + T−1E0,...,|α|

(

1 + ‖Cγ‖2
Hb−1 + T−1E0,...,b−1

)

+ ‖Cγ‖2
H|α|−1

)

=
C

λ2

(

1 + T−1 + T−1 ‖Cγ‖2
Hb−1 + T−2E0,...,b−1

)

E0,...,|α| +
C

λ2
‖Cγ‖2

H|α|−1 .

Concerning the last integral, we have

|I3,α| ≤
∑

k,l

‖∂lJγ,α,k‖L2

∥

∥n−1
γ (∂lnγ)(∂knγ)

∥

∥

H|α|

≤
∑

k,l

‖∂lJγ,α,k‖L2 ‖(∂l ln nγ)(∂knγ)‖H|α|

≤ C ‖∇Jγ,α‖L2

(

‖ln nγ‖H|α|+1 ‖∇nγ‖L∞ + ‖∇ ln nγ‖L∞ ‖nγ‖H|α|+1

)

≤ C ‖∇Jγ,α‖L2 ‖nγ‖H|α|+1 ‖∇nγ‖L∞ .

Fix a number θd with θd ∈ (1/2, 1) for even d and θd ∈ (2/3, 1) for odd d. Then we

have

‖∇nγ‖L∞ ≤ C ‖nγ‖θd

Hb+1 ‖nγ‖1−θd

L∞ ,

by Lemma Appendix B.3. Together with ‖nγ‖L∞ ≤ δ−1
0 , we then get the estimate

|I3,α| ≤ C ‖∇Jγ,α‖L2 ‖nγ‖H|α|+1 ‖nγ‖θd

Hb+1 .

Now we distinguish two cases.

Case 1: b + 1 ≤ |α| + 2. Then we have the interpolation inequalities

‖nγ‖Hb+1 ≤ C ‖nγ‖
1

|α|+2−b

H|α|+2 ‖nγ‖
|α|+1−b

|α|+2−b

Hb ,

‖nγ‖H|α|+1 ≤ C ‖nγ‖
|α|+1−b

|α|+2−b

H|α|+2 ‖nγ‖
1

|α|+2−b

Hb ,

which imply

‖nγ‖H|α|+1 ‖nγ‖θd

Hb+1 ≤ C ‖nγ‖1−%

H|α|+2 ‖nγ‖θd+%
Hb ,

where we have set % = 1−θd

|α|+2−b ∈ (0, 1). Altogether, we get

|I3,α| ≤ C ‖∇Jγ,α‖L2 ‖nγ‖1−%

H|α|+2 ‖nγ‖θd+%
Hb

≤ C ‖∇Jγ,α‖L2

(

‖4nγ‖2
H|α| + ‖nγ‖2

H|α|

)
1−%
2 ‖nγ‖θd+%

Hb .

If we apply Young’s inequality with the exponents 2, 2
1−% and 2

% to the right-hand
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side, we deduce that (putting k = |α|)

ε2

4
|I3,α| ≤

√
ν0

2
‖∇Jγ,α‖L2 ·

(

ε2ν0

8M(d)
(‖4nγ‖2

Hk + ‖nγ‖2
Hk )

)

1−%
2

×

× Cν
−1+ %

2
0 ε1+% ‖nγ‖θd+%

Hb

≤
√

ν0

2
‖∇Jγ,α‖L2 ·

(

ε2ν0

8M(d)
(‖4nγ‖2

Hk + ‖nγ‖2
Hk )

)

1−%
2

×

× Cν
−1+ %

2
0 ε1−θd

(

ε ‖nγ‖Hb

)θd+%

≤ ν0

8
‖∇Jγ,α‖2

L2 +
ε2ν0

8M(d)

(

‖4nγ‖2
Hk + ‖nγ‖2

Hk

)

+ Cν
1− 2

%

0 ε
2(1−θd)

%

(

ε2 ‖nγ‖2
Hb

)

θd+%

%

.

Recalling that % = %(k) = 1−θd

k+2−b , we see that

ε2

4
|I3,α| ≤

ν0

8
‖∇Jγ,α‖2

L2 +
ε2ν0

8M(d)
‖4nγ‖2

Hk + Cν0

(

1 + ε2T−1
)

E0,...,k−1

+ Cν
1− 2

%

0 ε2(k+2−b)
((

1 + ε2T−1
)

E0,...,b−1

)1+
θd
% .

Case 2: b+1 > |α|+2. In this case, we have ‖nγ‖H|α|+1 ≤ ‖nγ‖Hb−1 . Applying

Young’s inequality with the exponents 2, 2
θd

and 2
1−θd

to the estimate

|I3,α| ≤ C ‖∇Jγ,α‖L2 ‖nγ‖θd

Hb+1 ‖nγ‖Hb−1 ,

we get

ε2

4
|I3,α| ≤

√
ν0

2
‖∇Jγ,α‖L2 ·

(

ε2 ‖nγ‖2
Hb+1

)

θd
2 · Cν

− 1
2

0 ε2−θd ‖nγ‖Hb−1

≤ ν0

8
‖∇Jγ,α‖2

L2 + C
(

1 + ε2T−1
)

E0,...,b

+ C
(

ν
− 1

2
0 ε1−θd

)
2

1−θd

(

ε2 ‖nγ‖2
Hb−1

)
1

1−θd

≤ ν0

8
‖∇Jγ,α‖2

L2 + C
(

1 + ε2T−1
)

E0,...,b

+ Cν
− 1

1−θd

0 ε2
((

1 + ε2T−1
)

E0,...,b−2

)
1

1−θd .

Having now the estimates in both cases, we choose the number M(d) sufficiently

large. Then we can conclude that

∂tEk +
∑

|α|=k

(

Tν0 ‖∇nγ,α‖2
L2 +

ε2

8
ν0 ‖4nγ,α‖2

L2 +
ν0

2
‖∇Jγ,α‖2

L2 +
1

τ
‖Jγ,α‖2

L2

)

≤ C

ν0

(

E2
0,...,b + E0,...,b

) (

1 + T−1
)

E0,...,k

+
C

λ2

(

1 + T−1 + T−1 ‖Cγ‖2
Hb−1 + T−2E0,...,b−1

)

E0,...,k +
C

λ2
‖Cγ‖2

Hk−1

+ CR,
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where the remainder term R equals

ν0

(

1 + ε2T−1
)

E0,...,k−1 + ν
1− 2

%(k)

0 ε2(k+2−b)
((

1 + ε2T−1
)

E0,...,b−1

)1+
θd

%(k)

in case of k ≥ b − 1; and for k < b − 1 we have

R =
(

1 + ε2T−1
)

E0,...,b + ν
− 1

1−θd

0 ε2
((

1 + ε2T−1
)

E0,...,b−2

)
1

1−θd .

For simplicity, we only discuss the case s = b. The other cases s > b run similarly.

Summing up for k = 0, . . . , b, we find the energy estimate

∂tE0,...,b + Tν0 ‖∇nγ‖2
Hb +

ε2

8
ν0 ‖4nγ‖2

Hb +
ν0

2
‖∇Jγ‖2

Hb +
1

τ
‖Jγ‖2

Hb

≤ C

((

1

ν0
+

1

ν0T

)

(

E2
0,...,b + E0,...,b

)

+ (1 + ν0)
(

1 + ε2T−1
)

+
1

λ2
+

1

λ2T
+

1

λ2T
‖Cγ‖2

Hb−1 +
1

λ2T 2
E0,...,b−1

)

E0,...,b

+
C

λ2
‖Cγ‖2

Hb−1 + Cν
− 1

1−θd

0 ε2
((

1 + ε2T−1
)

E0,...,b−2

)
1

1−θd

+ Cν
−

1+θd
1−θd

0 ε2
((

1 + ε2T−1
)

E0,...,b−1

)
1

1−θd

+ Cν
−

3+θd
1−θd

0 ε4
((

1 + ε2T−1
)

E0,...,b−1

)

1+θd
1−θd . (4.5)

Observe that the right-hand side does not depend on γ.

It exists a number t∗ > 0 such that E0,...,b ∈ C1([0, t∗]) and E0,...,b(t) ≤ 2E0,...,b(0)

for 0 ≤ t ≤ t∗.

On the left-hand side, we have a term ‖∇Jγ‖2
Hb . Shrinking the interval [0, t∗] if

necessary, we can arrange that t∗ ≤ 1 and

‖div Jγ‖L2((0,t∗),Hb−1) ≤ 1.

By Lemma Appendix B.1, we can show that

‖nγ(t2, ·) − nγ(t1, ·)‖L∞

≤ C(Ω, α, ν0)|t2 − t1|
α
2

(

‖div Jγ‖L2([0,tγ ],Hb−1) +
∥

∥n0
γ

∥

∥

Hb+1

)

≤ C|t2 − t1|
α
2 , 0 ≤ t1, t2 ≤ tγ ,

where 0 < α < 1
2 . Note that the right-hand side does not depend on γ, 0 < γ < 1.

From this we can find a lower bound of the time the solution nγ needs to touch the

boundary of the interval [δ0, δ
−1
0 ].

We list the results obtained so far:

We have determined a number t∗ > 0 with the property that, for each γ with

0 < γ < 1, we have a solution

(nγ , Jγ , Vγ) ∈ C∞ ([0, t∗] × Ω) × C∞ ([0, t∗] × Ω) × C∞ ([0, t∗] × Ω) ,

satisfying δ0 ≤ nγ(t, x) ≤ δ−1
0 for all (t, x) ∈ [0, t∗] × Ω.
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These functions satisfy the a priori estimates

‖nγ‖L∞((0,t∗),Hb+1) ≤ C,

‖Jγ‖L∞((0,t∗),Hb) ≤ C,

‖4nγ‖L2((0,t∗),Hb) ≤ C,

‖∇Jγ‖L2((0,t∗),Hb) ≤ C.

These constants C may depend on T , ν0, ε, λ, and δ0, but not on γ.

Because the function Cγ belongs to Hb−1(Ω), we have

‖∇Vγ‖L∞((0,t∗),Hb(Ω)) ≤ C.

From the differential equations, we then obtain the uniform in γ estimates on the

time derivatives:

‖∂tnγ‖L∞((0,t∗),Hb−4(Ω)) + ‖∂tJγ‖L∞((0,t∗),Hb−4(Ω)) ≤ C.

The embedding Hb+1(Ω) ⊂ Hb(Ω) is compact. Therefore, the Aubin Lemma11

implies that a sub-sequence (which we will not relabel) of (nγ)γ converges in the

space C([0, t∗], Hb(Ω)) to a limit function n. The sequence (nγ)γ is bounded in

L2((0, t∗), Hb+2(Ω)). By interpolation, we get the strong convergences

nγ −→ n in C([0, t∗], Hb+1−δ(Ω)), δ > 0,

nγ −→ n in L2((0, t∗), Hb+2−δ(Ω)), δ > 0.

And we have the weak convergences

nγ ⇀ n in L2((0, t∗), Hb+2(Ω)), nγ ⇀∗ n in L∞((0, t∗), Hb+1(Ω)).

By a similar reasoning, we can show

Jγ −→ J in C([0, t∗], Hb−δ(Ω)), δ > 0,

Jγ −→ J in L2((0, t∗), Hb+1−δ(Ω)), δ > 0,

Jγ ⇀ J in L2((0, t∗), Hb+1(Ω)),

Jγ ⇀∗ J in L∞((0, t∗), Hb(Ω)).

Especially, we have the uniform convergences

(nγ ,∇nγ , Jγ) −→ (n,∇n, J) in C(Q∗),

where we have put Q∗ := (0, t∗) × Ω. In particular, n and J satisfy the initial

conditions n(0, x) = n0(x) and J(0, x) = J0(x).

The convergence of (nγ)γ yields the convergence of (∇Vγ)γ , too:

∇Vγ → V in C([0, t∗], Hb+2−δ), δ > 0.

Finally, we show that (n, J, V ) is a solution to (1.1). By the above reasoning, the

identity

λ2 4V (t, x) = n(t, x) − C(x), (t, x) ∈ Q∗,
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is obvious.

Take a function ϕ ∈ C∞
0 (Q∗). By the usual arguments, we find

∫∫

Q∗

(

−ϕtnγ + ν0(∇nγ)(∇ϕ) + γnγ 42 ϕ
)

dx dt = −
∫∫

Q∗

Jγ∇ϕ dx dt.

We send γ to zero and find

∫∫

Q∗

(−ϕtn + ν0(∇n)(∇ϕ)) dx dt = −
∫∫

Q∗

J∇ϕ dx dt,

∫∫

Q∗

(−ϕtn + ϕ(−ν0 4n − div J)) dx dt = 0.

We conclude that the function n has distributional time derivative ∂tn = ν0 4n +

div J .

We study the terms of the J–equation:

div

(

Jγ ⊗ Jγ

nγ

)

−→ div

(

J ⊗ J

n

)

in L2((0, t∗), L2(Ω)),

T∇nγ −→ T∇n in C(Q∗),

nγ∇Vγ −→ n∇V in C(Q∗),

nγ∇B(nγ) ⇀ n∇B(n) in L2((0, t∗), L2(Ω)),

4 Jγ ⇀ J in L2((0, t∗), L2(Ω)).

Similarly as for n, we can compute the distributional time derivative of J , and we

will see that (n, J, V ) solve (1.1).

To complete the proof of Theorem 2.2, we have to check the uniqueness of the

solution: let (n1, J1, V 1) and (n2, J2, V 2) be two solutions with regularity as in (2.8).

Put

n∆ = n1 − n2, J∆ = J1 − J2, V∆ = V 1 − V 2.

Then we obtain the system

∂tn∆ − ν0 4n∆ = div J∆,

∂tJ∆ − ν0 4 J∆ +
1

τ
J∆ − T∇n∆ +

ε2

2
∇4n∆ = R1 − R2,

Rj = div

(

Jj ⊗ Jj

nj

)

− nj∇V j +
1

2

∑

l

∂l

(

(∂ln
j)(∇nj)

nj

)

, j = 1, 2,

λ2 4V∆ = n∆,

with vanishing initial values for n∆ and J∆. Multiplying the second equation with
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J∆, integrating over Ω, and performing partial integration gives

1

2
∂t ‖J∆‖2

L2 + ν0 ‖∇J∆‖2
L2 +

1

τ
‖J∆‖2

L2

+ T

∫

Ω

n∆ div J∆ dx − ε2

2

∫

Ω

(4n∆) div J∆ dx

=

∫

Ω

J∆(R1 − R2) dx,

1

2
∂t ‖J∆‖2

L2 + ν0 ‖∇J∆‖2
L2 +

1

τ
‖J∆‖2

L2 +
T

2
∂t ‖n∆‖2

L2 + Tν0 ‖∇n∆‖2
L2

+
ε2

2
∂t ‖∇n∆‖2

L2 +
ε2

4
ν0 ‖4n∆‖2

L2

=

∫

Ω

J∆(R1 − R2) dx.

Now it is standard to estimate
∣

∣

∣

∣

∫

Ω

J∆(R1 − R2) dx

∣

∣

∣

∣

≤ C
(∥

∥Jj
∥

∥

L∞ ,
∥

∥nj
∥

∥

L∞ ,
∥

∥∇nj
∥

∥

L∞ ,
∥

∥∇V j
∥

∥

L∞

)

×

× (‖∇J∆‖L2 ‖J∆‖L2 + ‖J∆‖L2 (‖n∆‖L2 + ‖∇V∆‖L2) + ‖∇J∆‖L2 ‖n∆‖H1) .

We apply Young’s inequality and find

T

2
∂t ‖n∆‖2

L2 +
ε2

2
∂t ‖∇n∆‖2

L2 +
1

2
∂t ‖J∆‖2

L2 ≤ C
(

‖J∆‖2
L2 + ‖n∆‖2

H1

)

.

An application of Gronwall’s lemma then yields n∆ ≡ 0, J∆ ≡ 0, which concludes

the proof of Theorem 2.2.

5. Existence in One Dimension

In this section, we prove Theorem 2.3.

We consider (1.1) and its viscous regularization (4.1). Put Ω = (0, L). Our goal

is to follow the proof of Theorem 2.2 with s = b = 1. Therefore, we choose the

approximations Cγ , n0
γ and J0

γ from the proof of Theorem 2.2 in such a way that

Cγ −→ C in L2(Ω),

n0
γ −→ n0 in H2(Ω),

J0
γ −→ J0 in H1(Ω),

subject to the boundary conditions

∂j
xCγ(x) = 0, x ∈ ∂Ω, j ≥ 1,

∂j
xn0

γ(x) = 0, x ∈ ∂Ω, j ≥ 1,

∂j
xJ0

γ (x) = 0, x ∈ ∂Ω, j = 0, j ≥ 2.

Next, we extend these functions to the interval (−L, L) via

Cγ(−x) := Cγ(x), n0
γ(−x) := n0

γ(x), J0
γ (−x) := −J0

γ (x),
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for x ∈ (0, L). Then we observe that Cγ , n0
γ , and J0

γ satisfy periodic boundary

conditions on the interval Ω′ := (−L, L). We construe Ω′ as a torus, and have Cγ ,

n0
γ , J0

γ ∈ C∞(Ω′).

We obtain a fourth order nonlinear parabolic system with third order lower

terms. It is standard to show that this problem has a unique and smooth local in

time solution (nγ , Jγ , Vγ).

The function

(ñγ(t, x), J̃γ(t, x), Ṽγ(t, x)) := (nγ(t,−x),−Jγ(t,−x), Vγ(t,−x)),

defined for (t, x) ∈ [0, tγ ] × Ω′, is a solution, too. This is the step where we use

d = 1. Then the uniqueness of the solution implies

nγ(t,−x) = nγ(t, x), Jγ(t,−x) = −Jγ(t, x), Vγ(t,−x) = Vγ(t, x),

for (t, x) ∈ [0, tγ ] × Ω′. Following the proof of Theorem 2.2, we send γ to zero, and

have the convergence of a sub-sequence of (nγ , Jγ , Vγ)γ to a solution (n, J, V ) of

the system (1.1) on [0, t∗] × Ω′. Clearly, the functions n and V must be even, and

J must be odd, which guarantees the boundary conditions (1.2). The uniqueness

can be shown in the same way as for Theorem 2.2. Now the proof of Theorem 2.3

is complete.

6. Semiclassical Limit

Finally, we show Theorem 2.4.

We go back to the proof of Theorem 2.2. Integrating (4.5) over [0, t∗] and choos-

ing t∗ small enough, we can arrange that the solutions (nε,γ , Jε,γ , Vε,γ) to (4.1) fulfil

the a priori estimate

sup
t∈[0,t∗]

E0,...,b(t) +

∫ t∗

t=0

(

Tν0 ‖∇nε,γ‖2
Hb +

ε2

8
ν0 ‖4nε,γ‖2

Hb +
ν0

2
‖∇Jε,γ‖2

Hb

)

dt

≤ 2E0,...,b(0).

The number t∗ only depends on the initial energy E0,...,b(0), a bound of ‖Cγ‖Hb−1 ,

and the constants ν0, λ, T , ε0, where ε0 is an upper bound of ε, 0 < ε ≤ ε0. The

constant t∗ is independent of γ and ε itself. This gives us the possibility to first

send γ to zero, and then ε.

We start with the uniform in γ and ε estimates

‖nε,γ‖2
C([0,t∗],Hb) + ε2 ‖nε,γ‖2

L∞((0,t∗),Hb+1) + ‖Jε,γ‖2
L∞((0,t∗),Hb)

+ ‖nε,γ‖2
L2((0,t∗),Hb+1) + ε2 ‖nε,γ‖2

L2((0,t∗),Hb+2) + ‖Jε,γ‖2
L2((0,t∗),Hb+1) ≤ C.

We know that the limit (nε, Jε, Vε) solves (1.1) and satisfies the corresponding

inequality

‖nε‖2
C([0,t∗],Hb) + ε2 ‖nε‖2

L∞((0,t∗),Hb+1) + ‖Jε‖2
L∞((0,t∗),Hb)

+ ‖nε‖2
L2((0,t∗),Hb+1) + ε2 ‖nε‖2

L2((0,t∗),Hb+2) + ‖Jε‖2
L2((0,t∗),Hb+1) ≤ C.
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Making use of n0 ∈ Hb+1(Ω) and the maximal regularity property of the parabolic

operator ∂t − ν0 4, we even get

‖nε‖L2((0,t∗),Hb+2(Ω)) ≤ C.

Moreover, the functions nε are bounded from below, nε(t, x) ≥ δ0 > 0 for (t, x) ∈
[0, t∗] × Ω.

A careful analysis of the differential equations for nε and Jε reveals the uniform

in ε bounds

‖∂tnε‖L∞((0,t∗),Hb−2(Ω)) + ‖∂tJε‖L2((0,t∗),Hb−2(Ω)) ≤ C.

We can apply Aubin’s Lemma (Corollary 4 in Ref. 11), and find a converging sub-

sequence

(nε, Jε) −→ (n, J) in C([0, t∗] × Ω) and in C([0, t∗], Hb−δ(Ω)), δ > 0.

A direct consequence then is

∇Vε → ∇V in C([0, t∗], Hb(Ω)).

Additionally, we have the weak convergences

nε ⇀ n in L2((0, t∗), Hb+2(Ω)), Jε ⇀ J in L2((0, t∗), Hb+1(Ω)),

(nε, Jε) ⇀∗ (n, J) in L∞((0, t∗), Hb(Ω)).

Now fix Q∗ := (0, t∗) × Ω and choose a test function ϕ ∈ C∞
0 (Q∗). Then we have

∫∫

Q∗

(−ϕtnε − ν0ϕ4nε − ϕ div Jε) dx dt = 0.

Sending ε to +0 we get nt − ν0 4n = div J with distributional derivatives. This

equation then gives us

∂tn ∈ L2((0, t∗), Hb(Ω)).

Next, after choosing a R
d-valued test function ϕ ∈ C∞

0 (Q∗), we can write
∫∫

Q∗

(

−ϕtJε +
Jε ⊗ Jε

nε
∇ϕ + (div ϕ)Tnε + ϕnε∇Vε

)

dx dt

=

∫∫

Ω

(

−ε2

2
(4ϕ)(∇nε) +

ε2

2

∑

l

(∂lϕ)
(∂lnε)(∇nε)

nε
+ ν0ϕ4 Jε −

1

τ
ϕJε

)

dx dt.

Observing
∣

∣

∣

∣

∣

∫∫

Ω

∑

l

(∂lϕ)
(∂lnε)(∇nε)

nε
dx dt

∣

∣

∣

∣

∣

≤ C

δ0
‖∇ϕ‖L∞(Q∗) ‖∇nε‖2

L2(Q∗) ,

we can send ε to +0, and it follows that
∫∫

Q∗

(

−ϕtJ + ϕ

(

− div

(

J ⊗ J

n

)

− T∇n + n∇V − ν0 4J +
1

τ
J

))

dx dt = 0.
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We then deduce that (∂t − ν0 4)J = R with some R ∈ L2((0, t∗), Hb(Ω)) ∩
L∞((0, t∗), Hb−1(Ω)). By a maximal regularity argument, we then have

∂tJ ∈ L2((0, t∗), Hb−1(Ω)).

Appendix A. An Estimate of the Bohm Potential

The main result of this section is the following estimate.

Proposition Appendix A.1. Let d = 1, 2 or 3. Assume that the domain Ω ⊂ R
d

is a bounded box, Ω =
∏d

j=1(aj , bj). We assume that a function n ∈ H2(Ω) satisfies

the following conditions:

inf
x∈Ω

n(x) > 0, (A.1)

∂νn(x) = 0, x ∈ ∂Ω. (A.2)

Then we have the estimates from above
∫

Ω

B(n)4 n dx ≤ 5

2

∫

Ω

(4
√

n)2 dx +
1

8

∫

Ω

|∇n|4
n3

dx

in all dimensions, and the estimates from below

∫

Ω

B(n)4n dx ≥























1

9

∫

Ω

(4
√

n)2 dx +
7

144

∫

Ω

|∇n|4
n3

dx : d = 3,

1

3

∫

Ω

(4
√

n)2 dx +
1

24

∫

Ω

|∇n|4
n3

dx : d = 2.

(A.3)

In case of d = 1, we have
∫

Ω

B(n)4n dx = 2

∫

Ω

(4
√

n)2 dx +
1

24

∫

Ω

|∇n|4
n3

dx.

Proof. The estimate from above is a direct consequence of Young’s inequality and

B(n)4n = 2(4
√

n)2 +
4√

n√
n

· 2|∇
√

n|2.

The statement in case of d = 1 follows by partial integration.

We start the proof of (A.3) with some observations: Due to the embedding

H2(Ω) ⊂ C(Ω) for d ≤ 3, the condition (A.1) is meaningful. Every function n

from H2(Ω) satisfying (A.1) and (A.2) can be approximated by a sequence (nγ)γ

of functions nγ ∈ H3(Ω) that satisfy ∂νnγ(x) = 0 on ∂Ω and infx∈Ω nγ(x) ≥
1
2 infx∈Ω n(x). The both sides of (A.3) are continuous mappings from the positive

cone of H2(Ω) into R. Therefore, we can additionally assume that n ∈ H3(Ω).

Moreover, we will need the following fact: if p ∈ H3(Ω) with ∂νp = 0 on ∂Ω,

then also ∂ν |∇p|2 = 0 on ∂Ω. This is the place where we need the assumption that

Ω is a box.
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Put p(x) := n1/4(x). The assumptions (A.1) and (A.2) guarantee p ∈ H3(Ω)

and ∂νp = 0 on ∂Ω. Then we have

B(n)4n =
4(n1/2)

n1/2
4n = 8

(

p2(4 p)2 + 3|∇p|4 + 4p(4 p)|∇p|2
)

.

The last term is the delicate one, since its sign is unknown.

To obtain the estimates from below, we perform partial integration repeatedly:
∫

Ω

p(4 p)|∇p|2 dx = −
∫

Ω

|∇p|4 dx +
1

2

∫

Ω

(

4(p2)
)

|∇p|2 dx

= −
∫

Ω

|∇p|4 dx +
1

2

∫

Ω

p2 4|∇p|2 dx +
1

2

∫

∂Ω

(

(∂νp2)|∇p|2 − p2∂ν |∇p|2
)

dσ

= −
∫

Ω

|∇p|4 dx +
1

2

∑

j,k

∫

Ω

p2(∂k∂k((∂jp)2)) dx + 0

= −
∫

Ω

|∇p|4 dx +
∑

j,k

∫

Ω

p2(∂k∂jp)2 dx +
1

3

∫

Ω

〈

∇p3,∇4 p
〉

dx

= −
∫

Ω

|∇p|4 dx +
∑

j,k

∫

Ω

p2(∂k∂jp)2 dx

+
1

3

∫

∂Ω

(∂νp3)(4 p) dσ − 1

3

∫

Ω

(4 p3)(4 p) dx

= −
∫

Ω

|∇p|4 dx +
∑

j,k

∫

Ω

p2(∂k∂jp)2 dx

+ 0 −
∫

Ω

p2(4 p)2 dx − 2

∫

Ω

p(4 p)|∇p|2 dx.

The last integral is the same as on the left-hand side. Plugging the resulting expres-

sion into the integral
∫

B(n)4n dx, we then find

∫

Ω

B(n)4n dx =
8

3

∫

Ω



4
∑

j,k

p2(∂j∂kp)2 − p2(4 p)2 + 5|∇p|4


 dx.

Using Young’s inequality 2|ab| ≤ a2 + b2, we get the estimate 4
∑

j,k(∂j∂kp)2 −
(4 p)2 ≥ 1

3 (4 p)2 in case of d = 3, and, consequently,
∫

Ω

B(n)4n dx ≥ 8

9

∫

Ω

(

p2(4 p)2 + 15|∇p|4
)

dx.

Now we have

(4 p2)2 = 4p2(4 p)2 + 4|∇p|4 + 8p(4 p)|∇p|2 ≤ 8p2(4 p)2 + 8|∇p|4,
which gives

∫

Ω

B(n)4n dx ≥ 1

9

∫

Ω

(4 p2)2 dx +
14 · 8

9

∫

Ω

|∇p|4 dx

=
1

9

∫

Ω

(4
√

n)2 dx +
7

144

∫

Ω

|∇n|4
n3

dx.
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This proof works also for d = 2, and the constants can be improved a bit.

Appendix B. Some Technicalities

Let Ω = T
d be a torus, and consider the problem

{

∂tu − ν0 4u + γ 42 u = f, (t, x) ∈ (0, T )× Ω,

u(0, x) = u0(x), x ∈ Ω,

where ν0 > 0 and γ ≥ 0.

Lemma Appendix B.1. Any smooth solution to this initial value problem satisfies

the estimate

‖u(t2) − u(t1)‖L∞(Ω)

≤ C(Ω, α, ν0, T )|t2 − t1|
α
2

(

‖f‖L2((0,T ),Hb−1(Ω)) + ‖u0‖Hb(Ω) + γ
1
2 ‖u0‖Hb+1(Ω)

)

uniformly in γ, where 0 ≤ t1 < t2 ≤ T , 0 < α < 1
2 , and the constant C remains

bounded for T → 0.

Proof.

Apply ∇ to this equation, multiply with ∇u, and integrate over Ω:

1

2
∂t ‖∇u‖2

L2(Ω) + ν0

∑

l

∫

Ω

|∇∂lu|2 dx + γ ‖∇4u‖2
L2(Ω) = −

∫

Ω

f 4u dx

≤ 1

2

(

d

ν0
‖f‖2

L2(Ω) + ν0

∑

l

∫

Ω

(∂2
l u)2 dx

)

.

If ∇2 denotes the matrix of all second derivatives, then we obtain the estimates

‖∇u‖2
L∞((0,T ),L2(Ω)) ≤ ‖∇u0‖2

L2(Ω) +
d

2ν0
‖f‖2

L2((0,T ),L2(Ω)) ,

∥

∥∇2u
∥

∥

2

L2((0,T ),L2(Ω))
≤ 1

ν0
‖∇u0‖2

L2(Ω) +
d

2ν2
0

‖f‖2
L2((0,T ),L2(Ω)) .

The key information here is that the constants do neither depend on T nor on γ.

Apply 4 to the equation, multiply with 4u, integrate over Ω, perform partial

integration, apply Young’s inequality to the right–hand side, integrate over the time

interval:

‖4u‖2
L∞((0,T ),L2(Ω)) + 2ν0 ‖∇4u‖2

L2((0,T ),L2(Ω)) + γ
∥

∥42 u
∥

∥

2

L2((0,T ),L2(Ω))

≤ ‖4u0‖2
L2(Ω) +

1

γ
‖f‖2

L2((0,T ),L2(Ω)) .

Finally, using the equation we get

‖∂tu‖2
L2((0,T ),L2(Ω))

≤ 3ν2
0 ‖4u‖2

L2((0,T ),L2(Ω)) + 3
∥

∥γ 42 u
∥

∥

2

L2((0,T ),L2(Ω))
+ 3 ‖f‖2

L2((0,T ),L2(Ω))

≤ C(d)
(

ν0 ‖∇u0‖2
L2(Ω) + γ ‖4u0‖2

L2(Ω) + ‖f‖2
L2((0,T ),L2(Ω))

)

.



January 15, 2006 14:1 WSPC/INSTRUCTION FILE chen-dreher

24 Li Chen and Michael Dreher

The differential equation and the boundary condition do not change after differ-

entiating the equation with respect to x. Therefore, we are allowed to replace L2(Ω)

everywhere by Hm(Ω) in the above four estimates.

Assume 0 ≤ t1 < t2 ≤ T . Then we have

‖u(t2) − u(t1)‖L∞(Ω) ≤ C ‖u(t2) − u(t1)‖Hb−α(Ω)

≤ C ‖u‖1−α
L∞((0,T ),Hb(Ω)) ‖u(t2) − u(t1)‖α

Hb−1(Ω)

≤ C ‖u‖1−α
L∞((0,T ),Hb(Ω))

(∫ t2

t=t1

‖∂tu‖Hb−1(Ω) dt

)α

≤ C|t2 − t1|
α
2 ‖u‖1−α

L∞((0,T ),Hb(Ω)) ‖∂tu‖α
L2((0,T ),Hb−1(Ω))

≤ C(Ω, α, ν0, T )|t2 − t1|
α
2

(

‖f‖L2((0,T ),Hb−1(Ω)) + ‖u0‖Hb(Ω) + γ
1
2 ‖u0‖Hb+1(Ω)

)

.

Here, we have made use of the standard estimate

‖u‖2
L∞((0,T ),L2(Ω)) ≤ 2

(

‖u0‖2
L2(Ω) + T ‖f‖2

L2((0,T ),L2(Ω))

)

.

Next, we consider fourth-order parabolic systems with nonlocal nonlinear lower

order terms
{

∂tY (t, x) + γ 42 Y (t, x) = F ({Y }), (t, x) ∈ (0, T ) × Ω,

Y (0, x) = Y0(x), x ∈ Ω,
(B.1)

where Ω is a smooth d-dimensional manifold without boundary and F comprises

(local or nonlocal) nonlinear terms of at most third order.

Lemma Appendix B.2. Assume that Y0 ∈ C∞(Ω), and that F is defined for

functions Y ∈ C∞(Ω) taking values in a tubular neighbourhood of the graph of Y0,

and satisfies estimates

‖F ({Y })‖Hk ≤ CF,k(‖Y ‖L∞)(‖Y ‖Hk+3 + ‖Y ‖L∞), k ≥ 0,

‖F ({Y }) − F ({Z})‖L2 ≤ CF,0 (‖Y ‖L∞ + ‖Y ‖H3 + ‖Y ‖L∞ + ‖Z‖H3) ‖Y − Z‖H3 ,

with some continuous and increasing functions CF,k.

Then there is a constant T∗ > 0 such that (B.1) has a unique solution Y ∈
C∞([0, T∗] × Ω).

Proof. Consider first the linear case

∂tY (t, x) + γ 42 Y (t, x) = G(t, x), Y (0, x) = Y0(x). (B.2)

Multiplying (B.2) with Y and integrating the resulting equation over [0, T ]×Ω we

quickly get

‖Y ‖2
L∞((0,T ),L2(Ω)) ≤ 2

(

‖Y0‖2
L2(Ω) + T ‖G‖2

L2((0,T ),L2(Ω))

)

, (B.3)

‖Y ‖2
L2((0,T ),L2(Ω)) ≤ 2

(

T ‖Y0‖2
L2(Ω) + T 2 ‖G‖2

L2((0,T ),L2(Ω))

)

. (B.4)
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Applying 4 to (B.2), multiplying with 4Y and integrating over Ω, we see

1

2
∂t ‖4Y ‖2

L2 + γ
∥

∥42 Y
∥

∥

2

L2 =

∫

Ω

(4G)(4Y ) dx ≤ γ

2

∥

∥42 Y
∥

∥

2

L2 +
1

2γ
‖G‖2

L2 ,

‖4Y ‖2
L∞((0,T ),L2(Ω)) + γ

∥

∥42 Y
∥

∥

2

L2((0,T ),L2(Ω))
≤ ‖4Y0‖2

L2(Ω) +
1

γ
‖G‖2

L2((0,T ),L2(Ω)) .

(B.5)

We interpolate (B.5) with (B.3) and with (B.4), and conclude that

‖Y ‖2
L∞((0,T ),H1(Ω)) +‖Y ‖2

L2((0,T ),H3(Ω)) ≤ C0

(

‖Y0‖2
H2(Ω) + T 1/2 ‖G‖L2((0,T ),L2(Ω))

)

,

with C0 = C0(γ, Ω, T0), 0 < T ≤ T0, which can be lifted to

‖Y ‖2
L∞((0,T ),Hk+1(Ω)) + ‖Y ‖2

L2((0,T ),Hk+3(Ω))

≤ Ck

(

‖Y0‖2
Hk+2(Ω) + T 1/2 ‖G‖L2((0,T ),Hk(Ω))

)

.

For b being the smallest integer greater than d/2, we choose k = max(b− 1, 2) and

find an estimate for Y in the spaces L∞((0, T ) × Ω) and L∞((0, T ), H3(Ω)).

Now let us be given the composition operator F . For a moment we assume

F to be defined everywhere. Now it is standard to construct an iteration scheme

of Picard-Lindelöf type, to exploit the above estimates of solutions to (B.2), and

to show that this iteration scheme converges in L2((0, T∗), H
3(Ω)) to a solution Y

provided that T∗ is chosen small enough. The maximal regularity of the system (B.2)

as expressed in (B.5) then shows Y ∈ C∞([0, T∗] × Ω). We can also obtain an

estimate of ∂tY in L∞((0, T∗) × Ω).

Next, let us be given the composition operator F , defined in a tubular neighbour-

hood of the graph of Y0. We can extend F outside this neighbourhood and then

follow the above proof. The estimate on ∂tY guarantees that the found solution

indeed solves the problem (B.1) provided that the time interval is short.

For completeness, we give a proof of an interpolation estimate exploited in the

proof of Theorem 2.2.

Lemma Appendix B.3. Let d ∈ N+ and b be the smallest integer greater than 1
2d,

and Ω be a bounded domain in R
d with smooth boundary or a bounded d-dimensional

manifold. Put

θd =

(

b + 1 − d

2

)−1

+ κ = κ +

{

1
2 : d even,
2
3 : d odd

with κ > 0 and θd < 1. Then the following interpolation inequality holds:

‖∇u‖L∞(Ω) ≤ C ‖u‖θd

Hb+1(Ω) ‖u‖
1−θd

L∞(Ω) .
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Proof. Let r � 1 be huge. We have Hb+1(Ω) = F b+1
2,2 (Ω) and Lr(Ω) = F 0

r,2(Ω) as

well as the complex interpolation

[

F s1
p1,2, F

s2
p2,2

]

θ
= F s∗

p∗,2, s∗ = θs1 + (1 − θ)s2,
1

p∗
=

θ

p1
+

1 − θ

p2

provided that 1 < p1, p2 < ∞ and 0 ≤ θ ≤ 1. Details on the Triebel-Lizorkin spaces

F s
p,q can be found in Ref. 12. In our case, s∗ = θds1 + (1 − θd)s2 = (b + 1)θd and

1/p∗ = θd/2 + (1 − θd)/r. It is easy to check that (b + 1)θd − 1 > dθd/2, hence

s∗ − 1 > d/p∗ for large r, which gives us the embedding F s∗
p∗,2 ⊂ C1(Ω). Since Ω is

bounded, we also have Lr(Ω) ⊂ L∞(Ω), which completes the proof.
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