# COMPACT FAMILIES OF PIECEWISE CONSTANT FUNCTIONS IN $L^{p}(0, T ; B)$ 

MICHAEL DREHER AND ANSGAR JÜNGEL


#### Abstract

A strong compactness result in the spirit of the Lions-Aubin-Simon lemma is proven for piecewise constant functions in time $\left(u_{\tau}\right)$ with values in a Banach space. The main feature of our result is that it is sufficient to verify one uniform estimate for the time shifts $u_{\tau}-u_{\tau}(\cdot-\tau)$ instead of all time shifts $u_{\tau}-u_{\tau}(\cdot-h)$ for $h>0$, as required in Simon's compactness theorem. This simplifies significantly the application of the Rothe method in the existence analysis of parabolic problems.


## 1. Introduction

A useful technique to prove the existence of weak solutions to nonlinear evolution equations and their systems is to semi-discretize the equations in time by the implicit Euler method (also called Rothe method [5]):

$$
\begin{equation*}
\frac{1}{\tau}\left(u_{\tau}(t)-u_{\tau}(t-\tau)\right)+A\left(u_{\tau}(t)\right)=f_{\tau}(t), \quad \tau \leq t<T, \quad u_{\tau}(0) \text { given } \tag{1}
\end{equation*}
$$

where $\tau>0$ is the time step, $A$ is an abstract (nonlinear) operator defined on a certain Banach space, and $f_{\tau}$ is some (piecewise constant) function with values in a Banach space. In this way, nonlinear elliptic problems are obtained which are sometimes easier to solve. In order to pass to the limit of vanishing time steps, $\tau \rightarrow 0$, (relative) compactness for the sequence of piecewise constant approximate solutions $\left(u_{\tau}\right)$ is needed. Since the problem is nonlinear, we need strong convergence of (a subsequence of) $\left(u_{\tau}\right)$ to identify the limit. If the governing operator is monotone, the limit can be identified using Minty's trick (see, e.g., [6, Lemma 2.13]). Having suitable a priori estimates at hand, strong compactness can be concluded from the Aubin (or Lions-Aubin-Simon) lemma [7] which is a consequence of a compactness criterium due to Kolmogorov. However, the results of [7] are not directly applicable. Indeed, typically one can derive the uniform estimate

$$
\begin{equation*}
\left\|u_{\tau}-u_{\tau}(\cdot-\tau)\right\|_{L^{1}(\tau, T ; Y)}=\tau\left\|-A\left(u_{\tau}\right)+f_{\tau}\right\|_{L^{1}(\tau, T ; Y)} \leq C \tau, \tag{2}
\end{equation*}
$$

Date: November 8, 2011.
2000 Mathematics Subject Classification. 46B50, 35A35.
Key words and phrases. Compactness, Aubin lemma, Rothe method.
The first author is supported by DFG (446 CHV 113/170/0-2) and the Center of Evolution Equations of the University of Konstanz. The second author acknowledges partial support from the Austrian Science Fund (FWF), grants P20214, P22108, and I395; the Austrian-Croatian Project HR 01/2010; the AustrianFrench Project FR 07/2010; and the Austrian-Spanish Project ES 08/2010 of the Austrian Exchange Service (ÖAD). Both authors thank Etienne Emmrich for useful discussions and the hint on the paper [3] and the anonymous referees for their comments which helped to improve this paper.
where $C>0$ does not depend on $\tau$, and $Y$ is some Banach space. On the other hand, in order to apply the Aubin lemma, one needs [7, Theorem 3]

$$
\begin{equation*}
\left\|u_{\tau}-u_{\tau}(\cdot-h)\right\|_{L^{1}(h, T ; Y)} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0, \quad \text { uniformly in } \tau>0 \tag{3}
\end{equation*}
$$

A possible way to avoid this problem is to construct linear interpolants of $u_{\tau}$, say $\widetilde{u}_{\tau}$, for which a continuous time-derivative version of the Aubin lemma can be applied, giving $\widetilde{u} \rightarrow u$ in $L^{1}(0, T ; B)$ as $\tau \rightarrow 0$ for some Banach space $B$ [7, Corollary 4]. Since we need strong convergence of $\left(u_{\tau}\right)$, one has to show that $u_{\tau}-\widetilde{u}_{\tau} \rightarrow 0$ in $L^{1}(0, T ; B)$, which might be difficult to prove (see Section 4 for a situation in which such a proof is possible).

In this note, we show that estimate (2) suffices to infer strong compactness of $\left(u_{\tau}\right)$. The main feature of our result is that it is sufficient to study the time shifts $u_{\tau}-u_{\tau}(\cdot-\tau)$ instead of all time shifts $u_{\tau}-u_{\tau}(\cdot-h)$ for all $h>0$. This simplifies the proof of the limit $\tau \rightarrow 0$ in (1) significantly.

For our main results, let $T>0, N \in \mathbb{N}, \tau=T / N$, and set $t_{k}=k \tau, k=0, \ldots, N$. Furthermore, let $\left(S_{h} u\right)(x, t)=u(x, t-h), t \geq h>0$, be the shift operator. We notice that quasi-uniform time steps may be considered too [3], but they are of minor interest in the existence analysis.

Theorem 1. Let $X, B$, and $Y$ be Banach spaces such that the embedding $X \hookrightarrow B$ is compact and the embedding $B \hookrightarrow Y$ is continuous. Furthermore, let either $1 \leq p<\infty$, $r=1$ or $p=\infty, r>1$, and let $\left(u_{\tau}\right)$ be a sequence of functions, which are constant on each subinterval $\left(t_{k-1}, t_{k}\right)$, satisfying

$$
\begin{equation*}
\tau^{-1}\left\|u_{\tau}-S_{\tau} u_{\tau}\right\|_{L^{r}(\tau, T ; Y)}+\left\|u_{\tau}\right\|_{L^{p}(0, T ; X)} \leq C_{0} \quad \text { for all } \tau>0 \tag{4}
\end{equation*}
$$

where $C_{0}>0$ is a constant which is independent of $\tau$. If $p<\infty$, then $\left(u_{\tau}\right)$ is relatively compact in $L^{p}(0, T ; B)$. If $p=\infty$, there exists a subsequence of $\left(u_{\tau}\right)$ which converges in each space $L^{q}(0, T ; B), 1 \leq q<\infty$, to a limit which belongs to $C^{0}([0, T] ; B)$.

A related result in finite-dimensional spaces was recently proven by Gallouët and Latché [4, Theorem 3.4]. The same setting for degenerate elliptic-parabolic equations in $L^{1}$ was considered by Andreianov [2]. In view of (3), one may conjecture that the condition $\left\|u_{\tau}-S_{\tau} u_{\tau}\right\|_{L^{r}(\tau, T ; Y)}=\mathcal{O}\left(\tau^{\alpha}\right)$ as $\tau \rightarrow 0$ with $0<\alpha<1$ instead of $\mathcal{O}(\tau)$ is sufficient to obtain relative compactness. The following result shows that this is not the case (also see Theorem 5 below).

Proposition 2. The factor $\tau^{-1}$ in inequality (4) cannot be replaced by $\tau^{-\alpha}$ for $0<\alpha<1$.
This note is organized as follows. In Section 2, Theorem 1 is shown; the proof of Proposition 2 is presented in Section 3. Finally, we comment these results in Section 4.

## 2. Proof of Theorem 1

The proof of Theorem 1 is based on a characterisation of the norm of fractional Sobolev spaces. Let $1 \leq q<\infty, 0<\sigma<1$, and let $Y$ be a Banach space. The fractional Sobolev
space $W^{\sigma, q}(0, T ; Y)$ is the space of (equivalence classes of) functions $u \in L^{q}(0, T ; Y)$ with finite Slobodeckii norm

$$
\|u\|_{W^{\sigma, q}(0, T ; Y)}=\left(\|u\|_{L^{q}(0, T ; Y)}^{q}+|u|_{\dot{W}^{\sigma, q}(0, T ; Y)}^{q}\right)^{1 / q}
$$

where

$$
|u|_{\dot{W}^{\sigma, q}(0, T ; Y)}=\left(\int_{0}^{T} \int_{0}^{T} \frac{\|u(t)-u(s)\|_{Y}^{q}}{|t-s|^{1+\sigma q}} \mathrm{~d} s \mathrm{~d} t\right)^{1 / q}
$$

is the Slobodeckii semi-norm. Fractional Sobolev spaces in time have also been proven to be a useful tool in [3].

Lemma 3. Let $1 \leq q<\infty, 0<\sigma<1$ with $\sigma q<1$ and let $u \in L^{q}(0, T ; Y)$ be a piecewise constant function with (a finite number of) jumps of height $[u]_{k} \in Y$ at points $t_{k}$, $k=1, \ldots, N-1$. Then $u \in W^{\sigma, q}(0, T ; Y)$ and

$$
\|u\|_{W^{\sigma, q}(0, T ; Y)} \leq\|u\|_{L^{q}(0, T ; Y)}+C_{\sigma q, T}^{1 / q} \sum_{k=1}^{N-1}\left\|[u]_{k}\right\|_{Y}
$$

where $C_{\sigma q, T}=2\left(2^{\sigma q}-1\right) T^{1-\sigma q} /(\sigma q(1-\sigma q))$ does not depend on $N$.
Proof. We may assume that $0=t_{0}<t_{1}<\cdots<t_{N-1}<t_{N}=T$ and that $u(t)=u_{k}$ for $t_{k-1}<t \leq t_{k}$ where $k=1, \ldots, N$. Then $[u]_{k}=u_{k+1}-u_{k}, k=1, \ldots, N-1$, and

$$
u(t)=u_{k}=u_{1}+\sum_{j=1}^{k-1}\left(u_{j+1}-u_{j}\right)=u_{1}+\sum_{j=1}^{N-1}[u]_{j} H_{t_{j}}(t)
$$

for $t_{k-1}<t \leq t_{k}$, where $H_{t_{j}}$ is the shifted Heaviside function

$$
H_{t_{j}}(t)= \begin{cases}0 & \text { for } 0<t \leq t_{j} \\ 1 & \text { for } t_{j}<t<T\end{cases}
$$

By definition of the $W^{\sigma, q}(0, T ; Y)$ norm and the semi-norm property of $|\cdot|_{\dot{W}^{\sigma, q}(0, T ; Y)}$, we find that

$$
\begin{align*}
\|u\|_{W^{\sigma, q}(0, T ; Y)} & =\left(\|u\|_{L^{q}(0, T ; Y)}^{q}+|u|_{\dot{W}^{\sigma, q}(0, T ; Y)}^{q}\right)^{1 / q} \\
& \leq\|u\|_{L^{q}(0, T ; Y)}+|u|_{\dot{W}^{\sigma, q}(0, T ; Y)} \\
& \leq\|u\|_{L^{q}(0, T ; Y)}+\left|u_{1}\right|_{\dot{W}^{\sigma, q}(0, T ; Y)}+\sum_{j=1}^{N-1}\left\|[u]_{j}\right\|_{Y}\left|H_{t_{j}}\right|_{\dot{W}^{\sigma, q}(0, T)} \\
& =\|u\|_{L^{q}(0, T ; Y)}+\sum_{j=1}^{N-1}\left\|[u]_{j}\right\|_{Y}\left|H_{t_{j}}\right|_{\dot{W}^{\sigma, q}(0, T)} \tag{5}
\end{align*}
$$

It remains to compute the seminorm of $H_{t_{j}}$ :

$$
\begin{aligned}
\left|H_{t_{j}}\right|_{\dot{W}^{\sigma, q}}^{q} & =\int_{0}^{T} \int_{0}^{T} \frac{\left|H_{t_{j}}(t)-H_{t_{j}}(s)\right|^{q}}{|t-s|^{1+\sigma q}} \mathrm{~d} s \mathrm{~d} t=2 \int_{0}^{t_{j}} \int_{t_{j}}^{T} \frac{\left|H_{t_{j}}(t)-H_{t_{j}}(s)\right|^{q}}{|t-s|^{1+\sigma q}} \mathrm{~d} s \mathrm{~d} t \\
& =2 \int_{0}^{t_{j}} \int_{t_{j}}^{T}|t-s|^{-1-\sigma q} \mathrm{~d} s \mathrm{~d} t=\frac{2}{\sigma q(1-\sigma q)}\left(\left(T-t_{j}\right)^{1-\sigma q}+t_{j}^{1-\sigma q}-T^{1-\sigma q}\right)
\end{aligned}
$$

The right-hand side can be interpreted as a function of $\vartheta=t_{j} \in[0, T]$ whose maximum is achieved at $\vartheta=T / 2$. Therefore,

$$
\left|H_{t_{j}}\right|_{\dot{W}^{\sigma, q}}^{q} \leq \frac{2}{\sigma q(1-\sigma q)}\left(2\left(\frac{T}{2}\right)^{1-\sigma q}-T^{1-\sigma q}\right)=\frac{2}{\sigma q(1-\sigma q)}\left(2^{\sigma q}-1\right) T^{1-\sigma q}=C_{\sigma q, T} .
$$

Inserting this estimate in (5), the result follows.
For later use, we remark that the calculations in (5) and below show that

$$
\begin{equation*}
|u|_{\dot{W}^{\sigma, 1}(0, T ; Y)} \leq C_{\sigma q, T}^{1 / q} \sum_{k=1}^{N-1}\left\|[u]_{k}\right\|_{Y} . \tag{6}
\end{equation*}
$$

Proof of Theorem 1. The idea of the proof is to apply Corollary 5 in [7]: If $\left(u_{\tau}\right)$ is bounded in $L^{p}(0, T ; X) \cap W^{\sigma, \varrho}(0, T ; Y)$, where $\sigma>\max \{0,1 / \varrho-1 / p\}$, then $\left(u_{\tau}\right)$ is relatively compact in $L^{p}(0, T ; B)$ if $p<\infty, \varrho=1$ and in $C^{0}([0, T] ; B)$ if $p=\infty, \varrho>1$.

First we consider the case $p<\infty$ and $\varrho=1$. Let $\sigma \in(0,1)$ satisfy $1-1 / p<\sigma<1$ and let $u_{\tau}(t)=u_{k}$ for $t_{k-1}<t<t_{k}, k=1, \ldots, N$. Then

$$
\begin{align*}
\sum_{k=1}^{N-1}\left\|\left[u_{\tau}\right]_{k}\right\|_{Y} & =\sum_{k=1}^{N-1}\left\|u_{k+1}-u_{k}\right\|_{Y}=\tau^{-1} \sum_{k=1}^{N-1} \int_{t_{k}}^{t_{k+1}}\left\|u_{k+1}-u_{k}\right\|_{Y} \mathrm{~d} t \\
& =\tau^{-1}\left\|u_{\tau}-S_{\tau} u_{\tau}\right\|_{L^{1}(\tau, T ; Y)} \leq C_{0} \tag{7}
\end{align*}
$$

Since $L^{p}(0, T ; X) \hookrightarrow L^{1}(0, T ; Y)$, Lemma 3 shows that $\left(u_{\tau}\right)$ is bounded in $W^{\sigma, \varrho}(0, T ; Y)$, and the corollary applies.
It remains to discuss the case $p=\infty$ and $\varrho>1$. We define the piecewise linear interpolants

$$
\widetilde{u}_{\tau}(t)= \begin{cases}u_{1} & \text { for } 0 \leq t \leq t_{1}, \\ u_{k}-\frac{t_{k}-t}{\tau}\left(u_{k}-u_{k-1}\right) & \text { for } t_{k-1} \leq t \leq t_{k}, \quad 2 \leq k \leq N\end{cases}
$$

Let $\left(S_{\tau} u_{\tau}\right)(t)=u_{1}$ for $0 \leq t<t_{1}$. We observe that

$$
\left\{\begin{align*}
& \widetilde{u}_{\tau}^{\prime}(t)=\frac{1}{\tau}\left(u_{\tau}(t)-\left(S_{\tau} u_{\tau}\right)(t)\right), \quad 0 \leq t \leq T, \quad t \neq t_{k}  \tag{8}\\
&\left\|\widetilde{u}_{\tau}(t)\right\|_{X} \leq\left\|u_{\tau}(t)\right\|_{X}+\left\|\left(S_{\tau} u_{\tau}\right)(t)\right\|_{X}, \quad 0 \leq t \leq T
\end{align*}\right.
$$

which implies that $\left\|\widetilde{u}_{\tau}\right\|_{L^{p}(0, T ; X)} \leq 2\left\|u_{\tau}\right\|_{L^{p}(0, T ; X)}$. Now we apply Theorem 1 to $\left(u_{\tau}\right)$ with $p=1$ instead of $p=\infty$, and we apply Corollary 5 in $[7]$ to $\left(\widetilde{u}_{\tau}\right)$ with $\sigma=1$. We end up with a subsequence of $\left(u_{\tau}\right)$ (not relabeled) such that $u_{\tau} \rightarrow u^{*}$ in $L^{1}(0, T ; B)$, and we may
assume that the associated subsequence $\left(\widetilde{u}_{\tau}\right)$ of piecewise linear interpolants converges to a limit $\widehat{u}$ in the topology of $C^{0}([0, T] ; B)$. Next we know, for $k=1, \ldots, N$ and $t_{k-1}<t<t_{k}$, that

$$
\begin{equation*}
\left\|u_{\tau}(t)-\widetilde{u}_{\tau}(t)\right\|_{Y}=\frac{t_{k}-t}{\tau}\left\|u_{\tau}(t)-\left(S_{\tau} u_{\tau}\right)(t)\right\|_{Y} \leq\left\|u_{\tau}(t)-\left(S_{\tau} u_{\tau}\right)(t)\right\|_{Y} \tag{9}
\end{equation*}
$$

from which we infer that $\left\|u_{\tau}-\widetilde{u}_{\tau}\right\|_{L^{1}(0, T ; Y)} \leq C_{0} \tau$. Notice that the embeddings $L^{1}(0, T ; B)$ $\hookrightarrow L^{1}(0, T ; Y)$ and $C^{0}([0, T] ; B) \hookrightarrow L^{1}(0, T ; Y)$ are both continuous, hence $u^{*}=\widehat{u}$.
Since $\left(\widetilde{u}_{\tau}\right)$ converges in $C^{0}([0, T] ; B)$ to $\widehat{u}$, there exists a constant $\widehat{C}>0$ such that $\left\|\widetilde{u}_{\tau}\right\|_{L^{\infty}(0, T ; B)} \leq \widehat{C}$ for all $\tau$, and then also $\left\|u_{\tau}\right\|_{L^{\infty}(0, T ; B)} \leq \widehat{C}$ for all $\tau$. The desired convergence of $\left(u_{\tau}\right)$ to $u^{*}$ in any space $L^{q}(0, T ; B)$ for $1 \leq q<\infty$ follows from interpolation between $\left\|u_{\tau}-u^{*}\right\|_{L^{1}(0, T ; B)} \rightarrow 0$ and $\left\|u_{\tau}-u^{*}\right\|_{L^{\infty}(0, T ; B)} \leq 2 \widehat{C}$, which completes the proof.

Remark 4. Estimates (6) and (7) imply that, for all piecewise constant functions $u \in$ $L^{1}(0, T ; Y)$ with jumps at $t_{k}=k \tau$,

$$
|u|_{\dot{W}^{\sigma, 1}(0, T ; Y)} \leq C_{\sigma q, T}^{1 / q} \sum_{k=1}^{N-1}\left\|[u]_{k}\right\|_{Y} \leq \tau^{-1} C_{\sigma q, T}^{1 / q}\left\|u-S_{\tau} u\right\|_{L^{1}(\tau, T ; Y)} .
$$

By Lemma 5 of [7], there exists an inverse inequality for all $u \in W^{\sigma, 1}(0, T ; Y)$ and all $\sigma \in(0,1)$ :

$$
\left\|u-S_{\tau} u\right\|_{L^{1}(\tau, T ; Y)} \leq C_{3} \tau^{\sigma}|u|_{\dot{W}^{\sigma, 1}(0, T ; Y)},
$$

where $C_{3}>0$ depends on $\sigma$ and $T$. In this sense, the chain of inequalities

$$
\tau|u|_{\dot{W}^{\sigma, 1}(0, T ; Y)} \leq \tau^{\sigma} C_{\sigma q, T}^{1 / q} C_{3}|u|_{\dot{W}^{\sigma, 1}(0, T ; Y)}
$$

is almost sharp since we can choose $\sigma$ as close to one as we wish.

## 3. Proof of Proposition 2

We construct a sequence $\left(u_{\tau}\right)$ satisfying the assumptions of Theorem 1 with $\tau^{-\alpha}(0<$ $\alpha<1$ ) in (4) instead of $\tau^{-1}$, but not possessing a convergent subsequence in $L^{p}(0, T ; B)$, where $p<\infty$.

Take $X=Y=B=\mathbb{C}$ and $(0, T)=(0,1)$. For $\beta \geq 1$, define the function

$$
f_{\beta}(t):=(\beta p+1)^{1 / p} t^{\beta}, \quad 0 \leq t \leq 1 .
$$

Then we have $\left\|f_{\beta}\right\|_{L^{p}(0, T)}=1$. For later use, we remark that

$$
\begin{equation*}
\lim _{\beta \rightarrow \infty} f_{\beta}(t)=0, \tag{10}
\end{equation*}
$$

for each fixed $t \in[0,1)$, uniformly on compact sub-intervals $\left[0, t_{*}\right] \subset[0,1)$.
Since $\alpha<1$, we may choose a real number $0<\gamma \leq \min \{1, p(1-\alpha)\}$. We set $\beta(\tau)=\tau^{-\gamma}$ and

$$
u_{\tau}(t):= \begin{cases}f_{\beta(\tau)}(k \tau) & \text { for } k \tau \leq t<(k+1) \tau, k \in\{0,1, \ldots, N-1\} \\ f_{\beta(\tau)}((N-1) \tau) & \text { for } t=1\end{cases}
$$

The function $u_{\tau}$ has jumps of height $\left[u_{\tau}\right]_{k}$ at the values $t=k \tau$ for $1 \leq k \leq N-1$, and all jumps have the same sign. In particular,

$$
\begin{aligned}
& \sum_{k=1}^{N-1}\left\|\left[u_{\tau}\right]_{k}\right\|_{Y}=\sum_{k=1}^{N-1}\left[u_{\tau}\right]_{k}=f_{\beta(\tau)}(1-\tau)=\left(\tau^{-\gamma} p+1\right)^{1 / p}(1-\tau)^{\tau^{-\gamma}} \\
& 1 \geq(1-\tau)^{\tau^{-\gamma}} \geq(1-\tau)^{1 / \tau} \geq \frac{1}{2 e} .
\end{aligned}
$$

Therefore, it follows that

$$
\begin{aligned}
\tau^{-\alpha}\left\|u_{\tau}-S_{\tau} u_{\tau}\right\|_{L^{1}(\tau, T, Y)} & =\tau^{1-\alpha} \sum_{k=1}^{N-1}\left\|\left[u_{\tau}\right]_{k}\right\|_{Y}=\tau^{1-\alpha}\left(\tau^{-\gamma} p+1\right)^{1 / p}(1-\tau)^{\tau^{-\gamma}} \\
& \leq \tau^{1-\alpha}\left(\tau^{-\gamma} p+1\right)^{1 / p} \leq\left(\frac{1}{2}\right)^{1-\alpha}\left(\left(\frac{1}{2}\right)^{-\gamma}+1\right)^{1 / p}
\end{aligned}
$$

for all $\tau \in(0,1 / 2)$, since $1-\alpha-\gamma / p \geq 0$. Hence, (4) holds. But the sequence $\left(u_{\tau}\right) \subset$ $L^{p}(0, T ; B)$ does not possess a converging subsequence, which can be seen as follows. Fix $t \in$ $[0,1)$. Then $0 \leq u_{\tau}(t) \leq f_{\beta(\tau)}(t)$, and (10) implies the pointwise convergence $\lim _{\tau \rightarrow 0} u_{\tau}(t)=$ 0 , uniform on compact sub-intervals $\left[0, t_{*}\right] \subset[0,1)$. Thus, the pointwise limit of the subsequence must be the zero function. However, this is impossible, because of the following uniform lower bound:

$$
\int_{0}^{1}\left|u_{\tau}(t)\right|^{p} \mathrm{~d} t \geq \int_{0}^{1-\tau}\left|f_{\beta(\tau)}(t)\right|^{p} \mathrm{~d} t=(1-\tau)^{\tau^{-\gamma} p+1} \geq \frac{1}{2}\left((1-\tau)^{\tau^{-\gamma}}\right)^{p} \geq \frac{1}{2}(2 e)^{-p}
$$

showing the claim.

## 4. Comments

Let $X, B$, and $Y$ be Banach spaces such that the embedding $X \hookrightarrow B$ is dense and compact, the embedding $B \hookrightarrow Y$ is continuous, and there exist $0<\theta<1, C_{\theta}>0$ such that for all $u \in X$, the interpolation inequality

$$
\begin{equation*}
\|u\|_{B} \leq C_{\theta}\|u\|_{X}^{\theta}\|u\|_{Y}^{1-\theta} \tag{11}
\end{equation*}
$$

holds. The setting which we have in mind relates to (1), with given $u(0) \in B$. In this situation, a slightly weaker version of Theorem 1 can be derived directly from the Aubin lemma. ${ }^{1}$ Indeed, since $X$ is dense in $B$, we may approximate $u(0) \in B$ by $u_{0} \in X$, and we define the piecewise linear interpolant by

$$
\widetilde{u}_{\tau}(t)=u_{k}-\frac{t_{k}-t}{\tau}\left(u_{k}-u_{k-1}\right), \quad t_{k-1} \leq t \leq t_{k}, \quad 1 \leq k \leq N .
$$

We suppose that $u_{0}$ and $u_{1}$ satisfy

$$
\begin{equation*}
\tau\left\|u_{0}\right\|_{X}^{p} \leq C_{1}, \quad\left\|u_{0}-u_{1}\right\|_{Y} \leq C_{1} \tag{12}
\end{equation*}
$$

[^0]for some constant $C_{1}>0$ independent of $\tau$. The first bound can always be satisfied; the second bound is a mild condition related to the construction of the sequence $\left(u_{k}\right)$. If this sequence is defined according to (1), the second bound can be replaced by the regularity assumption $\tau\left\|A\left(u_{1}\right)\right\|_{Y} \leq C$ for some constant $C>0$ independent of $\tau$ since $\left\|u_{1}-u_{0}\right\|_{Y} \leq \tau\left\|A\left(u_{1}\right)\right\|_{Y}+\tau\left\|f_{\tau}(\tau)\right\|_{Y}$.

Now we make the agreement that $\left(S_{\tau} u_{\tau}\right)(t)=u_{0}$ for $0 \leq t<t_{1}=\tau$. Then (8) still holds. It follows from (4) that

$$
\left\|\widetilde{u}_{\tau}^{\prime}\right\|_{L^{1}(0, T ; Y)}=\left\|u_{1}-u_{0}\right\|_{Y}+\tau^{-1}\left\|u_{\tau}-S_{\tau} u_{\tau}\right\|_{L^{1}(\tau, T ; Y)} \leq C_{1}+C_{0}
$$

Furthermore, using (8) and (4) again,

$$
\left\|\widetilde{u}_{\tau}\right\|_{L^{p}(0, T ; X)} \leq \tau^{1 / p}\left\|u_{0}\right\|_{X}+2\left\|u_{\tau}\right\|_{L^{p}(0, T ; X)} \leq C_{1}^{1 / p}+2 C_{0}
$$

Hence, by the Aubin lemma [7, Corollary 4], up to a subsequence, $\widetilde{u}_{\tau} \rightarrow u$ in $L^{p}(0, T ; B)$ as $\tau \rightarrow 0$. By the interpolation inequality (11) and by (9),

$$
\begin{aligned}
\left\|u_{\tau}-\widetilde{u}_{\tau}\right\|_{L^{1}(0, T ; B)} & \leq C_{\theta}\left\|u_{\tau}-\widetilde{u}_{\tau}\right\|_{L^{1}(0, T ; X)}^{\theta}\left\|u_{\tau}-\widetilde{u}_{\tau}\right\|_{L^{1}(0, T ; Y)}^{1-\theta} \\
& \leq C_{\theta}\left(\left\|u_{\tau}\right\|_{L^{1}(0, T ; X)}+\left\|\widetilde{u}_{\tau}\right\|_{L^{1}(0, T ; X)}\right)^{\theta}\left\|u_{\tau}-S_{\tau} u_{\tau}\right\|_{L^{1}(0, T ; Y)}^{1-\theta} .
\end{aligned}
$$

We remark that $\left\|u_{\tau}-S_{\tau} u_{\tau}\right\|_{L^{1}(0, T ; Y)} \leq \tau\left(\left\|u_{1}-u_{0}\right\|_{Y}+C_{0}\right)$, which implies that $u_{\tau}-\widetilde{u}_{\tau} \rightarrow 0$ in $L^{1}(0, T ; B)$. Since $\widetilde{u}_{\tau} \rightarrow u$ in $L^{p}(0, T ; B)$, we find that $u_{\tau} \rightarrow u$ in $L^{q}(0, T ; B)$ for all $q<p$. Notice, however, that Theorem 1 allows us to conclude this result up to $q=p$ without assuming (11) and (12).

Proposition 2 shows that the exponent of the factor $\tau$ in (4) cannot be raised. However, when allowing for arbitrary time shifts $S_{h}$, the factor can be replaced by $h^{-\alpha}$, where $0<\alpha<1$, under some conditions. An example, adapted to our situation, can be found in [1, Theorem 1.1]:

Theorem 5 (Amann). Let (11) hold. Furthermore, let $0<s<1,1 \leq p<\infty$, and $F \subset L^{p}(0, T ; Y)$. Assume that there exists $C_{2}>0$ such that each $u \in F$ satisfies the following infinite collection of inequalities:

$$
h^{-s}\left\|u-S_{h} u\right\|_{L^{1}(\tau, T ; Y)}+\|u\|_{L^{p}(0, T ; X)} \leq C_{2} \quad \text { for all } h>0 .
$$

Then $F$ is relatively compact in $L^{q}(0, T ; B)$ for all $q<p /((1-\theta)(1-s) p+\theta)$.
Notice that $q=p$ is admissible if $(1-\theta)(1-s) p+\theta<1$ which is equivalent to $s>1-1 / p$. Thus, if we wish to allow for arbitrary large $p \geq 1$, we have to require the condition $s=1$, which corresponds to the result of Theorem 1. On the other hand, in applications, often $p=2$, and compactness follows even for $s<1$, namely for any $s>1 / 2$.

In the special situation when we have the triple $X \hookrightarrow B \hookrightarrow X^{\prime}$, where $Y=X^{\prime}$ is the dual space of $X$ and $B$ is a Hilbert space, the assumptions of Amann's theorem hold with $\theta=1 / 2$. Then $q<2 p /((1-s) p+1)$, and we see that $2 p$ is an upper bound for $q$. This corresponds to the result of Walkington [8, Theorem 3.1 (1)].

## References

[1] H. Amann. Compact embeddings of vector-valued Sobolev and Besov spaces. Glasnik Mat. Ser. III 35 (2000), 161-177.
[2] B. Andreianov. Time compactness tools for discretized evolution equations and applications to degenerate parabolic equations. Preprint, 2011. http://hal.archives-ouvertes.fr/hal-00561344/fr.
[3] E. Emmrich and M. Thalhammer. Doubly nonlinear evolution equations of second order: Existence and fully discrete approximation. J. Diff. Eqs. 251 (2011), 82-118.
[4] T. Gallouët and J.-C. Latché. Compactness of discrete approximate solutions to parabolic PDEs Application to a turbulence model. To appear in Commun. Pure Appl. Anal., 2011.
[5] J. Kačur. Method of Rothe in evolution equations. Teubner Texts in Mathematics, vol. 80, Teubner, Leipzig, 1985.
[6] T. Roubíček. Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2005.
[7] J. Simon. Compact sets in the space $L^{p}(0, T ; B)$. Ann. Mat. Pura Appl. 146 (1986), 65-96.
[8] N. Walkington. Compactness properties of the DG and CG time stepping schemes for parabolic equations. SIAM J. Numer. Anal. 47 (2010), 4680-4710.

Fachbereich Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, Germany
E-mail address: michael.dreher@uni-konstanz.de
Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Wien, Austria

E-mail address: juengel@tuwien.ac.at


[^0]:    ${ }^{1}$ The authors are grateful to one of the referees for this observation.

