COMPACT FAMILIES OF PIECEWISE CONSTANT FUNCTIONS IN $L^p(0,T;B)$

MICHAEL DREHER AND ANSGAR JÜNGEL

ABSTRACT. A strong compactness result in the spirit of the Lions-Aubin-Simon lemma is proven for piecewise constant functions in time (u_{τ}) with values in a Banach space. The main feature of our result is that it is sufficient to verify one uniform estimate for the time shifts $u_{\tau} - u_{\tau}(\cdot - \tau)$ instead of all time shifts $u_{\tau} - u_{\tau}(\cdot - h)$ for h > 0, as required in Simon's compactness theorem. This simplifies significantly the application of the Rothe method in the existence analysis of parabolic problems.

1. INTRODUCTION

A useful technique to prove the existence of weak solutions to nonlinear evolution equations and their systems is to semi-discretize the equations in time by the implicit Euler method (also called Rothe method [5]):

(1)
$$\frac{1}{\tau} (u_{\tau}(t) - u_{\tau}(t-\tau)) + A(u_{\tau}(t)) = f_{\tau}(t), \quad \tau \le t < T, \quad u_{\tau}(0) \text{ given},$$

where $\tau > 0$ is the time step, A is an abstract (nonlinear) operator defined on a certain Banach space, and f_{τ} is some (piecewise constant) function with values in a Banach space. In this way, nonlinear elliptic problems are obtained which are sometimes easier to solve. In order to pass to the limit of vanishing time steps, $\tau \to 0$, (relative) compactness for the sequence of piecewise constant approximate solutions (u_{τ}) is needed. Since the problem is nonlinear, we need strong convergence of (a subsequence of) (u_{τ}) to identify the limit. If the governing operator is monotone, the limit can be identified using Minty's trick (see, e.g., [6, Lemma 2.13]). Having suitable *a priori* estimates at hand, strong compactness can be concluded from the Aubin (or Lions-Aubin-Simon) lemma [7] which is a consequence of a compactness criterium due to Kolmogorov. However, the results of [7] are not directly applicable. Indeed, typically one can derive the uniform estimate

(2)
$$\|u_{\tau} - u_{\tau}(\cdot - \tau)\|_{L^{1}(\tau, T; Y)} = \tau \|-A(u_{\tau}) + f_{\tau}\|_{L^{1}(\tau, T; Y)} \le C\tau,$$

Date: November 8, 2011.

²⁰⁰⁰ Mathematics Subject Classification. 46B50, 35A35.

Key words and phrases. Compactness, Aubin lemma, Rothe method.

The first author is supported by DFG (446 CHV 113/170/0-2) and the Center of Evolution Equations of the University of Konstanz. The second author acknowledges partial support from the Austrian Science Fund (FWF), grants P20214, P22108, and I395; the Austrian-Croatian Project HR 01/2010; the Austrian-French Project FR 07/2010; and the Austrian-Spanish Project ES 08/2010 of the Austrian Exchange Service (ÖAD). Both authors thank Etienne Emmrich for useful discussions and the hint on the paper [3] and the anonymous referees for their comments which helped to improve this paper.

where C > 0 does not depend on τ , and Y is some Banach space. On the other hand, in order to apply the Aubin lemma, one needs [7, Theorem 3]

(3)
$$\|u_{\tau} - u_{\tau}(\cdot - h)\|_{L^{1}(h,T;Y)} \to 0 \quad \text{as} \ h \to 0, \text{ uniformly in } \tau > 0.$$

A possible way to avoid this problem is to construct linear interpolants of u_{τ} , say \tilde{u}_{τ} , for which a continuous time-derivative version of the Aubin lemma can be applied, giving $\tilde{u} \to u$ in $L^1(0,T;B)$ as $\tau \to 0$ for some Banach space B [7, Corollary 4]. Since we need strong convergence of (u_{τ}) , one has to show that $u_{\tau} - \tilde{u}_{\tau} \to 0$ in $L^1(0,T;B)$, which might be difficult to prove (see Section 4 for a situation in which such a proof is possible).

In this note, we show that estimate (2) suffices to infer strong compactness of (u_{τ}) . The main feature of our result is that it is sufficient to study the time shifts $u_{\tau} - u_{\tau}(\cdot - \tau)$ instead of all time shifts $u_{\tau} - u_{\tau}(\cdot - h)$ for all h > 0. This simplifies the proof of the limit $\tau \to 0$ in (1) significantly.

For our main results, let T > 0, $N \in \mathbb{N}$, $\tau = T/N$, and set $t_k = k\tau$, $k = 0, \ldots, N$. Furthermore, let $(S_h u)(x,t) = u(x,t-h), t \ge h > 0$, be the shift operator. We notice that quasi-uniform time steps may be considered too [3], but they are of minor interest in the existence analysis.

Theorem 1. Let X, B, and Y be Banach spaces such that the embedding $X \hookrightarrow B$ is compact and the embedding $B \hookrightarrow Y$ is continuous. Furthermore, let either $1 \le p < \infty$, r = 1 or $p = \infty$, r > 1, and let (u_{τ}) be a sequence of functions, which are constant on each subinterval (t_{k-1}, t_k) , satisfying

(4)
$$\tau^{-1} \| u_{\tau} - S_{\tau} u_{\tau} \|_{L^{r}(\tau,T;Y)} + \| u_{\tau} \|_{L^{p}(0,T;X)} \leq C_{0} \quad \text{for all } \tau > 0,$$

where $C_0 > 0$ is a constant which is independent of τ . If $p < \infty$, then (u_{τ}) is relatively compact in $L^p(0,T;B)$. If $p = \infty$, there exists a subsequence of (u_{τ}) which converges in each space $L^q(0,T;B)$, $1 \le q < \infty$, to a limit which belongs to $C^0([0,T];B)$.

A related result in finite-dimensional spaces was recently proven by Gallouët and Latché [4, Theorem 3.4]. The same setting for degenerate elliptic-parabolic equations in L^1 was considered by Andreianov [2]. In view of (3), one may conjecture that the condition $||u_{\tau} - S_{\tau}u_{\tau}||_{L^r(\tau,T;Y)} = \mathcal{O}(\tau^{\alpha})$ as $\tau \to 0$ with $0 < \alpha < 1$ instead of $\mathcal{O}(\tau)$ is sufficient to obtain relative compactness. The following result shows that this is not the case (also see Theorem 5 below).

Proposition 2. The factor τ^{-1} in inequality (4) cannot be replaced by $\tau^{-\alpha}$ for $0 < \alpha < 1$.

This note is organized as follows. In Section 2, Theorem 1 is shown; the proof of Proposition 2 is presented in Section 3. Finally, we comment these results in Section 4.

2. Proof of Theorem 1

The proof of Theorem 1 is based on a characterisation of the norm of fractional Sobolev spaces. Let $1 \le q < \infty$, $0 < \sigma < 1$, and let Y be a Banach space. The fractional Sobolev

space $W^{\sigma,q}(0,T;Y)$ is the space of (equivalence classes of) functions $u \in L^q(0,T;Y)$ with finite Slobodeckii norm

$$\|u\|_{W^{\sigma,q}(0,T;Y)} = \left(\|u\|_{L^q(0,T;Y)}^q + |u|_{\dot{W}^{\sigma,q}(0,T;Y)}^q\right)^{1/q},$$

where

(5)

$$|u|_{\dot{W}^{\sigma,q}(0,T;Y)} = \left(\int_0^T \int_0^T \frac{\|u(t) - u(s)\|_Y^q}{|t - s|^{1 + \sigma q}} \,\mathrm{d}s \,\mathrm{d}t\right)^{1/q}$$

is the Slobodeckii semi-norm. Fractional Sobolev spaces in time have also been proven to be a useful tool in [3].

Lemma 3. Let $1 \leq q < \infty$, $0 < \sigma < 1$ with $\sigma q < 1$ and let $u \in L^q(0,T;Y)$ be a piecewise constant function with (a finite number of) jumps of height $[u]_k \in Y$ at points t_k , $k = 1, \ldots, N-1$. Then $u \in W^{\sigma,q}(0,T;Y)$ and

$$\|u\|_{W^{\sigma,q}(0,T;Y)} \le \|u\|_{L^{q}(0,T;Y)} + C^{1/q}_{\sigma q,T} \sum_{k=1}^{N-1} \|[u]_{k}\|_{Y},$$

where $C_{\sigma q,T} = 2(2^{\sigma q} - 1)T^{1-\sigma q}/(\sigma q(1-\sigma q))$ does not depend on N.

Proof. We may assume that $0 = t_0 < t_1 < \cdots < t_{N-1} < t_N = T$ and that $u(t) = u_k$ for $t_{k-1} < t \le t_k$ where $k = 1, \ldots, N$. Then $[u]_k = u_{k+1} - u_k$, $k = 1, \ldots, N - 1$, and

$$u(t) = u_k = u_1 + \sum_{j=1}^{k-1} (u_{j+1} - u_j) = u_1 + \sum_{j=1}^{N-1} [u]_j H_{t_j}(t)$$

for $t_{k-1} < t \leq t_k$, where H_{t_i} is the shifted Heaviside function

$$H_{t_j}(t) = \begin{cases} 0 & \text{for } 0 < t \le t_j, \\ 1 & \text{for } t_j < t < T. \end{cases}$$

By definition of the $W^{\sigma,q}(0,T;Y)$ norm and the semi-norm property of $|\cdot|_{\dot{W}^{\sigma,q}(0,T;Y)}$, we find that

$$\begin{split} \|u\|_{W^{\sigma,q}(0,T;Y)} &= \left(\|u\|_{L^{q}(0,T;Y)}^{q} + |u|_{\dot{W}^{\sigma,q}(0,T;Y)}^{q} \right)^{1/q} \\ &\leq \|u\|_{L^{q}(0,T;Y)} + |u|_{\dot{W}^{\sigma,q}(0,T;Y)} \\ &\leq \|u\|_{L^{q}(0,T;Y)} + |u_{1}|_{\dot{W}^{\sigma,q}(0,T;Y)} + \sum_{j=1}^{N-1} \|[u]_{j}\|_{Y} \ |H_{t_{j}}|_{\dot{W}^{\sigma,q}(0,T)} \\ &= \|u\|_{L^{q}(0,T;Y)} + \sum_{j=1}^{N-1} \|[u]_{j}\|_{Y} \ |H_{t_{j}}|_{\dot{W}^{\sigma,q}(0,T)}. \end{split}$$

It remains to compute the seminorm of H_{t_i} :

$$\begin{aligned} |H_{t_j}|^q_{\dot{W}^{\sigma,q}} &= \int_0^T \int_0^T \frac{|H_{t_j}(t) - H_{t_j}(s)|^q}{|t - s|^{1 + \sigma q}} \, \mathrm{d}s \, \mathrm{d}t = 2 \int_0^{t_j} \int_{t_j}^T \frac{|H_{t_j}(t) - H_{t_j}(s)|^q}{|t - s|^{1 + \sigma q}} \, \mathrm{d}s \, \mathrm{d}t \\ &= 2 \int_0^{t_j} \int_{t_j}^T |t - s|^{-1 - \sigma q} \, \mathrm{d}s \, \mathrm{d}t = \frac{2}{\sigma q (1 - \sigma q)} \big((T - t_j)^{1 - \sigma q} + t_j^{1 - \sigma q} - T^{1 - \sigma q} \big). \end{aligned}$$

The right-hand side can be interpreted as a function of $\vartheta = t_j \in [0, T]$ whose maximum is achieved at $\vartheta = T/2$. Therefore,

$$|H_{t_j}|_{\dot{W}^{\sigma,q}}^q \le \frac{2}{\sigma q(1-\sigma q)} \left(2\left(\frac{T}{2}\right)^{1-\sigma q} - T^{1-\sigma q} \right) = \frac{2}{\sigma q(1-\sigma q)} (2^{\sigma q} - 1)T^{1-\sigma q} = C_{\sigma q,T}.$$

Inserting this estimate in (5), the result follows.

For later use, we remark that the calculations in (5) and below show that

(6)
$$|u|_{\dot{W}^{\sigma,1}(0,T;Y)} \le C_{\sigma q,T}^{1/q} \sum_{k=1}^{N-1} ||[u]_k||_Y.$$

Proof of Theorem 1. The idea of the proof is to apply Corollary 5 in [7]: If (u_{τ}) is bounded in $L^{p}(0,T;X) \cap W^{\sigma,\varrho}(0,T;Y)$, where $\sigma > \max\{0, 1/\varrho - 1/p\}$, then (u_{τ}) is relatively compact in $L^{p}(0,T;B)$ if $p < \infty$, $\varrho = 1$ and in $C^{0}([0,T];B)$ if $p = \infty$, $\varrho > 1$.

First we consider the case $p < \infty$ and $\rho = 1$. Let $\sigma \in (0, 1)$ satisfy $1 - 1/p < \sigma < 1$ and let $u_{\tau}(t) = u_k$ for $t_{k-1} < t < t_k$, $k = 1, \ldots, N$. Then

(7)
$$\sum_{k=1}^{N-1} \|[u_{\tau}]_{k}\|_{Y} = \sum_{k=1}^{N-1} \|u_{k+1} - u_{k}\|_{Y} = \tau^{-1} \sum_{k=1}^{N-1} \int_{t_{k}}^{t_{k+1}} \|u_{k+1} - u_{k}\|_{Y} dt = \tau^{-1} \|u_{\tau} - S_{\tau}u_{\tau}\|_{L^{1}(\tau,T;Y)} \leq C_{0}.$$

Since $L^p(0,T;X) \hookrightarrow L^1(0,T;Y)$, Lemma 3 shows that (u_τ) is bounded in $W^{\sigma,\varrho}(0,T;Y)$, and the corollary applies.

It remains to discuss the case $p = \infty$ and $\rho > 1$. We define the piecewise linear interpolants

$$\widetilde{u}_{\tau}(t) = \begin{cases} u_1 & \text{for } 0 \le t \le t_1, \\ u_k - \frac{t_k - t}{\tau} (u_k - u_{k-1}) & \text{for } t_{k-1} \le t \le t_k, \quad 2 \le k \le N, \end{cases}$$

Let $(S_{\tau}u_{\tau})(t) = u_1$ for $0 \le t < t_1$. We observe that

(8)
$$\begin{cases} \widetilde{u}_{\tau}'(t) = \frac{1}{\tau} (u_{\tau}(t) - (S_{\tau}u_{\tau})(t)), & 0 \le t \le T, \quad t \ne t_k, \\ \|\widetilde{u}_{\tau}(t)\|_X \le \|u_{\tau}(t)\|_X + \|(S_{\tau}u_{\tau})(t)\|_X, & 0 \le t \le T, \end{cases}$$

which implies that $\|\tilde{u}_{\tau}\|_{L^{p}(0,T;X)} \leq 2 \|u_{\tau}\|_{L^{p}(0,T;X)}$. Now we apply Theorem 1 to (u_{τ}) with p = 1 instead of $p = \infty$, and we apply Corollary 5 in [7] to (\tilde{u}_{τ}) with $\sigma = 1$. We end up with a subsequence of (u_{τ}) (not relabeled) such that $u_{\tau} \to u^{*}$ in $L^{1}(0,T;B)$, and we may

assume that the associated subsequence (\tilde{u}_{τ}) of piecewise linear interpolants converges to a limit \hat{u} in the topology of $C^0([0,T]; B)$. Next we know, for $k = 1, \ldots, N$ and $t_{k-1} < t < t_k$, that

(9)
$$||u_{\tau}(t) - \widetilde{u}_{\tau}(t)||_{Y} = \frac{t_{k} - t}{\tau} ||u_{\tau}(t) - (S_{\tau}u_{\tau})(t)||_{Y} \le ||u_{\tau}(t) - (S_{\tau}u_{\tau})(t)||_{Y}$$

from which we infer that $||u_{\tau} - \widetilde{u}_{\tau}||_{L^{1}(0,T;Y)} \leq C_{0}\tau$. Notice that the embeddings $L^{1}(0,T;B)$ $\hookrightarrow L^{1}(0,T;Y)$ and $C^{0}([0,T];B) \hookrightarrow L^{1}(0,T;Y)$ are both continuous, hence $u^{*} = \widehat{u}$.

Since (\tilde{u}_{τ}) converges in $C^{0}([0,T];B)$ to \hat{u} , there exists a constant $\hat{C} > 0$ such that $\|\tilde{u}_{\tau}\|_{L^{\infty}(0,T;B)} \leq \hat{C}$ for all τ , and then also $\|u_{\tau}\|_{L^{\infty}(0,T;B)} \leq \hat{C}$ for all τ . The desired convergence of (u_{τ}) to u^{*} in any space $L^{q}(0,T;B)$ for $1 \leq q < \infty$ follows from interpolation between $\|u_{\tau} - u^{*}\|_{L^{1}(0,T;B)} \to 0$ and $\|u_{\tau} - u^{*}\|_{L^{\infty}(0,T;B)} \leq 2\hat{C}$, which completes the proof.

Remark 4. Estimates (6) and (7) imply that, for all piecewise constant functions $u \in L^1(0,T;Y)$ with jumps at $t_k = k\tau$,

$$|u|_{\dot{W}^{\sigma,1}(0,T;Y)} \le C_{\sigma q,T}^{1/q} \sum_{k=1}^{N-1} \|[u]_k\|_Y \le \tau^{-1} C_{\sigma q,T}^{1/q} \|u - S_\tau u\|_{L^1(\tau,T;Y)}$$

By Lemma 5 of [7], there exists an inverse inequality for all $u \in W^{\sigma,1}(0,T;Y)$ and all $\sigma \in (0,1)$:

$$||u - S_{\tau}u||_{L^{1}(\tau,T;Y)} \le C_{3}\tau^{\sigma}|u|_{\dot{W}^{\sigma,1}(0,T;Y)}$$

where $C_3 > 0$ depends on σ and T. In this sense, the chain of inequalities

$$\tau |u|_{\dot{W}^{\sigma,1}(0,T;Y)} \le \tau^{\sigma} C_{\sigma q,T}^{1/q} C_3 |u|_{\dot{W}^{\sigma,1}(0,T;Y)}$$

is almost sharp since we can choose σ as close to one as we wish.

3. Proof of Proposition 2

We construct a sequence (u_{τ}) satisfying the assumptions of Theorem 1 with $\tau^{-\alpha}$ (0 < $\alpha < 1$) in (4) instead of τ^{-1} , but not possessing a convergent subsequence in $L^p(0,T;B)$, where $p < \infty$.

Take $X = Y = B = \mathbb{C}$ and (0, T) = (0, 1). For $\beta \ge 1$, define the function

$$f_{\beta}(t) := (\beta p + 1)^{1/p} t^{\beta}, \quad 0 \le t \le 1.$$

Then we have $\|f_{\beta}\|_{L^{p}(0,T)} = 1$. For later use, we remark that

(10)
$$\lim_{\beta \to \infty} f_{\beta}(t) = 0,$$

for each fixed $t \in [0, 1)$, uniformly on compact sub-intervals $[0, t_*] \subset [0, 1)$.

Since $\alpha < 1$, we may choose a real number $0 < \gamma \le \min\{1, p(1-\alpha)\}$. We set $\beta(\tau) = \tau^{-\gamma}$ and

$$u_{\tau}(t) := \begin{cases} f_{\beta(\tau)}(k\tau) & \text{for } k\tau \le t < (k+1)\tau, \ k \in \{0, 1, \dots, N-1\}, \\ f_{\beta(\tau)}((N-1)\tau) & \text{for } t = 1. \end{cases}$$

The function u_{τ} has jumps of height $[u_{\tau}]_k$ at the values $t = k\tau$ for $1 \le k \le N - 1$, and all jumps have the same sign. In particular,

$$\sum_{k=1}^{N-1} \|[u_{\tau}]_k\|_Y = \sum_{k=1}^{N-1} [u_{\tau}]_k = f_{\beta(\tau)}(1-\tau) = (\tau^{-\gamma}p+1)^{1/p}(1-\tau)^{\tau^{-\gamma}},$$

$$1 \ge (1-\tau)^{\tau^{-\gamma}} \ge (1-\tau)^{1/\tau} \ge \frac{1}{2e}.$$

Therefore, it follows that

$$\tau^{-\alpha} \|u_{\tau} - S_{\tau} u_{\tau}\|_{L^{1}(\tau, T, Y)} = \tau^{1-\alpha} \sum_{k=1}^{N-1} \|[u_{\tau}]_{k}\|_{Y} = \tau^{1-\alpha} (\tau^{-\gamma} p + 1)^{1/p} (1-\tau)^{\tau^{-\gamma}}$$
$$\leq \tau^{1-\alpha} (\tau^{-\gamma} p + 1)^{1/p} \leq \left(\frac{1}{2}\right)^{1-\alpha} \left(\left(\frac{1}{2}\right)^{-\gamma} + 1\right)^{1/p},$$

for all $\tau \in (0, 1/2)$, since $1 - \alpha - \gamma/p \ge 0$. Hence, (4) holds. But the sequence $(u_{\tau}) \subset L^p(0, T; B)$ does not possess a converging subsequence, which can be seen as follows. Fix $t \in [0, 1)$. Then $0 \le u_{\tau}(t) \le f_{\beta(\tau)}(t)$, and (10) implies the pointwise convergence $\lim_{\tau \to 0} u_{\tau}(t) = 0$, uniform on compact sub-intervals $[0, t_*] \subset [0, 1)$. Thus, the pointwise limit of the subsequence must be the zero function. However, this is impossible, because of the following uniform lower bound:

$$\int_0^1 |u_\tau(t)|^p \,\mathrm{d}t \ge \int_0^{1-\tau} |f_{\beta(\tau)}(t)|^p \,\mathrm{d}t = (1-\tau)^{\tau^{-\gamma}p+1} \ge \frac{1}{2} \left((1-\tau)^{\tau^{-\gamma}} \right)^p \ge \frac{1}{2} (2e)^{-p},$$

showing the claim.

4. Comments

Let X, B, and Y be Banach spaces such that the embedding $X \hookrightarrow B$ is dense and compact, the embedding $B \hookrightarrow Y$ is continuous, and there exist $0 < \theta < 1$, $C_{\theta} > 0$ such that for all $u \in X$, the interpolation inequality

(11)
$$\|u\|_B \le C_\theta \|u\|_X^\theta \|u\|_Y^{1-\theta}$$

holds. The setting which we have in mind relates to (1), with given $u(0) \in B$. In this situation, a slightly weaker version of Theorem 1 can be derived directly from the Aubin lemma.¹ Indeed, since X is dense in B, we may approximate $u(0) \in B$ by $u_0 \in X$, and we define the piecewise linear interpolant by

$$\widetilde{u}_{\tau}(t) = u_k - \frac{t_k - t}{\tau}(u_k - u_{k-1}), \quad t_{k-1} \le t \le t_k, \quad 1 \le k \le N.$$

We suppose that u_0 and u_1 satisfy

(12)
$$\tau \|u_0\|_X^p \le C_1, \quad \|u_0 - u_1\|_Y \le C_1$$

¹The authors are grateful to one of the referees for this observation.

for some constant $C_1 > 0$ independent of τ . The first bound can always be satisfied; the second bound is a mild condition related to the construction of the sequence (u_k) . If this sequence is defined according to (1), the second bound can be replaced by the regularity assumption $\tau \|A(u_1)\|_Y \leq C$ for some constant C > 0 independent of τ since $\|u_1 - u_0\|_Y \leq \tau \|A(u_1)\|_Y + \tau \|f_{\tau}(\tau)\|_Y$.

Now we make the agreement that $(S_{\tau}u_{\tau})(t) = u_0$ for $0 \leq t < t_1 = \tau$. Then (8) still holds. It follows from (4) that

$$\|\widetilde{u}_{\tau}'\|_{L^{1}(0,T;Y)} = \|u_{1} - u_{0}\|_{Y} + \tau^{-1} \|u_{\tau} - S_{\tau}u_{\tau}\|_{L^{1}(\tau,T;Y)} \le C_{1} + C_{0}$$

Furthermore, using (8) and (4) again,

$$\|\widetilde{u}_{\tau}\|_{L^{p}(0,T;X)} \leq \tau^{1/p} \|u_{0}\|_{X} + 2 \|u_{\tau}\|_{L^{p}(0,T;X)} \leq C_{1}^{1/p} + 2C_{0}.$$

Hence, by the Aubin lemma [7, Corollary 4], up to a subsequence, $\tilde{u}_{\tau} \to u$ in $L^p(0,T;B)$ as $\tau \to 0$. By the interpolation inequality (11) and by (9),

$$\begin{aligned} \|u_{\tau} - \widetilde{u}_{\tau}\|_{L^{1}(0,T;B)} &\leq C_{\theta} \|u_{\tau} - \widetilde{u}_{\tau}\|_{L^{1}(0,T;X)}^{\theta} \|u_{\tau} - \widetilde{u}_{\tau}\|_{L^{1}(0,T;Y)}^{1-\theta} \\ &\leq C_{\theta} \big(\|u_{\tau}\|_{L^{1}(0,T;X)} + \|\widetilde{u}_{\tau}\|_{L^{1}(0,T;X)} \big)^{\theta} \|u_{\tau} - S_{\tau}u_{\tau}\|_{L^{1}(0,T;Y)}^{1-\theta} .\end{aligned}$$

We remark that $||u_{\tau} - S_{\tau}u_{\tau}||_{L^{1}(0,T;Y)} \leq \tau(||u_{1} - u_{0}||_{Y} + C_{0})$, which implies that $u_{\tau} - \tilde{u}_{\tau} \to 0$ in $L^{1}(0,T;B)$. Since $\tilde{u}_{\tau} \to u$ in $L^{p}(0,T;B)$, we find that $u_{\tau} \to u$ in $L^{q}(0,T;B)$ for all q < p. Notice, however, that Theorem 1 allows us to conclude this result up to q = p without assuming (11) and (12).

Proposition 2 shows that the exponent of the factor τ in (4) cannot be raised. However, when allowing for arbitrary time shifts S_h , the factor can be replaced by $h^{-\alpha}$, where $0 < \alpha < 1$, under some conditions. An example, adapted to our situation, can be found in [1, Theorem 1.1]:

Theorem 5 (Amann). Let (11) hold. Furthermore, let 0 < s < 1, $1 \le p < \infty$, and $F \subset L^p(0,T;Y)$. Assume that there exists $C_2 > 0$ such that each $u \in F$ satisfies the following infinite collection of inequalities:

$$h^{-s} \|u - S_h u\|_{L^1(\tau,T;Y)} + \|u\|_{L^p(0,T;X)} \le C_2 \text{ for all } h > 0.$$

Then F is relatively compact in $L^q(0,T;B)$ for all $q < p/((1-\theta)(1-s)p+\theta)$.

Notice that q = p is admissible if $(1-\theta)(1-s)p+\theta < 1$ which is equivalent to s > 1-1/p. Thus, if we wish to allow for arbitrary large $p \ge 1$, we have to require the condition s = 1, which corresponds to the result of Theorem 1. On the other hand, in applications, often p = 2, and compactness follows even for s < 1, namely for any s > 1/2.

In the special situation when we have the triple $X \hookrightarrow B \hookrightarrow X'$, where Y = X' is the dual space of X and B is a Hilbert space, the assumptions of Amann's theorem hold with $\theta = 1/2$. Then q < 2p/((1-s)p+1), and we see that 2p is an upper bound for q. This corresponds to the result of Walkington [8, Theorem 3.1 (1)].

MICHAEL DREHER AND ANSGAR JÜNGEL

References

- H. Amann. Compact embeddings of vector-valued Sobolev and Besov spaces. *Glasnik Mat. Ser. III* 35 (2000), 161-177.
- [2] B. Andreianov. Time compactness tools for discretized evolution equations and applications to degenerate parabolic equations. Preprint, 2011. http://hal.archives-ouvertes.fr/hal-00561344/fr.
- [3] E. Emmrich and M. Thalhammer. Doubly nonlinear evolution equations of second order: Existence and fully discrete approximation. J. Diff. Eqs. 251 (2011), 82-118.
- [4] T. Gallouët and J.-C. Latché. Compactness of discrete approximate solutions to parabolic PDEs Application to a turbulence model. To appear in *Commun. Pure Appl. Anal.*, 2011.
- [5] J. Kačur. Method of Rothe in evolution equations. *Teubner Texts in Mathematics*, vol. 80, Teubner, Leipzig, 1985.
- [6] T. Roubíček. Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2005.
- [7] J. Simon. Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl. 146 (1986), 65-96.
- [8] N. Walkington. Compactness properties of the DG and CG time stepping schemes for parabolic equations. SIAM J. Numer. Anal. 47 (2010), 4680-4710.

FACHBEREICH MATHEMATIK UND STATISTIK, UNIVERSITÄT KONSTANZ, 78457 KONSTANZ, GERMANY *E-mail address*: michael.dreher@uni-konstanz.de

Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8–10, 1040 Wien, Austria

E-mail address: juengel@tuwien.ac.at