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Abstract. Semilinear parabolic boundary value problems with degenerated elliptic part where
the right-hand side depends on the solution are studied. We approximate the parabolic semilinear
problem by a system of linear degenerate elliptic problems by the aid of semidiscretization in time.
Using weighted Sobolev spaces one derives a—priori—estimates for the approximate solutions. These
approximate solutions converge to a uniquely determined weak solution, if the time interval is suffi-
ciently small. We point out that the nonlinear right—hand side is defined only in a neighbourhood
of the initial data, therefore one has to prove L°°—estimates for the solutions of the approximate

problems.

1. Introduction

In this paper we will prove, by means of the Rothe method, the local existence of
a solution of the weakly parabolic semilinear initial boundary value problem

u(z, t) + Ayu(z,t) = f(x, t,u)  in Q, 1.1)
u(z,t) =0 onT, (1.2)
u(z,0) =Up(z) in Q. 1.

We denote by © ¢ RN a bounded domain with boundary 8Q € C*, T > 0, I = [0,71],
Q=0xI1,I'=00x1I and

N

g(x)>0ae inQ, gelI®Q), ¢V eI'Q) for some N’ > N.
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Semilinear weakly parabolic problems with degenerated coefficient of u; were consid-
ered in [Plu92] and [Kac&85], Chapter 6.1. In [Kac85], Chapter 6.2, elliptic—parabolic
problems were studied. The parabolic problem degenerates into an elliptic one on a
subset of positive measure. Such problems with nonlinear Neumann boundary con-
dition were treated in [Web95], too. Parabolic systems with nonlinear degeneration
were investigated in [Ka¢90] by means of Rothe’s method.

There are different ways to prove convergence of the Rothe functions. The papers
of Kacur [Ka¢90], [KL91] used compactness arguments. Here we follow an approach
of Pluschke [Plu88], [Plu92], [Plu96], where the convergence is proved by an estimate
of the time—derivative. Furthermore we will give estimates of the convergence order
and the error of the approximations.

We point out that we omit global growth assumptions on the nonlinearity of the
right-hand side. Only assumptions in a neighbourhood of the initial data are made.
The required L —estimates for u — Uy will be derived by the technique of Moser and
Alikakos, where these results are obtained by a limit process p — oo, see [Mos60]
and [Ali79].

2. Preliminaries

In the following |||, denotes the usual Lebesgue space norm and (.,.) the I*(Q)
scalar product. We will denote by C(I,V), IP(I,V), WH(I,V) and C%*(I,V) the
spaces of continuous, IP—integrable, W3 —differentiable and Lipschitz continuous map-
pings I — V, respectively. I7(f2) is a weighted Lebesgue space with the norm
ull, , = Hgl/pqu (1 < p < o). The weighted Sobolev space W,! (Q) is defined

in the following way:

N
we W) <= ue WHQ), |ull,, = lull+>" [usll’, < oc.
=1

The space W', (€2) is the closure of C5°(Q) in the W' (Q)-norm. By C,c we de-
note positive constants which may have different values at different places, but are
independent of h and p, if p is variable.

We study weak solutions and define the bilinear form

)= 3 [ ot )22 3 [ o) 2
ai(u, x —ik:l ngalk €, Dr D71 X 2 Qal x, 8xiv xX.
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Let us suppose the following conditions:

Ak, G € Co’l(IaLoo(Q)),
N
aip(z,)EE > Cplé)? Cp >0 VEeRY ae. in Q,
ik=1

Up € I*(Q) N WL (Q) (r>N,r>2),

o € I2(2) with (£(.,0,U0),v) — ao(Up, v) = (yo,v) o € Wi, (),
Br(Uo) == {ue I®(Q) : Ju—Us|l. <R}, R>0,

f(.,t,u) I x BR(UQ) — LT(Q) with

1ty u(@)) — F ! @)1y < Cllt — '] + lu— ). (2.1)

The aim of this paper is to prove

Theorem 2.1. There exists T* > 0 with the property that the problem (1.1), (1.2),

(1.3) has a uniquely determined weak solution u € Wy ([0, T*], Wy, (Q)) with u; €
>°([0, 7], I2(Q)) and u(t) € Br(Uy) for t < T*. This solution fulfils the relation

/* (ug(x,t),v(z,t)) dt + / az(u(x,t),v(x, t)) dt
- / (f et ul, 1)), (e, ) dt (2.2)

for any v e IP(I*, Wy, ().
We list some results which will be used later:

Lemma 2.2. Let 1 < q < p, g77 € [}Q). Then the embedding 2 (Q) C L1(Q) is
continuous.

Lemma 2.3. Let gV € I}Q), N' > N, N’ € R. Then the embeddings

2N’

W, (Q) € Wiy (Q) C LV—1(Q)

N’/+1
are continuous.
The (short) proofs can be found in [Dre96].
: ; ' 1_ 1, 1
Lemma 2.4./Nirenberg—Gagliardo Interpolation] Let 1 < ¢ < p < s and > <5t~
Then there is a C, such that for all u € W' (Q)

‘ Q=
® =

3 =

(4 1-6 1D
[ully < Cllullp,y lull,™ with 6 =

Q=
+
2l=
IN
>
IN
—



4 Math. Nachr.  (1996)

Ifq=1, thenf < 6 < 1.
For details we refer the reader to [LSU67], pp. 80-84. As a corollary we have

Lemma 2.5. Let 2N’ > N, N > 2, N' € R,

= —/ 2<s< n 1<g<r
1t S q .
1 Nl 1; = N 1; = >~ 11

Then for every e > 0 there exists Cc > 0, such that for all u € VV21,g Q)

2 2 2
a3 < ellull3,y g + Ce llully”

holds, where

1. If0<a<, then0<ﬂ§5<ozand0€~5_(f:a

7

2. Ifa=1,then=1and C. ~77,7 <0 < 00,

3. Ifl<a<a, thena<5§ﬂ<ooand05~€7%,
with

_ _ 1
=11 1, 0= =, o:=—==z=,
= 1-6 o 0

1

|
Q=
W =
‘ N
—_
+
S|

Q=
+
2=

Ifq=1, then B# [ and 0 # .

This lemma and its proof are modifications of a similar result in [Plu96]. For details
we refer the reader to [Dre96].

The next lemma is a straight-forward generalisation of a result in [Plu96], we drop
the proof.

For positive A1, A2 let Qx, », (£) == tMif0<t<1and Qx, 2 (t) == A2 if ¢ > 1.

Lemma 2.6. Let (m,), (81..), (B2.), (pv) be sequences of nonnegative real numbers

with
[o ] o0
0<pry<Pop<l, [[Bv=6>0 ]]Bw=5>0
v=1 v=1
Pv = pO)\Va A> 17 Po > 1.
We suppose
mP < CopCit (m’j”_l +mPre mfg;?’v) YWw=1,2.., 0<t<T.
Then

limsupm, < cQy, 4, (t)mg,

V—00



Dreher, Pluschke, Weakly Parabolic Equations 5

where B = HZOZI 61,,

g By rme <1, 1 —3
T e > 1 p(A—1) TP

The following estimates play an important role in the sequel.

Lemma 2.7. Let u,v € Wy, (Q)NL>(Q), p > 2 and w := \u|przu Then |ulP~2u €
Wo!, () N L®(Q) and

Vw = |u| “Vu, (2.3)
2 — 1 pP—2
V (JulP~2u) = (p — 1)|uP~*Vu = %hﬂTVw, (2.4)
- 1 2 C2 2
ar(u, [ulPu) > = Jlwlly, o — = wl, (2.5)
p p
|ar(u,v) = av (u,0)] < Clt = '] Jully,y 4 102,145 (2.6)
|as(u, 0)] < Cllullyy g [0llg1,4- (2.7)

We use the convention |u(z)[P~2 =1, if u(x) = 0 and p = 2.

Proof. The proof that |u[P~?u € Wy, () and the proofs of (2.3) and (2.4) can be
found in [Dre96] and [Plu88], respectively. We have

Z/ Zkgzaa (JulP~%u) dz > Cp(p - 1) Z/g|u|p2(au)

i,k=1

4CE(p*1)/ 2 C 2 2
= —7F— [ g|Vw|*dx > - ( w — ||w )
o A |Vl p [wll3,1,g = llwll3

and

_“
oz,

Z/ il

" de < / Vool ] de < & [Vl apr o] e -
p Q p N’/4+1 N/—1

-1 N
Lemma 2.3 leads to ||[Vw|| VIS cllwlly, 4 It holds (N,H) < (%) + N1
+
By Lemma 2.4 and 2.3, there is a § with

[4 1-6 (4 1-6
lwll gy < ellwllgpe  llwlly ™ < ellwllyy g lwlly™ < e flwlly, g+ Cellwll, -
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The application of Young’s inequality yields (2.5). Furthermore,

la:(u, v) — ag (u,v)]

Z/ o) |ai (2, t) — ag(x,t) |‘6xl

i,k=1

+Z |azzt
<clt—t| Z/

i,k=1

v
&ck

|v|dz

s ot clt — ¢ |/ IVl o] de.

These integrals can be estimated as above. This gives (2.6). The inequality (2.7) can
be proved in a similar way. O

3. A-priori-estimates

We will use the Rothe method to attack problem (1.1) — (1.3). For this purpose we
choose n € IN, h = %, t; = jh (j =0,...,n) and consider the variational problems

(j=1,...,n)
(uj,v) 4 a;(uj, v) = (fj,v) Vo e Wy, (), (3.15)
uj € VVQI,g (Q)a U = UO?

where du; = 3 (u; —uj—1), fj(2) = fz,t;,uj-1(2)), a;(,,.) = ay,(.,.).

(3.1) is a system of linear weakly elliptic boundary value problems, which can be
solved step by step. We define the Rothe functions by piecewise linear and piecewise
constant interpolation with respect to time,

(1) = wiq(x) + (t —tio)oui(z) it <t<t; i=1,...,n,
| Uo(x) t<0

U"(:I: t)_ ul(,r) i1 <t<t;, 1=1,...,n,
| Uo(z) :t<o.

By (2.5) (p = 2), (2.7) and the Theorem of Lax and Milgram, it is obvious that

uj € Wy', () exists and is uniquely determined, if u; 1 € Br(Up) and h is sufficiently
small.
The following lemma gives a first a—priori—estimate.

Lemma 3.1. There exist positive constants C' and hg such that:
Ifh < hg and ug,u1,...,u;—1 € BR(U()), then

j
2
l6usll, < €, Nuglly,y <G D hlldulls,, < C
=1
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for all 1 < j <i.
Proof. Testing (3.1;) with v = u; leads to
(uj —uj—1,u5) + ha;(uj,uj) = h(fj,uj),

hence )
2 2 2 2
5 (13 = T l13) + eh g3, o < Al s, + O g

Summing up (j = 1,...,1) and applying Young’s inequality we deduce that

l l
2 2 2 2 2
leally +eh Y Nl 1y < Ch Y7 (1615 + i l3) + 10013
j=1 j=1

The discrete version of Gronwall’s Lemma (see [Ka¢85], p.29) shows that

l
2
lally <€ YNl 4 < C, (3.2)
j=1

if h < hg. Testing (3.1;) and (3.1;_1) with v = du; and subtracting we conclude that
(Ou; — Guj—r,6uz) + haj(du;, ou;) = h (8 f5,0u;) = (aj(uj—1,6u;) — aj1(uj-1,0u;)).
From Young’s Inequality and (2.1), (2.5), (2.6) we obtain

1 2 2 2
5 (1913 = 61 13) + b 9u;113 .,

2
< Cp(h+ a1 = wi-2ll) 1005l + b llug-ally 16051151 4 + CP 63

2 2 2 2
< Coh (14 8w [13) + 2R 1013 1 o + Ceh g1l , + Ch0us 3,
hence

2 2 2 2 2 2
813 = 116us 113 + ch 93 1, < Ch (14 9us- 13 + I19usl13 + a3, ) -

Summing up (j = 2,...,1) we see that

l
16urlly = lISuslls +ch Y l16usl5, (3-3)
J=2
l -1
2 2
<Ct + Chz ||6uj||2 + Chz HujH271,g :
Jj=1 Jj=1

To estimate [|du1 ||, and h ||5u1|\§ 1,4> We choose v = duy in (3.11):

||(S’LL1||; + ha1(5u1, 5U1) = (fl; 5’[1,1) - al(Uo, 5U1)
= (fo, (5U1) — ao(Uo, (5U1) +h ((Sfl, (5U1) + (ao(Uo, 5u1) — al(Uo, (5U1))



8 Math. Nachr.  (1996)

Since (fo, du1) — ao(Uo, du1) = (Yo, duq ), we conclude that
6usll3 + chl|durlls,
< Ce |lyollz + 6ur3 + Crh + Ch [ldual3
2 2 2
+ Coch Ul 4 +ehlldwnllyy 4 + Chll0ur]l;,

hence ||6u1|\§ +ch ||6u1|\;17g < C, if € and h are sufficiently small. From this estimate
and (3.2), (3.3) it follows that

l l
2
5wl + ch Y [lousl5, , < C+ChY_ |[du;];.

j=1 j=1

Gronwall’s Lemma implies [|0u;l|, < C and hZéZl H(SujH;lg < C. To estimate

l[wjlly 40 we test (3.1;) with v = u; and use ||du;l[, < C, [[ufl, < C. O

Our next step is to prove u; € Br(Up) ift; < T* < T, T* independent of h. To derive
the desired [>*—estimate of u; — Uy, we insert test functions v = |u — Up[P~%(u — Up)
and perform the limit process p — co. But before doing this we must check whether

these test functions are admissible, i.e. belong to VVQTg (Q). We will do this by the aid
of the first assertion of Lemma 2.7 and Lemma 3.3. The proof of this lemma is based
on the following proposition from Ladyshenskaya [LSU67], Chapter 2, Theorem 5.1.

Proposition 3.2. Let u € W1 (Q) N L1(Q) such that there exists a constant Ko with
sup essy u(x) < Ko. We assume for K > K

J m
/ |VUImdfC§7(/ (“—K)ldm) + K (mes Ag)' TN,
AK AK

where | < e >0, m < o <eq+m and Ax = {z € Q : u(z) > K}. Then

u e L*(Q).

Lemma 3.3. Fiz h >0 and let u € Wy', () be a solution of

1 o
& (= ujo1,0) +a(w,0) = (f,0) Vo € Wy, (Q).
Then u € L>*(Q), if uj_1 € L®°(Q).

Proof. Let gj = f; + +uj_1, K > 1, m = 2 and | = -2 hence m ™' + 1~ = 1.
We choose v = max(u — K,0). This function belongs to W3, (Q2), see [Dre96]. Thus,
we get

N
1 ou Ou

- - K ih— ——d.
h(U,u )AK+ Z /AKgakaCCiamk T

ik=1

N
ou
= (g5 u—K), — Z /AK aia—x(u—K)dx,

i,k=1 v
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hence
1 9 2
= KIE 4y +elVal o,
1
S g5l a1t = Ky aye + CUVUlly = Klly g, = 5 (5 u = ) 4

2
m,Ax

2 2 2
< gl a, + Ml = Ky 4, + € IVul] +Ccflu = Kl 4 -

From u;—1 € Br(Uo) C I'(Q), r > N we get [|g;[I 4, < [lgjll 4, (mesAx) ™ . It
follows that

1

I3 llu —
(The constant C' depends on h due to the construction of g;. But this does not matter,
since h is fixed.) From this and I? (Ax) C L™ (Ak) it may be concluded that

r—m

2 2 2 2
Kl a, +ellVully a g < Cllu = Kll] 4, +C (mes Ag )™ "7

/ V™ de < € (Jlu— K[, + (mes Ax) 7).
Ag

Since r > N there is an ¢ > 0 with =™ > 1 - % +eand 0 < ¢ < . Without
loss of generality we may assume that K is sufficiently large, such that mes Ax < 1.
Consequently,

r—m

(mes Ag) ™ < (mes AK)P%JFE ,
and so
[ 19 <€ (Ju= KIy, + K™ (mes ) )
Ag ’
Since [ < %, we can apply the proposition described above and obtain
supessu(x) < C.
Q

We can apply similar considerations to @ = —u and deduce infessqu(x) > —C.
Consequently, u € L>(Q). m]

Now we are able to prove the L*°—estimate of u; — Uy.

Theorem 3.4. There exist constants hg > 0, T* > 0 and a monotonically increasing
function M(t) € C([0,T*]) with M (0) = 0 such that:
Ifho S h and tj S T* then ||Uj - UO”oo S M(tj> S R.

Proof. Let ug, u1,...,ui—1 € Br(Up), 0 < j <1, z; = u; — Up. Then dz; = du; and
(0zj,v) + a;(z;,v) = (f;,v) — a;(Uo,v) Vv € Wzlg Q).
It holds z; € L°(Q2) N VV;ljg (). We choose p > 2 and v = |z;|P22;, w; = |2|"T 2.
This gives with % + % =1
% (25, 1257 ~225) = % (zj-1, 2P 722;) +

_ _ C2 2
<Al 1z P =, + las (Uo, |251P sz)|+;||wj||2.

C1 2
- ijHQJ,g
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10

‘We set i, =1, and it holds
p—2 p—2 1 21 2
(25 257 7225) = (2j-1, 125172 25) = = wjll5 = = lwj-1ll3,
2(p—1)

2(p=1)
= IIwJII%/(p y < Cllwlly,”

p

12
TN’+1

Since g~ € [}(Q2), N’ > N, Lemma 2.2 and Uy € Wy, ((Q), we have Uy € W', ,, (),

hence VU € L'(Q) N L% (2). It follows that

la;(Uo, 1P ~22;)|
< —i ‘ZUO J|_ dx +OZ/‘%|J|pldz
ik— Lk
2 T 2 r v
< cnwjn%,p_z i1+ C Iz~
< CL w7+ gl + Cllwsly, 7
Combining these inequalities and choosing € < ¢; we get
= (Mg 12~ oy 1 112) el
"+ C w2

< Cp(lfll, +1) ||wy||2rp + Cep?

<c<p||w]|w 2 2 +||wj|2)

Here we used || f;||,. < C which follows from u;_; € Br(Uy)
. We can

0 <
We now apply Lemma 2.5 to estimate the norms on the right-hand side
p—1
,since?§2r’<%. Leta:pp%l,1<q<r1

apply this lemma to ||wj|\2r

(independent of p),
e

T 1+ (-7 pto’

‘@

|

_ 1
27!

1 1
__+N

ry

Q=

0= , o=
1_

Q=

3. There is a oy such that for all p

where @ does not depend on p. Write 5 = (1(p)
o—fp_-17_

11—« pt+o

The result is 5
20 - 2
lwillsr < ellwsll3, , + Ce™ llwyll2”
where C' does neither depend on p nor on h. Choosing § 1ndependent of p sufficiently
small and setting ¢ = %, we obtain:
2 2 2
pllw;llae < 8llwslsy 4+ Cop™ T ws |2
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Now we estimate ||w; ||2T - Let o= 22,1 < ¢ <1y (same value as above)
11 =
- riT 0 — a -2
f=—2 2 _  7=—"_ J= =P
p wt N 1-6

+(1-a)7 p+27

where @ does not depend on p. We set 5 = (2(p)
all p

= (3. We choose a o3, such that for

a—p (p—2)7
11—«

<o
and deduce that

lw; 13 <

+ Ce fluy 2%
Now let ¢ = %, § independent of p suﬁiciently small. We obtain
P

2 2
P2 s[5 < 6 Jwsll3 , , + Cop®> ™ [y |2
Finally, there is a o3 with

2 2 — 0 2
w3 < 81w 3.1, + C= ;-
For small § we conclude that
1 2 2 2
7 (lslly = oy 113) + e gl g < Cop™ (s 3+ oy 157 + o )

op = max(o; + 1,202+ 2,1). We point out that the constant Cs does neither depend
on h nor on p. Summing up (j =1,...,i) we see that

J=1

7
2 2 2 2 2
lwill3 = llwoll3 < Chop™ 37 (g 127 + s 1% + Il )

2 .
From wo = |ug — Up|“Z (uo —Up) = 0 and [w;|, = ||zj||;q/2 we obtain
leally < ctw™ masc (1207 + 12 5052 + 2310 -
We define p, = 2

v
%) By = Bilpy) = B2, Bay = Pa(p) = 2 and my,, =
maxi <j<i ||zl for v =0,1,2.... It follows that

Py puBi,v pvB2,u Pv

szSCtp ( ll/11+ 11/21 +mivu_1).
1%

We have [T02, 61,0 =10, ;Zo),VJrE > 0, since p, = 2 (%) and

oo

ZE +1)§:i<oo.

V:lpy

1-

p+0

[e'S)
v=1
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Now we are able to apply Lemma 2.6 and deduce that

limsupm;,, < cQn, vs (ti)mzﬁ,oo'

V—00

Furthermore,

mio = max. |[u; = Uolly < max. ;] + |Uoll, < C(t) < C.

Since limy_.o [[v][,, = [[v]|, for every function v € L>(€), it follows that

[wi = Uollog < CQuyy ns (t:) =2 M(L:).

This function M is continuous, independent of h and fulfils M(0) = 0. We fix 0 <
T* < T such that M(t) <R for all t < T™. O

Let us summarise the a-priori-estimates:

Theorem 3.5. There are constants No € IN, C > 0, 0 <T* <T, such that for all
n > No, t <T* it holds:

" 0 <, 3.4™
LA (3.47)
[[uf ||L°° I, 12(Q) = C, (3.5")

<, 3.6"
14 e o (3.6)

[ (t) = Uolloe < M(t+ h).

Corollary 3.6. Ift;_; <t <t;, then

t—1t;_ t: —t
—
t] t_]_l t_] t_]—l

u”(t) = Uj—1,

consequently,
e
Leo (I, W, ()

These approximations u™,u" satisfy
(up (1), 0) + 0@ (), 0) = (F'(0).0) (3.7)

where v € W3y (Q), tioy <t < tyand [ (t) == f(.,ti,uic1(.)).

4. Convergence and Existence

In this section we prove that the sequences (u"), (u™) of piecewise linear and
piecewise constant interpolations converge to a function u. We will show that u is the
uniquely determined solution of (2.2).
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First we list some auxiliary results. Let h = % and t;_1 <t <t;. Then

n n C
2" (¢ = k) =@ (B)ll, = [6ujll, o < —,

=N n C
[ (&) = w" (Ol < Nousll, h < —

t.
J C
") —u"(t < ou; dr < —. 4.1m
o) =T Olly < [ Wl dr < T2 (4.1
Writing hy, = %, N = %, ticin <t <tin, ti—1,m <t <tj, we conclude that

< Clhn A+ ho +[[a"(t = hn) = u"(O)lly + ™ (6) =u™ @Ol + [[u™(#) = 7" = hm)ll2)
< C (hn + hun + [u™ () — u™()],) - (4.2)

Using these tools we can prove:

Theorem 4.1.  There exists a function u € Wy(I*,W5', (Q)) with u, €
IP°(I*,I3(R2)), such that:

u" —u in C’(I*,VVQ%Q (), (4.3)
u™ — uin Wy (I, W', (), (4.4)
up — g in (I, I7(Q)), (4.5)
ul =% uy in L°(I*, I*(Q)). (4.7)

Proof. Let ti—1n <t <t;,, and tj_1,m <t < ;.. Inserting v = u"(t) —u™(t) into
(3.7") and (3.7™) and subtracting we obtain

((un N Um)t, u — um) + ai,n(un N umvun B um) _ (771 - 7m, ut — um)

— (@i (@™, 0" —u™) = ajm @™, u" —u™))

—ain @ —uut =) 4 a (@ =W U —u™). (4.8)
We have
Qi (" — W — ™) > Oy Ut —wm|Ey — Gt —um S, (49)
(?n—fm,u”—um) < C (b + h)? + C |lu™ —u™|3, (4.10)
la; n(@", u™ —u™) — ajm(@",u" —u™)|

< C(hn + hi) ||ﬂm||271,g [u™ — Um||2,1,g

< o+ ) e " — ™3, (411)

_ C
Jain @ " = ) < 2SS, e -
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consequently,
2
(" = ™)y u" —u™) +cflu —u™3

2 n m2 2 n| 2 m||2
< C (b + hon) + Clla™ = w3+ C (o + o) (31,4 + 1"13,1,4) -

Integrating this inequality over [0,t] we obtain
2 ! 2
[[u”(£) —u™ ()]l + C/O [u™(7) = u™(7)ll3,1,4 d7
t
< i+ )+ Ca [ [u7(r) = u" ()
0

and the application of Gronwall’s Lemma yields
[ (8) = ™ ()5 < CF (o + Tn)? €72 < C (i + hin)?,

consequently,

n m ¢ n m 1 1 2
Ju™(t) — u (t)||§+c/0 [u™(7) = u™(7)|[3,., dr < O (H n E) ,

It follows that (u™) is a Cauchy sequence in the Banach spaces C(I*,I*(Q2)) and

LA(I7, VV21,g (Q)) with limit «. This technique of proving convergence order 1 goes back
to Slodicka, [S1090].
From (4.8), (4.9), (4.10), (4.11) and

ain (@~ — ) < et 2

we get (4.3). It holds

(" = ™), (" = ™))

= (7" =77 " = ™)) = s (@ =" (" = ™))

— (@i (@™, (" = U™)2) = @ (T (0" = 0™),)).
By (2.7), (2.6), (3.4™), (3.6™), (3.6™) we obtain

[[(u" — Um)t”izu*,y((z))

-7
+C [ —a”|

n my |2
<C: ell(w”™ = u™)ellr2 1+ 1200y

1™ —u™)

P(I*,12(Q))

+ C (hn + hn) -

(I, W () I2(17 W ()

From this and (4.2), (4.1™), (4.1™), (4.3), (3.6™), (3.6™), we deduce that (u}') is a
Cauchy sequence in I?(I*, [*()) with limit v. By standard arguments we get v = uy,

hence (4.5). Since the sequence (u}') is bounded in the Hilbert space I*(I*, W', (Q))
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and the limit is unique, we get (4.6), thus, (4.4). From the uniqueness of the limit
and (3.5), we have (4.7). O

The last two lemmata show that u is a uniquely determined solution of (2.2).

Lemma 4.2. The function u satisfies (2.2).

Proof. We integrate (3.7™) over I'* and obtain

/* (uy,v) dt + / a™ (@, v)dt = /* (?n,v) dt Vn, Yve (I, VV;Q (Q)).

Taking account of

n 2 C
— (., ul.,. < B2+ @ (t) — u(t)||? dt < —
P = ety <€ 10 (ol at < 1

we have

/* (T"v“) dt === | (f(.t,u(.,t)),v) dt.

I*
Writing a™(@",v) = a"(@",v) — a™(u,v) + a"(u,v) — as(u,v) + a(u,v) and applying
the Theorem of Lebesgue and (4.3) we obtain the assertion. a

Lemma 4.3. There is at most one solution of (2.2) in L*(I*, Wy, (Q)) N
Wh(I*, [2(£2)).

Proof. Let u1, us be two solutions of (2.2). Setting w := u; — u2 and

o(t) = {w(t) Lt < to,

0 : otherwise

we conclude that
to

latto) 5+ Cr [ le)13,,

to 5 to 5
SC/ Hf('vt’ul('at))_f('7t7u2('at))||2 dt+C/ ||w(t)||2 dt

0 0

to

<Co [ lw dr

0

Gronwall’s Lemma implies ||w(to)|5 < 0eCot = 0. O
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