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Abstract

The goal of the present paper is to study fully nonlinear weakly hyperbolic
equations of second order with space— and time degeneracy. A local existence
result in Sobolev spaces under sharp Levi conditions of C* type is proved.
These Levi conditions and the behaviour of the nonlinearities determine the
required smoothness of the data and the loss of Sobolev regularity.
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Introduction

In this paper we want to study fully nonlinear weakly hyperbolic differential equa-
tions in one space dimension with time— and spatial degeneracy. We will prove a
local existence result in Sobolev spaces for the Cauchy problem

F (ugt, 0 (2) Nty 0(2)2 M) 2 gz, o ()N (8, ug, u, 0, 1) = 0, (0.1)
U,(.%',O) :@O(x)v Ut(.%',O) :901(1.)
We assume that this Cauchy problem is strictly hyperbolic if o(z) = 1 and A(t) = 1.
The functions o(x) and A(t) describe the degeneration, which occurs for o(z) = 0
(spatial degeneracy) and A(t) = 0 (time degeneracy). The first question is that for

classes of well-posedness with respect to x. If we restrict ourselves to Gevrey classes
of order < 2, then we can use ideas of [Kaj83] to prove a local existence result for

F(ug, o(z)A(t)ugt, U(:U)Q)\(t)2um, Ug, Ut, U, T, 1) = 0,
u(x70) = (,00($), ut(ma O) = 901(m)'

To overcome the critical order 2 we need so—called Levi conditions. In [RY96] a local
existence result in all Gevrey spaces could be proved under special assumptions for

uy — (a(x, t)uy), = f(z,t,u,uy)



where the nonlinear Levi condition of C'*°—type
OLf(x,t,u,p)| < Cx MEN" \/a(x,t) (0.3)

is satisfied for all [ > 1 and all compact sets K C R, x [0,7] x R, x R;,. There are
different results for local existence in C'° for special quasilinear weakly hyperbolic
model equations under quite different assumptions [D’A93], [DT95], [Man96]. But
in all these model equations the nonlinearities depend at most on u and u;. In the
case of spatial degeneracy (A'(t) and A(t) are absent in (0.1)), the C*°— and Gevrey
well posedness is proved in [DR]. What about results for local existence of Sobolev
solutions? In [Ner66] one can find one of the first results for the time degeneracy
case

g — MNt) gy — a(x, t)ug — bz, t)uy — c(z, t)u = f(z,t),
u(z,0) = @o(z), w(z,0) =¢1(z)

under the Levi condition

. la(z,t)|
lim su
H+0p N (t)

< g < oo.

The loss of regularity depends on ¢ and the Levi condition is sharp. Later weakly
hyperbolic Cauchy problems of the form

N N
u = (aig(@,0ug,), 4+ > b, )ug, + bo(z, tug + ez, tyu = f(a,t),
i,j=1 b=1

u(x70) = 900($)7 ut(xvo) = 901($)

were studied in [Ole70] under the Levi condition

N 2 N N
ct (Z bi(x7t)§i> <A a8+ 0 [ D aij(@ )€
=1 i,j=1 ij=1

In the case of time degeneracy this Levi condition is only sharp if we have a degen-
eracy of finite order (compare with the Levi condition of Nersesian). In [Rei96] it
was shown for the model problem

g — N2 Au= f(z,t,u,u, N (t)Vau),

U(IE,O) = 900($)7 Ut(CIT, O) = 901(3:)
how to prove the local existence of Sobolev solutions. The difficulty is to show
how to overcome the quasilinear structure with the loss of Sobolev regularity which

appears even in the linear theory. In [KY] a local existence result could be derived
for a general quasilinear weakly hyperbolic equation of higher order in the case



of time degeneracy. To prove local existence of Sobolev solutions we need C*°—
type Levi conditions. The special structure of the arguments in (0.1) ensures the
fulfilment of these conditions. There are other ways to describe Levi conditions.
The investigations in this paper serve as a preparation for further studies which will
be devoted to the question for global existence. As usual, in those Cauchy problems
the function F' depends only on the solution and some of its derivatives. In this case
it is necessary to use the functions ¢ and A to formulate the C'*°~Levi conditions.
The study of a model equation

uy — o ()2 A1) Auw = f(Vyu)
under the assumption
0pf (p)| < Co(x)N'(t)

(similar to (0.3)) leads to spaces of solutions with asymptotics, which seem to be
extremely difficult to handle.
The aim of this paper is to prove

Theorem 0.1 We suppose:

A 1 The function F(ui1, o0 uia, 02X2uag, o N ug, uy, u, z,t) is defined on the set M x
P x I, where M is an open set in RS, P C R is a compact interval and
I=10,T].

A 2 The functions F', o, ¢, @1 are P—periodic in x.

A 3 The function A € C3([0,T)) fulfils the conditions

A0)=X(0)=0, At)>0, N(#)>0 (t>0). (0.4)

A 4 It is assumed that o € HY.F2(P), oo € HYFY(P), p1 € HY (P), where N > 5

per per per

and HY, (P) denotes the functions from HY (R) which are P-periodic.

per

A 5 The derivatives F,,,,...F; belong to C*([0,T], C®(R%) x HY (P)).

per

A 6 With a suitable constant « it holds |Fy,,| > a >0 on M x P x I.

AT Let on M x P x I be

Fo)\ulg )2 FO'Q)\QU
Zodwz ) _ TNz g
< F, u11

U1l

From condition A 6 we conclude that the set in M x P x I which is given by F =0
can be represented in the form

242 !
uil = G(O’)\U12,0' A U,QQ,O')\ uz,ul,u,m,t).



4 1 EVOLUTION OPERATORS AND ENERGY ESTIMATES

A 8 Let pa(x) be the function which is defined by
p2(x) = G(0,0,0,91(x), po(z),z,0).
We assume that the set
K = {(¢2(2),0,0,0,1(z), po(2),2,0) : © € P}
is contained in M x P x {0}.

Then there exist constants r € N and T* € (0,T] such that the Cauchy prob-
lem (0.1), (0.2) has a solution u,

u, ug, o Mg € C* ([0,T], H)Y"(P))
if N—r > 5. The constant r describes the loss of Sobolev reqularity and may depend

on N. One can show that N —r > 5 for sufficiently large N. This guarantees the
existence of a solution for large N.

For the convenience of the reader we give an overview of this paper: In the first
section we provide some tools which will be used in later sections. The second and
third section deal with problems which have no time degeneracy, whereas the fourth
and fifth section include this degeneration.

We study linear equations in Section 2. At first we derive energy estimates. The
existence of the solution is proved by applying a smoothing technique and the ab-
stract Theorem of Cauchy—Kowalewskaja. We can prove convergence of a suitable
sequence of solutions by our energy estimates.

Quasilinear equations are studied in Section 3. We prove the existence of a solution
by linearization and standard iteration. The convergence of this sequence is again
shown by energy estimates. Although we consider only scalar equations it is obvious
that similar results can be proved for quasilinear systems with diagonal principal
part.

In Section 4 we consider quasilinear equations with both degeneracies. We approx-
imate the problem by problems without time degeneracy and apply the results of
Section 3.

We show how one can reduce fully nonlinear equations to a quasilinear system with
diagonal principal part in Section 5.

In Section 6 we study some examples. We can show that the loss of Sobolev regularity
predicted in Section 4 occurs, indeed. Additionally we give some remarks which are
of independent interest.

1 Evolution Operators and Energy Estimates

In this section we assemble some tools which we need in later proofs.



We define the partial energies

ei()(0) = ( | (@huto. 1) ds

and the energies of finite order

SIS

=Y i)
j=0

It is worth to remark that En(u)(t) = ||u(t)|| g~ p)- These energies have the prop-
erties

En(uv)(t) < Cproa, NEN(u)(t)En(v)(t), N >1,
Eo(uv)(t) < Cprod,0f1 (u)(t)Eo(v)(t),

)
10:u(@, )| < Cpea(u)(t), u € Hp(P).
2

per

(
reC <[0 1), HY (P))

per

fec(jo,1), HY - 1(P))nL ([0,T), HY.(P)) .

per per

)

Let u(z,t) be a solution of

up(x,t) — Nz, tug(x,t) = f(x,t), (z, ) e P x [0,7).

(a) Ifue L® ([0,T), HYTH(P)) and uy € L ([0,T), HY,(P)), then
En(u)'(t) < OnEn(u)(t) + En(f)(1). (1.1)

(b) Ifue L ([0,T], HY.(P)) and u; € L ([0, T], HY-*(P)), then
Ey-1(u)(t) < Cn—1En—1(u)(t) + En-1(f)(t) (1.2)

and if 0 <tog <t <T, then it holds
t
En(u)(t) < En(u)(to)eCytto) 4 / ENENIEN(f) () dr.  (1.3)
to

The constants Cy, depend on HAHC([O 1 Hmax(Q,n)(P)>.
s 4 |, M per

Proof of (a) Let 0 < j < N. Then it holds

ej(u)(t)ej(u)'(t) = / (8u) (Oluy) do = / (02u) 09 (f + Muy) da

P P

<ej(u)(t)e;(f)(t) + : ((%u) A (agﬂu) dx
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The second integral of the right—hand side can be estimated after partial integration
by Azl €j(u)? < ClM v ) ej(u)?. We get for n = j in the last integral the
inequality

/P (04u) (92A) (Oww) da < ej(w) [\ s (py ltalloo < C 1N 113 (p) €5 (w)ea(w),

and forn <j—1

] (@) @23) (071 0) e < @) A - )
<c HAHHN/(P) ej(u)ej—ni1(w).

Summation (j =0,...,N) yields the assertion.
Proof of (b) It remains to prove the estimate (1.3). We approximate

HN (P
Wper (P) 3 0" (tg) -2, (),

C([O’T]’leer(P)) Bfn Ll([O,TLHI])\;r(P)) f’

C([O,T],Hgve’r(P))

C ([0, T7,Aper (P)) 2 A" A

Here we denote by per(P) the space of functions which are analytic and P—periodic.
Lemma 4.1 from [DR] shows that there exists a solution u™ € C ([to, T, 2per(P))
of

uy — AN"ul = f".

By Gronwall’s Lemma and (a) we obtain for every n

By (u")(t) < By (u)(to)eO¥ =) 1 / O B (£ (r) dr

to

From (a) and
(w=u")s = Mu—u")p = f = f" = (A" = Nuj;

x
we conclude that [[u" — ul| yn-1(p) — 0.
Furthermore, there exists a constant C' with [[u”(t)|| gx(p) < C for all n,t. We fix

t > to. There exists a subsequence u!'(t) weakly converging in HZ (P) to some

function w(t). The uniqueness of the limit yields u(t) = w(t). Hence

En(u)(t) < liminf En(u")(t)

n—0o0

t
< lim inf (EN(u”)(to)eCN(tto) +/ N BN () (1) dT) .

n—oo tO

From this and the approximations we have (1.3). H



We will use these results to estimate the solutions of the weakly hyperbolic Cauchy
problem

uge (2, 1) + o (2)b(w, uge (2, 1) — o (x)al(z, t)ug (2, 1) = f(z,1), (1.4)
u(z,0) = ug(z), wu(z,0)=ui(z),
b2 (x,t) + 4a(x,t) > v >0, (x,t)€ P x[0,T]. (1.6)

We factorize the differential operator:

la(z,t) = 0(x)Bra(z, t) = %J(x) (—b(:n,t) + /02 (z, 1) + 4a(x,t)) ,

01,2 1= 0y — l1,2(, )0y,

OOt = ugy + Obugy — 0 atgy + (Ilog — log) s
and define the energy
En(u)(t) := En(u)(t) + En(01u)(t) + En(dou)(t).
Hence we obtain

(8182 + A1(61 — 32)) u = f, (1.7)
(0201 + Ag(Da — 01))u = f,

hilag — 1 loly — 1
A (1) = T22 2 ;1’ — z;’t’ Ag(z,t) = 221t 111’ — l;vt.

This factorization is the essential idea of the proof of the following

Proposition 1.2 We assume with N > 2

o€ HY,(P), (1.9)
a,be C* ([0,T),Hp,(P)), (1.10)
fec(0,1],HY.(P)). (1.11)

Let u be a solution of (1.4) with u,d1u,dyu € C ([0,T], H)L(P)).
(a) If 0 < M < N —1, then
Em(u)(t) < (1.12)

t
< eD]M(t*tO) <5M(u) (to)ecM(tito) + 2/ ecM(tiT)EM(f)(T) d7_> :

to

(b) If we assume additionally oa,ob € C ([0,T], HNY'(P)) and o € HY(P),

per per

then the estimate (1.12) holds for M = N, too.

The constants Dy, Car depend on

EM/(A]), ||lj||C([O,T],HM/(P)) , j = ]_,2, M' = maX(M, 2)

per
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Proof The assumptions guarantee A; € C ([0,7], H)7*(P)). The application of
Proposition 1.1 to

818211, = f — A1(61 — 82)21
shows that

En(0ou)(t) <Eap(dqu)(to)eCMt—to) 4 / " Ot En(f — A1(01 — Oo)u)(7) dr.

We can derive a similar estimate for Ejs(01u)(t). Furthermore,

Epr(u)(t) < Epr(u) (o)™t t0>+/t Or (=) By r(0yu) (1) dr.

to

We have
v (Ai0ju) < ChrEny (Ai)Er(Oju),

hence

Enr(u)(t) <Enr(u)(to)e®=10) 42 / t eCM D By (F)(r) dr

to

t
+ / M=) g (u)(7) dr.

to

By Gronwall’s Lemma, it follows (1.12).
To prove (b), we only note that A; € C ([0,T], HY.(P)). B

per
Remark 1.1 We can prove a similar result for systems
Wi gt (x, t) + obu; g4 (z, t) — azaui,m(x,t) = fi(z,t), i=1,...,n

and the energy Epr(Q)(t) = > 0y Enm(wi)(t). This is possible since the system has
diagonal structure.

The next lemma will be needed in Section 4. We define the energy

N ‘ , ' , 1 N
Fn(u)(t) == Pu(x,t)|” + |Hu(z,t)|"de ] =» fi(t)
= ([l e ) =

Lemma 1.1 Let u € C*([0,T], H}.(P)) be a solution of the following ordinary

per
differential equation with parameter

ug + hy(x, t)ug + ho(z, t)u = g(z,t),
where hy, ho, g € L™ ([0 T, Hé\ér(P))
Then it holds

Fv(@(0) < Fy(0 + [ T B () (r) dr



Proof From the inequalities

F @500 = [ ((020) (040) + ©2e) (041 do
< HOP + [ (@) (0h 9= b = o) da
< £ (02 + £ (f(9)(0) + CFx()(®) (Fy () (8) + Fy(ha) (1))
we deduce that
Fn(w)(t) < En(o)(t) + (1+C (Bx(ln)(®) + Ex(h2)(5)) Fx (u)(®).

Gronwall’s Inequality implies the assertion. l
We will need the following generalization of the well-known Gronwall’s Lemma.

Lemma 1.2 (Nersesjan) Let y(t) € C([0,7]) N CL(0,T) be a solution of the dif-
ferential inequality

y(t) <K@yt + f(), 0<t<T,

where the functions K (t) and f(t) belong to C(0,T). We assume for everyt € (0,T)
and every ¢ € (0,t)

/OéK(T)dT:oo, /6TK(7-)dT< %,

6—+0

Jim y(8) exp ( / tK(T) d7> = 0.

y(t) < /Otexp </:K(T) dT> £(s) ds.

2 Existence Results for Linear Equations with Spatial
Degeneracy

t t
lim exp </ K (1) dT) f(s)ds exists,
0 s

Then it holds

Lemma 2.1 We assume N >3, (1.6), (1.9), (1.10), (1.11) and

ug € HNFY(P), wy € HY

per per

(P). (2.1)

Then the weakly hyperbolic Cauchy problem (1.4), (1.5) has a uniquely deter-
mined solution w € C'([0,T], HY-*(P)) with 0;u € C([0,T],HY *(P)) and
uy € C ([0, T), HY 72(P)).

per
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Proof We approximate

cH([0,1),HY,(P))

C* ([0, 7], Aper (P)) 3 a™, b"

HY (P
Aper(P) 2 0™ HoeD), o,

a,b,

, C0T),HN.(P))

C([O»T]amper(P)) > f T 1

HYGH(P)
Aper (P) 2 uy 2T 5w,

HJ(P)
leer(P) > u’f — Uj.
From Theorem 4.1 of [DR] we deduce that the Cauchy problem

U + 00 gy — (0”)2um = (2.2)

u(z,0) = ug(z), w(x,0) = uy(z)

n

y: and

has a solution u” € C?([0,T],Aper(P)). The norms

c([o,T],HY,(P))
|

are uniformly bounded with respect to n. The Proposition 1.2
C([0,11,HY 1 (P)) Y P P

gives
Env_1(u™)(t) <C, Vn,t. (2.3)
We show that (u™) is a Cauchy—sequence in suitable Banach spaces. Obviously,
(un . um)tt + O,nbn(un . um)xt . (O_n)2an(un _ um)xx
=fr—=f" = (™" — ™" uly + (o"a" — o™a™) ul. (2.4)

Without loss of generality we may assume that
1 1
la™ —al <=, ..., uf —w] < —.
n n

From this it follows that we can estimate the L?(P)-Norm of the right-hand side
of (2.4) by C(% + 1), Here we used N > 3 and the uniform estimates (2.3).
Proposition 1.2 leads to

n m

1 1
Ey(u" —u™)(t) < C <— + —) . (2.5)
Nirenberg-Gagliardo interpolation and (2.3), (2.5) imply

11\’
EN ™) <O -+ — 0<6<1.
Nop(u" —u)(t) < <n+m>’ <0<
Consequently, there exists a function w € C ([0,T], HY?(P)) with dju €

C ([0, 7], HY7*(P)) and "

per

C([0,7),He > (P))

(u", O u", Oy'u")

(u, ru, Oau).
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It is easy to show that u is a solution of (1.4), (1.5).
Now we show the better regularity of u. We fix ¢o € [0, 7. From [[u"(to)|| yn—1(p) <

C' we gain the existence of a subsequence uf (o) with uf (t9) — wy, in HIJJ\ér_l(P). The

embedding of the dual spaces (H.\.-2(P)) C (HYN-1(P))" is continuous and dense,

per per
hence uf(to) — wy, in HY72(P). On the other hand, we have u™(tg) — u(tg) in

Hé\é; 2(P). This yields the weak convergence of the whole sequence and wy, = u(to),

hence u € L™ ([O, T], HN ! (P)) (we do not study the question whether u is Bochner—

per
measurable). Similar arguments apply to 0ju. It follows that

u(t) — u(to), 8ju(t) — 8ju(t0) in HNfl(P), t — tp.

per

We consider the evolution equation
D10ou = f — A1(8) — By)u =: f.

The right-hand side belongs to L ([0, 7], H[7*(P)) n C ([0,T], HY7*(P)), and

the ”solution” dyu of d1v = f belongs to L™ ([0,7], HY7H(P)), hence (dau); €
I ([0, 7], HY72(P)). Proposition 1.1 now shows that

per
En_1(8u)(t) <En_1(dou)(ty)eCN-1—t0)

t
+/ NN By (f — AL(8) — Do)u)(7)dr.

to
This gives
lim sup EN_l(agu)(t) S EN_l(agu)(tQ) S lim inf EN_l(Bgu)(t),
t—to+0 t—to
and, in consequence, lim¢ ;1o [|O2u(t)|grv-1py = [102u(to)l| gv-1(p). It follows
that Oyu(t) is HIJJ\ér_l(P)fcontinuous from the right. Changing the time direc-

tion gives continuity from the left. By the proof of Lemma 3.1 we have u; €
C ([0, 7], HYF(P)). m

per
The following proposition sharpens this result.

Proposition 2.1 Let the assumptions of the previous lemma be satisfied. Addition-
ally, we suppose

o€ Hy ' (P),
oa,ab € C ([0,T], HYFH(P)). (2.7)

Then the solution u of (1.4), (1.5) satisfies
uwe C([0,T], HY.(P)) nC? ([0, 7], H}H(P)),

dju e C ([0,T],HY.(P)).

per
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Proof Let h. be a Friedrichs Mollifier with support [—&, ] and define a.(z,t) :=
(a(.,t) * he())(x), be(z,t) := (b(.,t) * he(.))(x). Then we have

ci([o,1,HN, (P
g, be ([ Hfpert )) a,b

and
||O-a5HC([O,T},HN+1(P)) s ||Jb5||C([O,T],HN+1(P)) <C Ve>0,

per per

see Lemma A.2. It follows that

125

JHc([o,T],HéVJl(P)) <0, HAjuc([o,T],Hg)gr(P)) <C

for all e > 0. We set uf := ug * he, uj := uy * he, f© := f * h. and consider the
Cauchy problem

Ut + Ty — Uzasumm = fe’
u(r,0) = ug(x), wu(z,0) = ui(x).

From the previous lemma we know that there exists a solution u® €
C* ([0, T], Hpe,(P)) with d5u® € C ([0, T], Hpe,(P)). We have

Ex(u)(t) <C Ve>0.

The same arguments as in the previous lemma give strong convergence of u,d;u in
HN-1(P), weak convergence in HY, (P) and regularity of the limit. H

per per

Remark 2.1 These results can be generalized to systems, see Remark 1.1.

3 Quasilinear Weakly Hyperbolic Equations with Spa-
tial Degeneracy

We study the Cauchy problem (1.5),
ug 4 o (2)b(z, t, u)ug — o2 (x)a(z, t, u)uee = f(2,t,u, us, o(2)uy) (3.1)

under the assumptions N > 3, (1.6), (2.6), (2.1) and

a,b,€ C* ([0,T], CN*(Ky)) | (3.2)
fec(o,T1),CN(Kp), (3.3)
a, b, f are P—periodic with respect to z, 3.4

with
K5 :={(z,v) e R®: 3z € P,jv —up(x)| <6},
Kj :={(z,v1,v2,v3) € R*: (z,01) € K5, |va — w1 ()| <6,
lvg — o (x)uo ()] < 0}
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To simplify notation we define

S(T*) :=={v e C* ([0,T*], H}.(P)) : ovy € C ([0,T*], H).(P)),

('T’ U(:E, t)a ’Ut($, t)v O'(I‘)’Ux($, t)) € K(IS V(.’E, t) € P x [Oa T*],
v fulfils the initial conditions (1.5) }.

The aim of this section is to prove the

Theorem 3.1 We assume (1.6), (2.6), (2.1), (3.2)- (3.4) and N > 3.
Then there exists a T*, 0 < T* < T, such that (3.1), (1.5) has a solution u € S(T*).
This solution is unique in the set of P—periodic functions.

The uniqueness follows from Hadamard’s Formula and the energy estimate (1.12).
We consider the linearized problem

L(U)u = f(v)7
L) = 8y 4 ob(x, t,0)0y — 02a(x,t,0)0ps,
f(v) = f(.’ﬁ, t’ U(LE, t)a Ut(x’ t)? O-(:C)Um(x, t))

with initial data ug,u; and study the mapping v — wu.
The following, rather technical, lemma provides the equivalence between some
norms.

Lemma 3.1 Write

SN ()(@) := lo@| g py + 0O v (py + llove (O] g py -

Let h € S(T) and En(h)(t) < D for all t. Then there exists a constant Cgn =
Cs.N(D) such that

G SN < EY 0)(1) < CsnSn()(t) o € S(T).
S,N
Here we used the notation
eV (0)(t) = Ex(v)(t) + En(8{"0)(t) + En(8"0) (1),
O (v) = (8 — L, t, h(z,1))d) v,

A proof can be found in the appendix.

Proposition 3.1 There exist constants C*, 0 < T* < T, such that:
If v e S(T*) and 51(\}))(1)) < C*, then there exists a solution of (3.1), (1.5) with
ue S(T*) and Sﬁ)(u) < C*.
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Proof We set C* = 281(\70+tu1)(u0 +tuy)(t = 0). From v € S(T*) we get

a(z,t,v(z,t)), bzt v(z,t) € CH([0,T*], HY.(P)),

per

U(m)%a(m,t,v(x,t)), J(z)dib(x,t,v(x,t)) eC ([O,T*],HN (P)),

- per

fw €C(10,7%], HY.(P))

per

and
@) <
|47 @0y < Canlivl el el (S () 1) 1),
(v) <
|57 0] 1y < Conllvlog Nl s lovallo)(Sn () 0) + 1)

£ @O v py < Crv(vllae s vl s lovalloe ) (Sn(0)(B) + 1),

see Lemma A.1. The norms ||v| ., [|vt|lo, [[0V2] are bounded, since v € S(T).
Therefore we may assume that Cy n, Cj N, Cf n are constants depending on ¢ and

[uolloos 1urlloes llowo.e -
Proposition 2.1 guarantees a solution uw € C'([0,T*], HJ (P)) with d0ju €
C ([0, T*], HYL.(P)).

per

We next show that 5](\1,)) (u)(t) < 2C*if t < T* and T* is sufficiently small. We have

eV (u)(t) < Pt (a@ () (0)e“t + 2 /0 N En(fi)(7) dT> :

where Dy, Cy depend only on Cy n, C; n and C*. We deduce that
(v) Dn+C 1 ! 2
EN(u)(t) < ePNFONE (50* + 2/ Crn(CsC™ + 1)dT> <3C
0
it T* is sufficiently small. From E?EU) (u) < 2C* we conclude that

2 *

hence 9
leitloe < (Il 10l + 91% Nall o) 5C°C + [l fil < .

The result is

lu(z,t) —up(x)| <tC, |uy(z,t) —uy(z)| < tC,
lo(z)ug(z,t) — o(x)up 4 (x)| < tC.

It follows that w € S(T*) if T* is sufficiently small.
It remains to show that 5](\7;) (u) < C*. Therefore we prove that

14 (st v(, 1)) — (st ule, O)uel v ) < éC*- (3.5)



15

We denote the left-hand side of (3.5) by ¢;(x,t) and have
5(2,8) < Coro (@, )l g oy ltall v
2 *
< 3Crod NCOsC [lag (@, D)l v py »

where aj(z,t) = Bj(z,t,v(z,1)) — B(w,t,u(z,1).  From dylla(,t)|yrp) =
”at('vt)HHN(P)7 CM(.Z',O) =0,

ar(x,t) =6z, t,v(x,t) — Bz, t,u(x, b))
+ Bjo(x, tv(x,t)v (2, t) — Bz, t,ulz, t))u(x, t)

and [|vel| v pys [[uell g py < CsC* we obtain

t
e )l gy < /O lor ) Loy dr < Ct.

Thus we have (3.5). B

From this lemma it may be concluded that there exists a sequence (u™) C S(T*)
with

nfl) n

L(u u = f(un—l).

Lemma 3.2 The sequences (u"), (uy), (oul) are Cauchy sequences in the space
C ([0, T*), HY-Y(P)) if T* is sufficiently small.

per

Proof It holds

L (g — ) = Frun—ty = Fum + <L(u") _ L(un—1)> ey

Using Hadamard’s Formula one can estimate the L?(P)-norm of the right-hand side
by C'So(u™ — u™~1)(t). It follows that

nfl)

Eo(u (u™ —u™h(t) < O’ /Ot So(u™ — u" ) (7) dr.

Hence we obtain

So(u™ —u (1) < C"'T* So(u™ — u(t).
hax o(u" —u"T)(t) < B o(u™ —u""7)(t)

We apply the Interpolation Theorem of Gagliardo—Nirenberg and the proof is com-
plete. W
Consequently, there exists a limit v € C ([0,7*], H) ' (P)) with dju €

per

C ([0,T*), HY.7Y(P)). It is immediate that u is a solution. The boundedness in

per

HY (P) implies

per

u (1) = ul,t), up(,t) = w(,t), oul(.,t) — ougl(.,t)

T
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in H.(P). This clearly forces u,u;,0ju € L®([0,T*], HY.(P)), even u €

per per
C ([0,77], Hé\ér(P)). It remains to prove that 9;u € C ([0,T7], Hé\";r( )). We have

MM u = fry — ALY (a“” — o ) w=:f.

The right-hand side belongs to L ([0,7*], HA,.(P)) N C ([0,T*], HY7*(P)), the
”solution” a(“)u of 8§u)v = f belongs to L™ (10,7*], HY(P)) and we have l( )( t) €
C ([0,77], HIJJ\‘;(P)). Hence we can apply Proposition 1.1 and obtain

En(05u)(t) <En (05" u)(t)eN —t0)
t
+ eONU=T) By <f(u) - Agu) (af“’ - aé“’) u) (1) dr.

to

This gives

lim sup EN(Béu)u)(t) < En(95u)(tp) < liminf EN(Béu)u)(t),
t—to+0 t—to

which implies the H[} (P)-continuity from the right of 8§u)

direction completes the proof of Theorem 3.1.

u. Changing the time

Remark 3.1 One can prove a similar result for the system

Ui + o()b(z, t, 0)u; ot — 0'2(33)&(1‘, b, W)U g
:f(l',t,ﬁ,ﬁt,O'(fE)ﬁm), ’L.Zl,...,’I’L
i(x,0) = tp(x), U(x,0)=t(z),

if one uses the energy

W) - Ze

4 Quasilinear Weakly Hyperbolic Equations with
Time— and Spatial Degeneracy

In this section we will derive an existence result for the quasilinear Cauchy problem
with spatial- and time-degeneracy (1.5),

u(x,t) + AN(t)o(z)b(x, t, u(z, t))ug (z,t) (4.1)
= At)?o(x)a(z, t, u(z, 1) Jugs (w, 1)

(z,t, u(z,t
= f(z,t,u(z,t), ue(z, ), X (t)o (2)ua (2,1)).

Let A(t) € C1([0,T]) be a function satisfying (0.4).
The aim of this section is to prove the

(z
(t
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Theorem 4.1 We suppose (2.1) and

bQ(x,t,u) +4da(z,t,u) >v>0 (z,t,u) € Ks, (4.2)
o€ H P (P), (4.3)
a,be C' ([0,T],C®(Ry) x HY.(P)), (4.4)
oa,ab € C ([0,T],C®(R,) x H).TH (P)), (4.5)
FeC(0,T],C®RS u, xou,) X Hper(P)) - (4.6)

Then there exist constants T* > 0 and r € N, such that: If
N >r+3, (4.7)

then there ezists a solution u with u,us, ouy, € C ([0,T7], Hé\gr "(P)). The number r

describes the loss of Sobolev regqularity and may depend on N. If N is sufficiently
large, then (4.7) holds.

We divide the proof into three steps. At first we present a special technique to
transform the quasilinear problem to another problem whose right—hand side has
a suitable asymptotic. Then we consider linear weakly hyperbolic problems with
special right—hand side and show an existence result and an a priori estimate. After
that we study a linearized version of the new quasilinear problem and construct a
mapping of functions. Using the results of the second step we construct a sequence
of such functions and prove the convergence to a solution.

4.1 The Reduction Process

Let u be a solution of (4.1), (1.5). We study the system of ordinary differential
equations with parameter z

ufy (2,8) = £ (2.t,00(2.8), 0" (2.1),0)

ulf @, 1) = gi (1,0 (2,0), 0 (2,1)) =
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i i—1
x,t ZU(J x t),ZuE NS uld) (z,1)
j=0 §=0
i—1 i—2
—f x,t,Zuj) x,t ,Zugj)(m t), (x))\'(t)Zu(])(x,t)
Jj=0 Jj=0
i—1 -2
—Mt)o(x)bi—1(x,t Zu( (x,t) + A(t)o(z )bi_g(x,t)Zuxﬁ)(x,t)
§=0 §=0
i-1 i-2
+A0)20(2) a1 (2, )Y ul)(x,t) = Ao (x)ai_o(z, 1)y uld)(z,1),
§=0 j=0
-1
i=1,....,p, N —2p>3, Z:o.
§=0
with the initial data
u@(x,0) = ug(), uf”(2,0) = us(x),
u (z,0) = uy) (x,0) = 0.
Here we used the notation
k .
br(x,t) =b x,t,Zu(J)(m,t) yag(x,t) ﬂ:,t,Zu
j=0

This system may be interpreted as a system of weakly hyperbolic equations with
spatial degeneracy, whose degenerating function vanishes identically. Theorem 3.1
implies, that these equations have solutions u() € C? ([0, T3], HY.72(P)) with

per
‘ O (2, ) — ug(x ‘—i—‘ut ,t)—ul(x)‘

+ o (2)ul® (z,t) — o(z)uo, x(m)‘ < o,

‘u(i)(

‘(th‘—i-‘ o(z)u )(xt)‘ggi (i >1).

Furthermore, there are constants C; with Hu < ;.

HC2 [0,T;], HY % (P))
We want to show the following

Lemma 4.1 It holds
Fy_a; <u<l>) () < AL

Proof The assertion is true for ¢ = 0.
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Let Fy_o(i—1) (u(iﬂ)) (t) < Ci_1A\(t)""1. We want to apply Lemma 1.1 and for this

purpose we study the right-hand side g;: From Hadamard’s Formula we see that
gi(,tu® u?) =fri(e, )u® + i, tyul” + o (@)X (8) i, tyuli Y

+ o (@)A )b (2, t)uly ) + o (@) A(E)ba (xr, Hyul ™D

o)A 0. ully Y + o (@)’ A0 ez, 1ul V.

Hence we obtain

Fy-ai (“(i)) H=c /Ot X() H“(H)(T)HHN+1 gpy T T ‘ “(Tlfl)(T)HHNH—%(P)
) Hu“%HHM(P) SR Ul

< C/ VYL XA T M)A () T dr

<CAP). .

We define u =: Z?:O uY) + v and

k k
br(z,t,v) =b (m,t,Zu(j) —i—v) , ag(z,t,v) =a (x,t,Zu(j) —i—v) )
J=0 j=0

From (4.1) we see that

vi + Ao (2)by (2, t,0)vee — M) 20 (2)2ap (2, t,0) Ve

f(thu(] + v, Zut + v, N (t) (Zu(] +U;p)>
P P ) -1
— 2t > dD 3w N(t)o(x) 3 ud)
§=0 §=0

—At)o (x,t,v) Zu bp—1(z,t,0) Zuwt

I
—

p p
+A(t)2o(x)?ay(x, t,v) Zugﬁjﬂﬁ) —Mt)2%0(x)%ap_1(2,t,0) ) uld)
Jj=0 j

<
Il
o

— Byt 0,00 N (Do (2)0).
The purpose for these considerations is the following
Proposition 4.1 It holds
|’Fp(x7t70’070)HHN—2—217(P) < CA(1)P.
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Proof We write Fj,(x,t,0,0,0) = Dy 4+ Dy + D3, with

P p P p p p-l
:f(xvtaZ’Z’Z)_f(x7tvz’z’2)a

D p—1
Dy = =Aoby(2,£,0)) . at + Aobp_1(2,£,0) .. )
p p—1

D5 = )\202ap(x,t,0)(z co )z — )\202ap_1($,t,0)(z R P

From Hadamard’s Formula, Lemma 4.1 and

p—1
Dy = —Aoby(x,t,0)ul) — Ao (bp(w,£,0) — by—1(z,t,0)(Y_ .. Jar,
(r—1)

Dy = No?ap(x,t,0)ulf) + N0 (ap(2,t,0) — ap-1(z,£,0)( D . Jaw

one has the assertion. W

4.2 Linear Theory for equations with special right—hand side

Now we are able to derive an existence result and an a priori estimate for linear
equations with spatial- and time—degeneracy.

Proposition 4.2 Let \(t) € C([0,T]) be a function satisfying (0.4). We assume
N >3, (1.6), (4.3), (1.10), (2.7)

/
v € € C (0,7, H,,(P)),
d>Q:= sup b(z,1)
(@.)ePx(0,1] | /D2 (2, t) + da(z, t)

Then there exists a solution u of

ug + o (2)NE)b(x, ) ugs — o2 ()N (H)a(z, t)uge = f(z,1), (4.8)
u(z,0) = u(z,0) =0 (4.9)

with w € C*([0,T], HY,(P)) and A\~%u,ou, € C ([0,T], H),(P)). The following
estimates hold:

(®)
()

Enlu)(t) <2 CN<”< ) (),

Enr(u) (1) < <0M+Q )5M< )(6) + 2B (1), M =0,... N1,
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where Q < Q' < d. The constants Cy; depend on

||l.7 HC([O,T],H;Z?X(ZNI) (P)) )

1]

HaHCl([O,T],Hpnéix(l’M)(PD ) o1l ([O,T],HPHSXO’M)(PD )

”"C‘”CHC([O,TLH;?‘;*“’M)(P)) ’ ”"b’””0([0,T1,H£;?X<1’M>(P)) '
Proof We approximate

c([0,1),HY,.(P))

¢t ([0, 1), HYFA(P))  ac,b. o, b,
(0 HY(P)  f
C([OaT]aHIJJ\é;J—l(P)) = fe : Ad—1)’

such that

Ho'ae,x”HN(P) s Ho'ba,xHHN(p) <C, bg +4a. > % vV 0<e<e,

see Lemma A.2. We set b, := b-(\ +¢), @ := a-(\ + €)? and obtain Bg + 4a. >
%527 > (0. Due to Proposition 2.1 there exists a solution u® of
ug + Ugeuit - 02&6“2:): = Adil)‘lfs,

u®(z,0) = ui(x,0) =0

with v®,uf, ous € C ([0,T], HY 1 (P)). It follows that

per

9 = 0, — 5w, 1),

[ o(,1) = 5o @A) + &) (b, 1) + V32, 0) + dac(z, )
(005 + A3 (07 — 08)) u® = XV,

N(t
Ai(.%',t) = 6176(.%',{;) -+ W(_F)gczg(x,t),
—b.+ S b: + S,
cre = — o (0(=be = 82))a(M(t) +) + (275%
€ €
be + S
C2e = Ta
1>

with S = /b2 + 4a.. We have

1570275 € Cl ([07T]7HN+2(P)) 9 Cle € C ([OvT]aHNJrl(P))

per per

and

155

JHC’l([O,T],Hé\gr(P)) Nevelloqormy, ) s lezellor(ormy,. ) <€ Ve
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Now we can derive estimates for u°. Obviously,
FFo5u" = N — A5 (95 - 05) .

where the right-hand side belongs to C ([0,7], H)(P)) and the solution d5u

per

belongs to C ([0, 7], H),F(P)). From Proposition 1.1 we get for 0 < M < N

per
M (050 (1) < Ong By (950°) (1) + Bas (NN Fo — A5 (5 — 35) ) (1)
We estimate the second energy on the right:

02" (A5 (05 — 05) ),

N(t
<108 (c1. (05 = 090w, + 57y o a0 (05 — 35) o
M—1 "
-0 X s e e e ol @5 -5y,
.. N(t + ¢’ -
< O 0)0) + 5o o g ([0 0, + o2 @50,
)\/(t) 15 15 €
+C}\(t) s 101 — 03) w’[| gas—1py
c e N(it) Q+
< CER )0 + 5o T (08 35, + 02 @),

The result is

3 (D5 (1) <Car€5(95u°) (1) + X N Ew () (1)

Q+e N(t) .

HEC Y7y g wr (w)(®)-

We can prove a similar inequality for Eps(05u®)(¢), if we use
0507u" = NN . — A5 (0] — 05)

We have to replace c. = b5+55 by bs Sf. By standard technique one shows an

estimate for Eyr(u)'(t). Comblnlng these inequalities we obtain
Exr(u)'(t)
< Oy () (8) + 20 LN (1) Ear (f)(8) + (Q + ¢

N(t)
/ 56
))\(t) +e M
We may assume that &g is so small that Q +¢' < Q' < d for 0 < ¢ < gg. We want

to apply the Lemma of Nersesjan. Before we can do this, we have to check whether
ES,(uf)(t) < CoA(t)4. Therefore, we apply Gronwall’s Lemma to

8,0 (1) < S &) 1) + ONT N ()

(u”)(®)-
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and get
t
£5,(uF) (1) < g e S \=1 () (1)dr < CLA(E)C. (4.10)
0

So we can apply Nersesjan’s Lemma with

y(t) = E()(0),  K(1):=Q ilétt)) +Cur, = 2 ON () B () (1)
and deduce that
Epr(u)(t) (411)
t )\(t) v M(t—T — / ~
< 2/0 (W) O =) I () () B () (P < O

This inequality holds for all € in contradistinction to (4.10). We conclude
[ @Ol v py + g O v py + [(AR) + e)ouz (O gy py < CA(t)?,
hence
1@l ) + 16O Loy + [ + )T (O] o ) < CARY

for 0 < &’ < ¢, which implies 5 (u®)(t) < CA(t)%.
We next claim that the sequence (u®) converges in suitable Sobolev spaces. By
definition of u®,

Lz’;‘uE — )‘d_l)\,f57
L (uel — u'g) = XLy (fg/ — f5> + (L6 - L‘f,) u® =: ge o (2, 1).

From [[ugyllgnv-1p) < CA(t)? and ugallgn—2(p) < CA(t)? we deduce that
| ge.e HN-2(p) < CA(t)? + CX(t)¥= 1N (t). Without loss of generality we obtain
for 0 < &’ < ¢ the estimate £5_,(u® — u®)(t) < C(e 4+ )A(1)%

It follows that the sequences (u®), (uf), (Aoul) converge to limits u, u, Aou, in
C ([0, T|,H I])\ér_ 2(P)). By the Interpolation Theorem of Nirenberg—Gagliardo we have

convergence even in C' ([O,T],Hrj)\ér_ 1(P)). The weak convergence of this sequences
in Y (P) implies

per

U, Ug, OUy € L ([O,T],Hé\ér(P)) . En(u)(t) < CX1)%
By standard arguments one obtains for g > 0

tim sup [050) (Ol vy < 1@ (t0) vy < T it [D50)(8) gy

t—to+0

hence H™ (P)-continuity from the right. The continuity from the left is proved by
the same technique after changing the time—direction.
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The continuity for to = 0 is trivial, since [[u(t)|| g py+ el v py+llowa (@)l g p)
is obviously continuous for ¢ty = 0.
Finally, from (4.11) it follows that

t Q
Ex(u(t) < limipt &))< 2 | (—) XN By (f)(r)dr.

4.3 Quasilinear Equations

Proof of Theorem 4.1 First, we have to compute the number of required reduction
steps. Set

b(x,t
Q= sup (z,t,u) 41
(et eKsx[0,T] [/ b(x, t,u)? + da(z, t, u)
and choose Q' > ). We define
Ql = sup |(95f(m,t,u1,u2,U3)|,

x,tu1,uz,u3z) €K x[0,T
5

where 05 denotes the derivative with respect to the 5th argument. It is worth
pointing out that

Now we choose p € N, p > Q' with

2Q1Cs,n—2-2p -1
p—Q T4

It may happen that for given N such a number p does not exist. But it is possible
to find p if NV is large. Namely, we fix ¢ € 2N, ¢ > 4. For even N we define
p = 3(N — 2 —q). The condition (4.12) is fulfilled, if N (and hence p) is large.
The number p is the number of steps in the reduction process. We set r := 2p + 3,
M :=N—r+12>4, where N and r are the constants from Theorem 4.1.
We choose dg > 0 such that, if S (v) = [[v]| g (py + vl gre(py + oAV g (py < o
and K > 1, then ||v[|, <3, vl < 3, [lodvs < 8.
Let T}, > 0 be a constant such that

(4.12)

Zu(j)(x,t) — up(x) Zugj)(x,t) —ui(x)

o\ <Z ugcj)(x7 t) — UO,x(£)>

We study the reduced problem (4.9),

) )

1)
< 3 t € 0,7,

LI(,”)u = Ug + oAby (x, t, V) ug — 02)\2ap(x,t, V)ugy = Fp(x, t,v,01,0\v,),  (4.13)

with Syr(v)(t) < g for ¢t € [0,T},] and v(x,0) = v¢(x,0) = 0.
We will prove the
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Lemma 4.2 There exists a constant 0 < Ty < T), with:
If Sar(v)(t) < A(t)P, then Syr(u)(t) < A(E)P for 0 <t < Tp.

Proof Let Cjs be the constant from Proposition 4.2, such that for Sys(v) < §p and
L;,U)u = ¢ it holds

SHOIELY) Ot (jﬂ)Q Bailg)(r)dr.

0

We choose constants C'r; and Cra with

HFp(CIT,t,O,O, O)HHM(P) SCFJ)\(t)p,
HFp(-’E,t,Ul,U%UB)HHM(P) SCFQ(HUIHHJW(P) + ||U2||HM(P) + ||’U3||HM_1(P))
+ Q1|0 vs |, + CraA(®)”

for [|v;]l ., < g, see Proposition 4.1 and Lemma A.1. Let Ty satisfy the following

conditions
AMTh) < do,

0
CPATOY o]l Xl < 5
Cry—1 ol gar-1py H)\/Hoo =1,

eCIVITO <2,
1
2(2Cr2 + Cr1)Cs Ty < T

where Cp and Cp /-1 are the imbedding constants from Section 1. Now we show
that Syr(u)(t) < A(t)P for t < Tp.

The vector (z,t,v,v;,0Nv,) lies in the domain of F), since H'UHHM(P) < o,
el sy < b amd

1)
loXvallo < oo Xl CP el ey < C Nl [ Su(®) < 5.
Hence we obtain

HFp(%t,U,UnUXUx)HHM(p) < Cra(llvll garpy + llvell grae py + HU)‘/%HHM%(P))
+ Q1 Haiw(O')\/Ux)Hz + CF71)\(t)p.

From

|oX Ve || gar-1(py < Crai—1 llollgar-apy [N oo 10l ey < N0l rae oy »

Haé‘/l(o')\lvx)uz g ))\\(—(f)) ”O’)\’UQCHHM(P) S ))\\(—(f))SM(’U)(t)
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we deduce that
HFp(QL’,t, V, Vg, O’)\/UJC)HHM p) S (2CF2 +CF, AP + Ql)\,(t))\(t)p_l.

By En(...) = |- [lga(py and the choice of p and Ty we can assert that
Csm€)y (w)(1)

b oomi—n) (A1) < /
SQCS,M/ e M <—> En(Fp(z, 7, 0,0, 0N vg))dT
0 A(T)

< Csare™ ()Y / t M)~ 92((2C k2 + Cra)AT)? + QN (MA(T)P 1) dr
0

201
p—Q

< C&MGCMTO)\(t)pQ(QCF,Q + CFJ)t + C&MGCMTO)\(t)p

< A(B)P.
The assertion follows from Spys(u) < C’Séﬁ) (u). The Lemma is proved. B
Thus, we can define a sequence (v;) C C'([0,Tp], HYL(P)) with du; €
C ([0, To), HAL.(P)) such that

Vo = O’
Lévi)vi_u = Fp(.%', t, Vi, ?)m, O')\,in),
vi(z,0) = v; 4(x,0) = 0.

These functions satisfy Sas(v;)(t) < A(¢)P. We will prove a convergence result.

Lemma 4.3 The sequence (v;) is a Cauchy sequence in the Banach space
C* ([0, To], Hpl ™ (P)).
Proof We define w; = v;41 — v; and have
Wit + Aob(x, t, v 1 )W 4 — )\zaza(a:, b, Vi 1) Wiz
= Fp(z,t, 05,04, 0NV 5) — Fp(x, 8, vi-1,vi—1¢, 0N vi_1.5)
+ Ao (bp(, t,vi1) — by, t,0))is 1.0t — N0 (ap(, t,vi1) — ap(w,t,0;)) Vi1 on
= Fp(m,t, 05,01, 0NV 2) — Fp(,t,0i-1,vi—1¢, N V;—1 )
+ Ao (2, ) wi—1Vi1 2t + AN202ai (2, Wi 1Vt e
=: gi(x,t)
By Hadamard’s Formula and the choice of ()1 we have

| Ep (2, t, 05, Vi1, 0N Vi—1,0) — Fp(, b, 01, vim1,6, 0N Vim1 2) ||, +

H2 < CfSo(wi_l),
N(t)
A(t)

+ HFp(x7t7 Vi, Vit U)\/Ui—l,x) - Fp(mv t,v;, Vi—1,t, U)‘Ivi—l,m
| Fp (@, t,vi, vig, 0N 0 ) — Fp(,t, 05,04, 0N vi10) ||, < Q1577 So(wi—1),

, , ) p+1 ,
i1ty < - _
[Aobi(z, hwi1vitratlly < CpCh [lol o A(E)PT So(wi-1),
[ N?0%ai(z, t)wi—1Vi41,0]|, < CPCa llol|Z AME)PT2So(wi—1).
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With the assumption

2€CoTO CS’O CKTO

= 26T (O + CpCy o]l o MT0)P + CpCa |2, A(To) )T <

B~ =

we obtain

llgills < CrSo(wi—1) + Qli\\T(tt))SO(wil)-

We suppose So(wi—1)(t) < C A(t)P. Without loss of generality we may assume
that the sequences (Cy), (Cs4) are monotonically increasing with g. From this and
Proposition 4.2 it follows that

t Q'
Csafa(wn(t) <2050 [ e (%) lgilly (7)dr

20:C
<cp, <2eCOTOCS,OCKt + TQi 5;0 eC°T0> Aty

3
< ZC;“”_ 1A(E)P.
Hence we obtain So(w;—1)(t) < C§ (%)Z A(t)P. Nirenberg-Gagliardo Interpolation

and Sy (w;)(t) < 2X(¢)P give the assertion. The Lemma is proved. B
By standard arguments one can show that the limit v is a solution of the equation

Lz(,”)v = vy + oAb (2, T, V) vy — 02)\2ap(ac, t, V)V = Fp(z, t,0, 01, 0N v,).
It follows that u = S-?u() + v solves (4.1) and (1.5). The Theorem is proved. W
Remark 4.1 Obviously, one can show a similar theorem for systems with diagonal
principal part.
5 Fully Nonlinear Weakly Hyperbolic Equations

It is sufficient to show that a fully nonlinear weakly hyperbolic Cauchy problem is
equivalent to a suitably chosen weakly hyperbolic quasilinear Cauchy system, see
Remarks 1.1, 2.1, 3.1, 4.1. We will divide this proof into two parts.

Theorem 5.1 Let

Fy € CH([0,T), C*(R®) x Hy,,(P)),

per
u, up, o, € C* ([0,T], Ho,.(P)),

per
\eCP(0.T]), o€ HL(P).
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The function u is a solution of the Cauchy problem (0.1), (0.2), if and only if
(ug, uy,uz) := (u,ut, uy;) is a solution of the system

Fruy g + oAFouy gt + 02 N2 Fyug gy + 0N Fyuy o + Fsuy g + Fouy + Fy

+ 0N Fyugy + 0*(N?) Faug ;. + o\ Fyug = 0, (5.1)
Frug g + oAFoug ot + 02N\ Fyug p + 0N Fyug ;. + Fyugy + Feug + Fy
+ o' A\Fougy + (02) N Fug 4 + o' N Fyug = 0, (5.2)
Fiug 4t + oNFoug g1 + 02N Faug 4o + 0N Fyug
—Fiuy s — oAFhugy — 02)\2F3u27m —oNFyus + F =0, (5.3)

ul(x’o) = 901($)7 ul,t(x’o) = 902(x)a
u2($,0) = QOO,m(x)a Ul,t(xa 0) = @1,x($)7
up(z,0) = @o(z), u1e(,0) = p1(z),

where the function F' and the derivatives F; depend on
(ul,t, O')\U27t, U2>\2u2,ma U>\Iu2a Up,t, U0, T, t)
For the definition of o see the assumption A 8.

Proof We restrict us to show the <—direction.
Differentiating (5.3) with respect to ¢ and subtraction from (5.1) gives

Fi(uy — uo)u + FaoA(ur — uog)ar + F30° N2 (w1 — wo,t)ze + Fao X (w1 — ugt)s

— (Fre(uog — u1)e + FooA(uoe — u2)e + F310° X (ug z — u2)y)

— (FaoXN (uoe — u2) + FooN (g e — u2)y + F30?(N?) (o — u2)s)

— Fyo )" (ugz — u2) + Fs(ur — uoe)t + Fo(ur — ug) = 0. (5.4)

Differentiating (5.3) with respect to x and subtracting from (5.2) yields

Fi(us — uoz)ie + FooA(ua — tgg)at + F302 N (ug — o z)ze + FaoN (us — u0.2)s

— (Fya(uog — u1)e + Fopo N (uos — ) + F3002 N (g z — u2)z)

— (Fuz0N (ugz — u2) + Foo' Mug » — u2): + F3(0'2),)\2(U07x —u2)z)

— Fyo' N (uoz — u2) + Fs(ug — upz)t + Fo(uz — upz) = 0. (5.5)

The system (5.4), (5.5) is a linear homogeneous weakly hyperbolic system for the
functions v1 = ugs — u1, v2 = ug, — u2. The Levi conditions are satisfied. From
the uniqueness of periodic solutions we get vy = v9 = 0. Combining this result
with (5.3) gives the assertion. W

The next theorem will reduce the quasilinear principal part to a semilinear one.
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Theorem 5.2 We assume

a,b € C([0,T], C*(Ry) X Hper(P)),
feC(0,T],C%*(Ry) x Hﬁer( )

i, iy, o\, € C* ([0, 77, per P)),

X e C?([0,T)).

The vector 4 is a solution of

—

ﬁtt + O')\b(ﬁ 'IIt, O')\Il_l:a;, x t)ﬁxt - 0'2)\2a(717 ty O')\Il_l:a;, x, t)ﬁa;a;
fla, Ny, x,t),
( 0) ( ), tr(x,0) = G (x)

—

if and only if the vector (U, U1, Ua) := (U, Uy, Uy) is a solution of

Uyt + oADUY 51 — 02)\2aﬁ1,xx + oAbtz s + U)‘/bﬁzt (5.6)
— 0'2)\20,,51_1:2793 — 0'2()\2),6“72,@‘ = f_1;7
U ¢t + oAbU2 ¢ — 0'2>\2aﬁ2,:m: + J)‘bmﬁlt + Ul)‘bﬁlt (5.7)

— 02 N2ayily, — (0%) Naily, = fiily + failzg + f3(oNd2)s + fi,
by = byt + botlat + b3(o N Ua)y + ba,
ag = a1y + astizy + as(ff)\/ﬁz)x + ay,
i1t + ONbiTg ot — 02N>l 20 = f
with the initial conditions
iy (z,0) = @i(z), iz, 0) = Fa(z),
ta(x,0) = Goo(x), tUzi(x,0) = F1a(z),
’L_I:O(I',O) :60('%')7 ﬁo,t(%o) :951(1.)
The functions b,a,bs,ar depend on (U, U1, oN Uy, x,t) and f, f, f; depend on

(do, o, o N ta, z,t). The vector Gy is defined similar to o in assumption A 8.

Proof We consider only the <—direction.
We differentiate (5.8) with respect to x, subtract the equation from (5.7) and obtain

(g — o 4t) + oNb(Ty — Tout) et — 0N (T2 — Uou) e
+ 0 AB(T@y — To.g)¢ + ON(b1Tis + baiias + by(oNT2)g + ba)iias
— oAbty + oty 5 + b3(oN'U2)y + ba) o 4t
— (0®) Na(iiy — to 2)z — 0* N2 (arily + agiia s + ag(oN'ia)y + ag)is .
+ 02\ (ayilp » + agily x + az(oN'd2)y + a4)iio za

= fi(idy — Uo,z) + f2(172 — Uy g)t-
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Differentiating (5.8) with respect to ¢ and subtraction from (5.6) implies

(i) — o ¢)er + oND(ily — o )t — 02 N2a(ly — o g)aw + oNb(is — Uo);  (5.10)
+ O')\bt(l_[Q — 1_[071)15 — 0'2()\2)ICL(1_[2 — ﬁO,x):v — 02)\2at(ﬁ2 — 1_[071)33 =0.
The equations (5.9), (5.10) are a weakly hyperbolic linear homogeneous system for

the functions ¥y = Wy — U1, U2 = Uy, — Uz. We leave it to the reader to verify that
the Levi conditions are satisfied. Hence one obtains 7 =95 =0.

6 Examples

Example 1 The methods presented in this paper enable us to study equations with,

e.g.,
1 1
4 _ (e k.
A(t) =t exp < _ta> , o(x)=(sinz)"sin <sina:> ,

where | € Z, « € RY, k € N large. The degeneration occurs in the set

(R x {0}) U ({mm : m € Z} x [0,T])

U <{arcsin (%) tm € Z\{o}} « [O,T]>

The following example goes back to Qi Min—you [Qi 58].
Example 2 We consider
Ug — gy = atty, u(z,0) = @(z), u(x,0) = 0.

If a = const., a = 4n + 1, where n > 0 is an integer, then the unique solution has
the representation

-y vt 0 (p4 1
“(x’t>_zk!(n_k)!r(k+§)@k (“2’52)'

k=0

One can observe two interesting effects. First, a loss of reqularity occurs, which
depends on the value of the coefficient of the lower order term. Second, singularities
of the initial data propagate along the characteristic x + %t2 = const. Propagation
along the other characteristic x — %tQ = const. does not happen.

We will generalize this example.

Example 3 We consider the Cauchy problem

wy + btlug — atPug, — dt uy = 0, (6.1)
u(z,0) = p(x), w(x,0)=0,
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where a,b,d e R, l e N, [ > 1.
The ansatz u(x,t) = > p_q cptTDEEF) (z + kt!1) leads to

K1+ DRI+ D)k —1) +1) +b(+1)(k—1)—d

:1 = — —
A U+ Dk((l+ Dk —1) Kt
_ 2
K12 = (l n 1 <b:F V' b —{—4a>
4@+Um+d

20+ 126+ (1 + )b’

This gives for k = K1 or Kk = Ko

! b d
ny = —1)+ ,
P 2(l+1) (\/b2+4a > (14 1)V0? + 4a

l b d
ng = — +1) = :
2T 20+ 1) <\/b2 +da ) 1+ 1)Vo? + da

respectively. The natural number n describes the loss of Sobolev regularity.

It is worth to point out that x4+ t!t! = .%'—i—Tl,QA(t), where 71 2 are the characteristic

roots and A(t fo s)ds, where \(t) = t!. Additionally, we emphasize that
it is not pos&ble to construct a solution as a linear combination of Z;‘io ... and
> 320+, since ng +ng < 0.

The question arises of whether the solution suffers from a loss of generality if the
expressions for ny and ng are no integers, too. Here one can not express the solution
by the above finite sum. But there are other explicit representations. The following
ideas go back to Taniguchi and Tozaki [T'T80], who studied equations (6.1) with
b=0and a=1.

We apply partial Fourier transform with respect to x and obtain with y(¢;§) =
Fy_¢u(z,t) the ordinary differential equation with parameter £

" (t) +ibt'ey (t) + at® 2y (t) —idt' ey (t) = 0.

We transform the time variable,

and conclude that

We change the variables again,

. z z
z:=rit, w(z):=v (—> es,
riT
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which gives

1 b 1 1 d
+<—2———%— )w(z):o.

I+1sz I+1rz
We choose ) . 5 b
————izO, -—==1, |rl=Vb+4a.
s T

The result is

2" (2) + (7 — 2)w'(2) — aw(z) =0,

I I b d
= a= +1)+ .
T 20+ 1) <\/b2+4a > (1+ 1)V + 4a

This is a confluent hypergeometric differential equation. Two linearly independent
solutions are

wi(z) = 1F1(0,7,2), wa(2) =2z""1Fi(l+a—7,2-7,2).

These series are polynomials if —«. or @ — 7y are nonnegative integers, respectively.
We have for |z| — oo the asymptotic expansion

0,7,2) _efmze (= (a), a—)n - _
lFll(“(;)% ):F(’y—a) (Z:o( ll j;! V) (=2)"" +0O(|z] R))
z o=y S—1 (1l —a), )
+?m><§f7 1 >Zn+ow,%>
n=0

the upper sign been taken if —% < argz < %7‘1’, the lower sign if —%71' <argz < —%71'
([AS84],13.5.1). Here one can see the special role of the exponents —a = ngy and
a—~ =nq. At least one of this exponents is negative, since ny +ng = —y < 0. This
negative exponent gives no loss of regularity.

After some computations one obtains

o) = 5 [ (e 06 e,

where the function pg has the asymptotic behaviour [£|~¢ or [|*77 for || — oo.
Summary Let ¢ € H*(R), s € R and n := max(—«,« — 7). Then there exists a
solution v € H*~"(R).

Remark 6.1 We consider the Cauchy problem (0.2),

g 4+ Atz — A (t) gy — dN (t)uy = 0,
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where b, d, c are real constants and b*> + 4c > 0. We define

A@) ::/0 A7) dr, y::x—gA(t), o) = ulz, )

b2 b
Vg — Z+C Uyy — §—i—d vy = 0.

and get

The transformation

b2
y=z\l e wizt) =0yl
yields
b+ 2d
Wi — AWy — ——— N (H)w, = 0.
tt ( ) \/m ( )

This reduction makes the results of Aleksandrian [Ale84] and Taniguchi—Toza-
ki [TT80] applicable to equations which have a term wy;.

A Appendix

Proof of Lemma 3.1 We use Lemma A.1 and get

EN(BJ(-h)v) = En(ve — Bj(z,t,h)ovy)
< H’UtHHN(P) + Cprod,N Hﬁj(%tvh)HHN(p) ”U"Um”HN(P)

Similarly, we conclude that

(0" — o) v )
= (h)
HO'UmHHN(P)_ W Scprod,N W EN (U)

S (P A0S 1~ Pl ()

h
< O(L+ Bl v p)EN (v),
(h) B(h)
HUtHHN(p) < ﬁ %h)v 4 ﬁ@éh)v
R A I | e i

<O+ Al grp)EY (v). W

Lemma A.1 Let f € CN(P x K), where K C R™ and P C R are compact sets. Let
v; € HIY (P) with (z,v1(2),...,vn(x)) € K for all z € P.

(a) Then,

En(f(o1()s5on()) < enlllvilles -5 lvnlloe) (En(vi) + ... En(vn) +1).
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(b) More precisely, if N > 3, then

EN(f(7 ’Ul(-), cee 71)71()))
<on(lvilloo s 12l -+ TV lloo s Vnzlloo) (BN (V1) + ..o EN(vn—1) + EN—1(vn))

N Hf<o,-~70»1>(x,v1(m), . ,vn(m))Hoo 10N vl +§:Hf(j’0"“’0)(m,vl(ac), - ,vn(x))HQ.
=0

Proof We make use of the Leibniz formula
d':]l:f(x7 Ul(x)v s 71)71('%.))

. I I 1 A
= Z ‘Z—' Z Z Z mf(z’yl’”"y")(m,vb...,vn)x

i+tl=j  L4-Hlp=lv1=0  vp,=0

gy ey

hi ! by,

k=1 | hi i+ b, =l
hk,mzl

where we use the following convention: If vy = 0, then [, = 0 and if all v, are 0,
then i = j.

Another tool is the generalized Interpolation Inequality of Nirenberg—Gagliardo for
periodical functions,

. d=n 1—d=n ]
[030]], < ClloTvllp = loFvlly ™7, n<j<m, (A.1)
1 ) — 1 ) —
_:i+_<l_ J n)
r pm—n) ¢ m—n

By Hoélder’s Inequality,

| f(z,v1(), ..., vn(2))]|,

A ln
<Cj Z Z Z Z Hf(i,m,...,un)(x,vl,.”7Un)

X

= i+ tln=l11=0  vp=0 °°
n 1 1
2||2 202
h hi,
vy I (0 e (Y
k=1 hk,1+~~~hk,uk:lk A, 1 ak,uk
hk,mzl
where
n Vi
1
<1
Ak s
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We choose ay, ﬁ and apply (A.1) with n =0, 7 = 2ay 5, p =2, ¢ = 00, m = [,
J = hi,s. The result is

Hdgcf(x,vl(x), .. ,Un(x))HZ

<nllnlla -l [ X T

itl=j b+ +ln=l k=1

Pk,s hi.s

h 1- k2
sy a;vkuzl g lae !

<C|

)
20k, s

thus

U
1

aivk ) +1

< o vrlloe - lonlloe) (ot ey + - + [onll iy + 1)
Proof of (b) We use the finer estimate

Hdivf(x,vl(x), (@),

D VND VD D o

i+l=N li+-+l,=lv1=0

FOPLn) (2 g1 u)|| X

[e.e]

vp=0

n 1
2|2
h
T [
k=1 hk,1+---hk,uk:lk Ak, 1 Ak,
hk,mzl

I Hf(Q“”OJ)‘OO|“%YU"H2_+‘LfUVD““O)H2’

where the ”o” means that terms with [, =1 = N, v, = 1 or ¢ = N do not occur.
We apply (A.1) with

20-2) . _
r = 2ay ,__{/%J; :k=n, m__{l-—l tk=n,
- S T 2(1-1 =

s k <mn, :

and p =2, ¢ = 00, j = hy s, n = 1. The result is

We have to check whether }; L < 1. It holds

Ok.s —

h
(%;k’s?}k

[
8361%

<C|

_1 1——1
ol ™ (k< ),

2&]@75

1-—L
n,s
||Un,r||oo .

h
Oz vy,

an,s

—1
0, "vp )

gc‘

20,5

GBI | nillk—yk I, — v

S = = AL
Zzaks Z I—1 + D)
k=1 s=1 ’ k=1

We have to distinguish three cases:
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lp, =1 This gives [y =--- =1,_1 =0 and v,, > 2, hence S < 1.

1<, <l—1 At least one v (k < n) is positive, hence ZZ;% lp —vp <l—1,—
It follows that

=1, -1 Il,—uv, ln ln—1
<1

S I~ Sttty =t
l, =0 (trivial)
We conclude that
[ f(z,v1(x), o))
<En(vrllag - llonllo)| D Huanku”“uv N e [ T
BeB k=1
sl ey s,

where B is some index set. It holds >, v, < 1. If this sum is strictly less than
1, we use the embeddings HN~1(P) ¢ L°(P) and HN=2(P) c I*(P) to increase
the exponents of Haévvk‘b and Hﬁév_lvn‘b such that the sum becomes 1.

The application of Young’s Inequality completes the proof. B

Remark A.1 After obvious modifications one can prove for every 0 < m < n the
generalization

En(f(,01()s--,0n()) S onllvilloe s 12l - -+ 10nllo » 10n,2ll o)
(EN(U1) +o EN( m) + En—1(Vm41) + -+ En—1(vn))

S Hf<°~--»°vl’°~~:°><m,w), (| ol
j=m

2

N
+3 HfUaOv---vO) (z,v1(2),. .. ,vn(x))H .
j=0

Lemma A.2 Let 0 € HYY(P), a € HY

per per

Let h € Cg°(R) be a function with

(P) and oa € HYY(P), where N > 2.

per

/ h(z)dx =1, supph =[-1,1]
R

and write h.(x) := e *h(z/e), ac := a * h.. Then it holds

H0'a5|’HN+1(p) < C Ve
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Proof It is sufficient to prove that Ha@fcv HaSH2 < C. It holds

7o) (0 H1a) () = [ ol@)a™ @l - 2) d = f(o) + ge(a)
R

= /Ra(z)a(N) (2)hl(z — 2)dz + /R(U(aﬂ) —0(2)a™ (2)h(x — 2) dz.

The proof is divided into two parts. In the first part we show that ||f.||, < C, in
the second we prove that ||g.||, < C. We have

fo(a) = /R (0a)™ (R (& — 2)d= — fj (N > /R (0Da™ =Y (RL (& — 2)dz.

=1 N

We observe that (aa)(N) € H! (P), o@D qgWN=3) ¢ g1

per per

(P), which results in

N
N . .

(o) = @)™ shufo) = 3 () 0D D) o).

» J

7j=1
This implies immediately || f:||, < C for all e. Now we consider g.(z). Obviously,
we have |o(x) — 0(2)| < Clz — 2| < Ce and |h.(z — 2)| < Ce~2. This gives |g.(z)| <
C(la"™] x k. )(x), where

_J@)h szl <, _
ke(z) = {0 2> e, kel g1 gy = 1-

By standard arguments one shows that

<C. n

(N)
l9ell 2y < € ||l .

||k€||L1(R) < CHQ(N)

[2(3P)
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