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Abstract

We investigate the linear system of thermoelasticity, consisting of an elasticity equation
and a heat conduction equation, in a waveguide Ω = (0, 1)×Rn−1, with certain bound-
ary conditions. We consider the cases of homogeneous and inhomogeneous systems
and prove decay estimates of the solutions, which are a key ingredient to showing the
global existence of solutions to nonlinear thermoelasticity, after having decomposed
the solutions into various parts. We also give a simplified proof to the representation of
the solutions to the Cauchy problem of thermoelasticity.
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1. Introduction

Thermoelastic equations describe the elastic and thermal behavior of elastic heat
conductive media. The classical equations in thermoelasticity, based on the Fourier
law for heat conduction, are of a hyperbolic–parabolic coupled type ([1, 2]).

In this work, we are going to study the long time behavior of solutions to the fol-
lowing initial boundary value problem of linear thermoelastic equations in {(t, x) : t >
0, x ∈ Ω} with Ω = (0, 1) × Rn−1 being a so-called waveguide:
{

utt − µ4u− (µ+ λ) grad div u+ γ1 grad θ = f(t, x), (t, x) ∈ R+ × Ω,

θt − κ4 θ + γ2 div ut = g(t, x), (t, x) ∈ R+ × Ω,

(1.1)
with the initial condition

(u, ut, θ)(0, x) = (u0, u1, θ0)(x), x ∈ Ω, (1.2)
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and the boundary conditions
{

u1(t, x) = ∂νu2(t, x) = . . . = ∂νun(t, x) = 0, (t, x) ∈ R+ × ∂Ω,

∂νθ(t, x) = 0, (t, x) ∈ R+ × ∂Ω,
(1.3)

where u and θ denote the displacement and temperature deviation to a reference value
respectively, all coefficients in (1.1) are constants with all of µ, 2µ+λ, κ and γ1γ2 being
positive, and ∂ν is the normal derivative on the boundary of the waveguide Ω. With
B = γ0 diag(1, ∂ν , . . . , ∂ν) we can write the boundary conditions for u as Bu = 0.
Here γ0 is the standard trace operator.

To study the long time behavior of solutions to linear problems is not only impor-
tant for understanding the underlying physical phenomena, it is also the crucial step for
establishing the global existence of solutions to the corresponding nonlinear problems
(cf. [3]). There already have been proved many results on the long time behavior of so-
lutions to the Cauchy problem for equations of thermoelasticity, e.g. see [2, 4, 5, 6] and
references therein. It is well–known that the long time behavior of solutions is closely
related to the spectral properties of the linear operators. For the Cauchy problems, it
is studied usually by taking the Fourier transform in space variables, and investigating
the asymptotic behavior of eigenvalues for large/small frequencies. These eigenvalues
depend in a non-homogeneous way on the frequencies (see [7] for precise asymptotic
expansions of the eigenvalues) which expresses the mixed hyperbolic–parabolic nature
of the system. Typically, a power type decay of solutions to the Cauchy problem can
then be shown.

In general, this idea does not work for problems in domains with boundaries. First,
the Fourier transform is not available. And second, in case of Dirichlet boundary con-
ditions, there are even counter-examples which show that the decay of the solutions to
the linear problem (1.1) with vanishing right hand sides can be arbitrarily slow if the
domain Ω admits a periodic orbit of billard, see [8]. On the other hand, the energy of
rotationally symmetric solutions even decays exponentially, as demonstrated in [9].

An interesting and viable problem is to ask for decay properties in a waveguide. In
[10], Lesky and Racke first described the long time behavior of solutions to the initial
boundary problems for wave equations in a waveguide. Recently, they have also studied
the elasticity problems (without temperature equations) with boundary conditions like
(1.3) in [11]. In this paper, we shall develop their idea towards a study of the long
time behavior of solutions to the problem (1.1), (1.2) and (1.3). We mainly discuss
this problem with homogeneous equations, and the inhomogeneous case can then be
studied by using the Duhamel principle, after a special reduction of the problem which
makes the right-hand sides satisfy a large number of boundary conditions.

First, by carefully studying the Helmholtz projection associated with the boundary
conditions (1.3), we deduce that the solenoidal part of the displacement solves a wave
equation, which was considered already by Lesky and Racke in [10], and the poten-
tial field and the temperature deviation satisfy the equations of hyperbolic–parabolic
coupled type from thermoelasticity. Then, we decompose the unknown functions into
zero–modes (which do not depend on the bounded variable) and higher order modes.
It is observed that the zero–modes of the potential field and the temperature devia-
tion solve the Cauchy problem of thermoelastic equations in infinite direction variables
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(x′ ∈ Rn−1), so from the classical theory it follows that these zero–modes decay
of the order O(t−(n−1)/2), while for the equations of higher order modes, we derive
that they decay exponentially when t goes to infinity by using a partial eigenfunction
expansion in the bounded direction, and taking the Fourier transform in infinite direc-
tion variables. Therefore, the potential field and the temperature difference decay as
O(t−(n−1)/2) with respect to the time variable. Finally, by combining the result of
the wave equations in a waveguide from [10] for the solenoidal fields, we conclude
that the zero–modes of the displacement and temperature deviation decay of the order
O(t−(n−2)/2), and their higher order modes decay of the order O(t−(n−1)/2) when t
goes to infinity.

The remainder of this paper is arranged as follows: In Section 2, we state two main
theorems on decay of solutions to homogeneous and inhomogeneous equations. In Sec-
tion 3, we present some general facts of the equations (1.1) in a waveguide, including
the Helmholtz projection, the zero–mode projection and existence of solutions to the
(homogeneous) problem (1.1), (1.2) and (1.3). The homogeneous and inhomogeneous
equations will be studied in Section 4 and Section 5 respectively.

2. Main Results

First, we note that we can assume the constants γ1 and γ2 in (1.1) to be equal and
positive, via the scaling u =

√

γ1/γ2ũ. Considering first the homogeneous case, we
are led to the system
{

utt − µ4u− (µ+ λ) graddiv u+ β grad θ = 0, (t, x) ∈ R+ × Ω,

θt − κ4 θ + β div ut = 0, (t, x) ∈ R+ × Ω,
(2.1)

together with the initial condition (1.2) and the boundary conditions (1.3).
We are looking for solutions (u, θ) to this problem in a spaceX which incorporates

the boundary conditions (1.3):

X = Xu ×Xθ,

Xu =







u ∈
2
⋂

j=0

Cj([0,∞), H2−j(Ω)) : Bu = 0







,

Xθ =
{

θ ∈ C([0,∞), H2(Ω))
⋂

C1([0,∞), L2(Ω)) : γ0∂νθ = 0
}

,

where we do not notationally distinguish L2(Ω) and (L2(Ω))n. We introduce the no-
tations 4D and 4N for the Dirichlet Laplacian and Neumann Laplacian on Ω, with
the respective domains D(4D) = H2(Ω) ∩H1

0 (Ω) =: H2
D(Ω) and D(4N ) = {ϕ ∈

H2(Ω): γ0∂νϕ = 0} =: H2
N (Ω).

Our main results are the following two theorems.

Theorem 2.1. Assume µ > 0, µ+ λ ≥ 0, κ > 0 and β ∈ R. If the initial data satisfy

(u0, u1, θ0) ∈ H2(Ω) ×H1(Ω) ×H2(Ω),

Bu0 = 0, γ0u
1
1 = 0, γ0∂νθ

0 = 0,
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then the system (2.1) with the initial condition (1.2) and the boundary conditions (1.3)
has a unique solution (u, θ) ∈ X .

Suppose the initial data additionally have the regularity

u0
1 ∈ D(4K2/2

D ) ∩WK+1
1 (Ω), u1

1 ∈ D(4(K2−1)/2
D ) ∩WK−1

1 (Ω),

u0
k ∈ D(4K2/2

N ) ∩WK+1
1 (Ω), u1

k ∈ D(4(K2−1)/2
N ) ∩WK−1

1 (Ω), 2 ≤ k ≤ n,

θ0 ∈ D(4K2/2
N ) ∩WK+1

1 (Ω),

with K2 = bn
2 c + 3 and K = 2bn

2 c + 5, and the solenoidal parts of u0 and u1

also belong to the Sobolev spaces WK+1
1 (Ω) and WK−1

1 (Ω). Then the solution (u, θ)
decays as follows:

‖(∇u, ∂tu, θ)(t, ·)‖L∞(Ω)

≤ C

(1 + t)(n−2)/2

∥

∥(u0, u1, θ0)
∥

∥

W K+1
1 (Ω)×W K−1

1 (Ω)×W K+1
1 (Ω)

, 0 ≤ t <∞.

Define a further set of initial data (u0
[0], u

1
[0], θ

0
[0]) as an average over the cross section

of the waveguide like this:

uj
[0],1 = 0, uj

[0],k(x) =

∫ 1

z1=0

uj
k(z1, x2, . . . , xn) dz1, 2 ≤ k ≤ n, j = 0, 1,

θ0[0](x) =

∫ 1

z1=0

θ0(z1, x2, . . . , xn) dz1,

and write (u[0], θ[0]) for the solution to (2.1) with boundary conditions (1.3) and with
the initial data (u0

[0], u
1
[0], θ

0
[0]). Then the difference (u, θ) − (u[0], θ[0]) has stronger

decay than (u, θ) alone:
∥

∥(∇(u− u[0]), ∂t(u− u[0]), θ − θ[0])(t, ·)
∥

∥

L∞(Ω)

≤ C

(1 + t)(n−1)/2

∥

∥(u0, u1, θ0)
∥

∥

W K+1
1 (Ω)×W K−1

1 (Ω)×W K+1
1 (Ω)

, 0 ≤ t <∞.

We also consider an inhomogeneous version of the thermoelasticity system:
{

utt − µ4u− (µ+ λ) graddiv u+ β grad θ = f(t, x),

θt − κ4 θ + β div ut = g(t, x).
(2.2)

The uniqueness and existence of a solution (u, θ) in the space X follows directly from
Duhamel’s formula under standard assumptions on the regularity of f and g; therefore
we now concentrate on the decay of the solution.

Theorem 2.2. There are natural numbers L, K, N with the following property: If the
right–hand sides f and g are of the regularity

f ∈
2K
⋂

j=0

Cj
(

[0,∞), H2K−j(Ω) ∩W 2K−j
p (Ω)

)

⋂

C2K+1([0,∞), L2(Ω)),

f, g ∈ CL+1([0,∞), L2(Ω)),
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with 1 < p ≤ 2, and if the Compatibility conditions 5.1 and 5.2 are valid, then the
solution (u, θ) ∈ X to (2.2) has an asymptotic behaviour described by the following
inequality:

‖(∇u, ∂tu, θ)(t, ·)‖Lq(Ω) ≤
C

(1 + t)(n−2)(1/p−1/q)/2

∥

∥(∇u0, u0, u1, θ0)
∥

∥

W N
p (Ω)

(2.3)

+
C

(1 + t)(n−1)(1/p−1/q)/2

max(2K−1,L−1)
∑

j=0

∥

∥

∥(∂
j
t f, ∂

j
t g)(0, ·)

∥

∥

∥

W N−j
p (Ω)

+ C

max(2K−1,L−1)
∑

j=0

∥

∥

∥(∂
j
t f)(t, ·)

∥

∥

∥

W N−j
p (Ω)

+ C

∫ t

s=0

1

(1 + t− s)(n−2)(1/p−1/q)/2
‖(f, g)(s, ·)‖W N

p (Ω) ds

+ C

∫ t

s=0

1

(1 + t− s)(n−1)(1/p−1/q)/2

∥

∥

∥
∂max(2K,L)

s (f, g)(s, ·)
∥

∥

∥

W N
p (Ω)

ds,

where 1/p+ 1/q = 1.

3. General Properties of Thermoelastic Systems in Waveguides

The following result is almost immediate:

Lemma 3.1 (Uniqueness). For a solution (u, θ) ∈ X to (2.1)–(1.3), we define an
energy as

E(t) =
1

2

(

‖ut‖2
L2(Ω) + µ ‖∇u‖2

L2(Ω) + (µ+ λ) ‖div u‖2
L2(Ω) + ‖θ‖2

L2(Ω)

)

,

where ‖∇u‖2
L2(Ω) =

∑

j,k ‖∂juk‖2
L2(Ω). Then we have the identity

∂tE(t) = −κ ‖∇θ(t, ·)‖2
L2(Ω) , t > 0.

Under the assumptions µ ≥ 0, µ+ λ ≥ 0, κ ≥ 0, β ∈ R the solution (u, θ) is unique
in the space X .

3.1. The Helmholtz projection

Next we recall from [12] the Helmholtz decomposition in an arbitrary bounded or
unbounded domain ω ⊂ Rn. The space of L2(ω) potential vector fields is defined as

G2(ω) =
{

∇ϕ ∈ L2(ω) : ϕ ∈ L2
loc(ω)

}

,

and it is a closed subspace of L2(ω), equipped with the usual L2(ω) scalar product.
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For a given arbitrary vector field v ∈ L2(ω), the Lax–Milgram theorem guarantees
the unique existence of a vector potential field ∇ϕ ∈ G2(ω) satisfying

〈∇ϕ,∇ψ〉L2(ω) = 〈v,∇ψ〉L2(ω) , ∀ ∇ψ ∈ G2(ω).

Consequently, the function ϕ ∈ L2
loc(ω) is a weak solution to the boundary value

problem
{

4ϕ(x) = div v(x), x ∈ ω,

∂νϕ(x) = v(x) · ~ν(x), x ∈ ∂ω.

The Helmholtz projector P then is defined as Pv := v − ∇ϕ, and Pv is orthogonal
to any field from G2(ω), by construction. The image of P is called L2

σ(ω), it is the
completion of the space of divergence free vector fields from C∞

0 (ω) under the L2(ω)
norm, and we have the orthogonal decomposition L2(ω) = L2

σ(ω) ⊕G2(ω).
The Helmholtz projection in general Lebesgue spaces Lr(ω) with 1 < r < ∞ is

more delicate. First we define some needed function spaces:

C∞
(0)(ω) =

{

v : ∃u ∈ C∞
0 (Rn) with v = u|ω

}

,

Ŵ 1
r (ω) = {ϕ ∈ Lr

loc(ω) : ∇ϕ ∈ Lr(ω)} .

The norm in Ŵ 1
r (ω) is given by ‖∇ϕ‖Lr(ω), and functions which differ only by a

constant are considered equal. Then in [13] it has been shown that the Helmholtz
decomposition exists in Lr(ω) if and only if for all vector fields f ∈ Lr(ω) there is a
unique ϕ ∈ Ŵ 1

r (ω) such that
∫

ω

(∇ϕ− f) · ∇ψ dx = 0, ∀ ψ ∈ Ŵ 1
r′(ω),

1

r
+

1

r′
= 1.

There are certain unbounded domains ω with smooth boundary for which the decom-
position Lr(ω) = Lr

σ(ω) ⊕ Gr(ω) is not valid, see [14], [15], and also [16]. Here
Lr

σ(ω) is the completion of the space of divergence free vector fields from C∞
0 (ω)

under the Lr(ω) norm, and Gr(ω) is defined similarly to G2(ω) above.
However, in case of a waveguide ω = Ω = (0, 1) × Rn−1, the existence and

continuity of the Helmholtz projection has been established in [17], [18], [19] and
[20], for instance.

Now we stick to this waveguide Ω.

Lemma 3.2. For 1 < r <∞ and m ∈ N+, P is a continuous map from Wm
r (Ω) into

itself.

PROOF. By [21], the space C∞
(0)(Ω) is dense in Ŵ 1

r′(Ω). For f ∈ Lr(Ω) with f =
Pf + ∇ϕ, we have

∫

Ω

(∇ϕ − f) · ∇ψ dx = 0, ∀ψ ∈ C∞
(0)(Ω), (3.1)

and 4ϕ = div f in the sense of distributions. If additionally f ∈ W 1
r (Ω), then

ϕ ∈ W 2
r,loc(Ω), by elliptic regularity. Choose k ∈ {2, . . . , n}. Then ∂kf ∈ Lr(Ω) and
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we have the Helmholtz decomposition ∂kf = P∂kf + ∇ϕk, for some ϕk ∈ Ŵ 1
r (Ω),

and consequently
∫

Ω

(∇ϕk − ∂kf) · ∇ψ dx = 0, ∀ψ ∈ C∞
(0)(Ω).

By (3.1) we also have
∫

Ω

(∇ϕ− f) · ∇∂kψ dx = 0, ∀ψ ∈ C∞
(0)(Ω),

and partial integration then gives
∫

Ω

(∇∂kϕ− ∂kf) · ∇ψ dx = 0,

for all ψ from C∞
(0)(Ω) which is dense in Ŵ 1

r′(Ω). Therefore ϕk = ∂kϕ modulo

constants, and we have shown the improved regularity ∂kϕ ∈ W 1
r (Ω) for 2 ≤ k ≤ n

instead of ϕ ∈ Ŵ 1
r (Ω). Then also ∂1∂kϕ ∈ Lr(Ω) for k ≥ 2, and it remains to discuss

∂2
1ϕ. But

∂2
1ϕ = 4ϕ−

n
∑

k=2

∂2
kϕ = div f −

n
∑

k=2

∂2
kϕ ∈ Lr(Ω),

and the consequence is the continuity of the mapping P : W 1
r (Ω) → W 1

r (Ω). Higher
order derivatives are treated similarly, which finishes the proof.

Lemma 3.3. If v ∈ H2(Ω), then Pv ∈ H2(Ω) and B(id−P )v = 0. If v ∈ H2(Ω)
and Bv = 0, then BPv = 0.

PROOF. The third claim follows directly from the first two. The first claim was proved
in Lemma 3.2. Concerning the second claim, we can write (id−)Pv = ∇ϕ with some
ϕ ∈ H3

loc(Ω) and γ0∂1ϕ = 0. For k ≥ 2 we then have γ0∂1∂kϕ = γ0∂k∂1ϕ = 0,
because second order traces of ϕ at ∂Ω exist.

Lemma 3.4. For a function v ∈ H2(Ω) with Bv = 0, it holds P 4 v = 4Pv.

Moreover, if v is a vector field with v1 ∈ D(4K/2
D ) and vk ∈ D(4K/2

N ) for k =

2, . . . , n and some K ∈ N+, then also (Pv)1 ∈ D(4K/2
D ) and (Pv)k ∈ D(4K/2

N ).

PROOF. The map v 7→ P 4 v − 4Pv is continuous from H2(Ω) to L2(Ω), and by
density it suffices to prove the first assertion for v ∈ C∞

(0)(Ω). Now we only have to

show that 〈4Pv,∇ψ〉L2(Ω) = 0 for all v, ψ ∈ C∞
(0)(Ω), which can be done by repeated

partial integration and divPv ≡ 0.
This proves the second claim in case of K = 2 (and K = 1 runs similarly).

Now consider an even K ≥ 4. Then we know v ∈ HK(Ω) with B4l v = 0 for
l = 0, . . . ,K/2 − 1, and induction gives P 4l v = 4l Pv for such l. By Lemma 3.3,
then also B4l Pv = 0. And in case of an odd K ≥ 3, we know v ∈ HK(Ω) with
B4l v = 0 for l = 0, . . . , (K − 1)/2 − 1, and also γ0(4l v)1 = 0. The rest of the
proof goes in a similar way as before.
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Coming back to a solution (u, θ) of (2.1)–(1.3), we define the solenoidal part and
the potential part of u in the usual way:

uso := Pu, upo := (id−P )u.

Similarly, we write u0,so, u1,so, u0,po, u1,po for the solenoidal and potential parts of
the initial data.

Lemma 3.5. If (u, θ) ∈ X is a solution to (2.1)–(1.3), then uso ∈ Xu and (upo, θ) ∈
X are solutions to the systems

uso
tt − µ4uso = 0, (3.2)

and
{

upo
tt − (2µ+ λ)4upo + β grad θ = 0,

θt − κ4 θ + β div upo
t = 0,

(3.3)

together with the initial conditions

(uso, uso
t )(0, x) = (u0,so, u1,so)(x), (upo, upo

t , θ)(0, x) = (u0,po, u1,po, θ)(x).

Conversely, if uso and upo are solenoidal and potential vector fields with uso ∈ Xu and
(upo, θ) ∈ X , which solve (3.2) and (3.3), then (u, θ) ∈ X solves (2.1), (1.3) where
u := uso + upo.

PROOF. By Lemma 3.3, the Helmholtz decomposition preserves the H2(Ω) regularity
and the boundary conditions encoded in the operator B. Now let (u, θ) be a solution
to (2.1), apply P to the first equation of that system, and then make use of Lemma 3.4
to obtain (3.2). Subtracting (3.2) from (2.1) then gives (3.3). The converse direction is
immediate.

Lemma 3.6. If a function u fromXu solves the wave equation (3.2) and has solenoidal
initial data, then the solution u remains solenoidal for all times.

PROOF. Write u = uso + upo and observe that u and uso have the same regularity,
solve the same differential equation and the same boundary conditions. It remains to
apply Lemma 3.1 with the parameters λ := −µ and β := 0 to show u ≡ uso.

Lemma 3.7. If a pair of functions (u, θ) from X solves the thermoelasticity system

{

utt − α4u+ β grad θ = 0, α > 0, β ∈ R,

θt − κ4 θ + β div ut = 0, κ > 0,
(3.4)

and the initial data for u are potential fields, then the solution u remains a potential
field for all positive times.

PROOF. Write u = uso + upo, apply Lemma 3.5 with µ := α and λ := −µ, and then
make use of Lemma 3.1 to deduce that u ≡ upo.
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3.2. The zero mode projection

Solutions of (2.1) that do not depend on x1 deserve a special treatment. To this end,
we define two more orthogonal projectors:

Definition 3.1. For a scalar function ϕ : Ω → R, we set P0ϕ : Ω → R as

(P0ϕ)(x) :=

∫ 1

z1=0

ϕ(z1, x2, . . . , xn) dz1 = 〈ϕ(·, x2, . . . , xn), ψ0(·)〉L2(0,1) ψ0(x1).

For a vector valued function u : Ω → Rn, we fix P0,Bu : Ω → Rn as

(P0,Bu)(x1, . . . , xn) :=











0
P0u2

...
P0un











(x1, . . . , xn).

We introduce the notations ϕ[0] := P0ϕ, ϕ[+] := ϕ− P0ϕ, u[0] := P0,Bu and u[+] :=
u− P0,Bu.

These projectors map L2(Ω) continuously into itself.
Here the function ψ0(x1) = 1 is the normalized eigenfunction to the zero eigen-

value of the Neumann Laplacian on (0, 1); and since ϕ[0] does not depend on x1, we
call ϕ[0] the zero mode of ϕ, and ϕ[+] is said to contain the higher modes of ϕ. And
the Dirichlet Laplacian has no zero eigenvalue, which is the reason why the first com-
ponent of P0,Bu has been defined as zero, cf. the definition of the boundary operator
B.

Lemma 3.8. These projectors commute with the usual differential operators and the
Helmholtz projector provided appropriate boundary conditions are satisfied:

• if u ∈ H1(Ω) with γ0u1 = 0, then divP0,Bu = P0 div u,

• if ϕ ∈ H1(Ω), then gradP0ϕ = P0,B gradϕ,

• if ϕ ∈ H2(Ω) with γ0∂νϕ = 0, then P0 4ϕ = 4P0ϕ,

• if u ∈ H2(Ω) with γ0∂νuk = 0 for k = 2, . . . , n, then P0,B 4u = 4P0,Bu,

• if u ∈ H2(Ω) with γ0u1 = 0, then P0,B graddiv u = graddivP0,Bu,

• if u ∈ H1(Ω) with γ0u1 = 0, then P0,BPu = PP0,Bu, where P is the
Helmholtz projector.

Then the following result is proved by very similar methods as the Lemmas 3.5,
3.6 and 3.7, exploiting the commutation relations from Lemma 3.8.

Lemma 3.9. If (u, θ) ∈ X is a solution to (2.1), (1.2), (1.3), then (u[0], θ[0]) ∈ X is a
solution to (2.1), (1.3) with initial data (u0

[0], u
1
[0], θ

0
[0]).
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If (u, θ) ∈ X is a solution to (2.1), (1.2), (1.3), and the initial data (u0, u1, θ0)
are pure zero modes in the sense of P0,Bu

0 = u0, P0,Bu
1 = u1, P0θ

0 = θ0, then the
solution (u, θ) remains a pure zero mode for all positive times.

If (u, θ) ∈ X is a solution to (2.1), (1.2), (1.3), and the initial data (u0, u1, θ0)
contain no zero modes in the sense of P0,Bu

0 = 0, P0,Bu
1 = 0, P0θ

0 = 0, then the
solution (u, θ) remains a zero mode free solution for all positive times.

The advantage of considering the zero mode part of the solution separately is man-
ifold: first, this part solves a thermoelastic system in the whole space Rn−1, and then
we can quote well–known results for such situations. Second, the Poincare’s inequality
becomes available. And third, the Neumann Laplacian becomes an invertible operator
if we consider only the subspace of zero mode free functions.

More precisely, this means the following.

Lemma 3.10 (Poincare’s inequalities). We have, with a constantC independent of ϕ,

‖ϕ‖L2(Ω) ≤ C ‖∂1ϕ‖L2(Ω) , ϕ ∈ H1
0 (Ω), (3.5)

‖ϕ‖L2(Ω) ≤ C ‖∂1ϕ‖L2(Ω) , ϕ ∈ H1(Ω), P0ϕ ≡ 0. (3.6)

PROOF. The estimate (3.5) is standard. Concerning (3.6), we choose an ε > 0 and a
ψ ∈ H1(Ω) ∩ C∞(Ω) with ‖ϕ− ψ‖H1(Ω) < ε. Then

‖P0ψ‖L2(Ω) = ‖P0(ψ − ϕ)‖L2(Ω) ≤ ‖ψ − ϕ‖L2(Ω) < ε,

and we have

‖ϕ‖L2(Ω) ≤ ‖ϕ− ψ‖L2(Ω) + ‖P0ψ‖L2(Ω) + ‖(id−P0)ψ‖L2(Ω) < 2ε+ ‖χ‖L2(Ω) ,

with χ := (id−P0)ψ. Note that χ ∈ H1(Ω) ∩ C∞(Ω) and ∂1χ ≡ ∂1ψ as well as
∫ 1

z1=0

χ(z1, x2, . . . , xn) dz1 = 0, (x2, . . . , xn) ∈ R
n−1.

By Poincare’s inequality on (0, 1), we have

‖χ(·, x2, . . . , xn)‖L2(0,1) ≤ C ‖∂1χ(·, x2, . . . , xn)‖L2(0,1) ,

‖χ‖L2(Ω) ≤ C ‖∂1ψ‖L2(Ω) ≤ Cε+ C ‖∂1ϕ‖L2(Ω) ,

which finally gives us

‖ϕ‖L2(Ω) < (2 + C)ε+ C ‖∂1ϕ‖L2(Ω) , ∀ε > 0.

Sending ε to zero completes the proof.

By either (3.5) or (3.6), then the Lax–Milgram lemma gives us the existence,
uniqueness and a priori estimates of solutions w ∈ H1(Ω) to the scalar weak Dirichlet
and Neumann problems

4w = f, γ0w = 0, f ∈ L2(Ω),

4w = f, γ0∂1w = 0, P0w ≡ 0, f ∈ L2(Ω), P0f ≡ 0. (3.7)
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The solutionsw can then be found by spectral decomposition onL2(0, 1), which means,
in case of (3.7) and ψj being the eigenfunctions of the Neumann Laplacian,

f(x) =

∞
∑

j=1

ψj(x1)fj(x2, . . . , xn), w(x) =

∞
∑

j=1

ψj(x1)wj(x2, . . . , xn),

(

−π2j2 + ∂2
2 + · · · + ∂2

n

)

wj = fj on R
n−1.

For each of the boundary conditions, we have ‖4w‖2
L2(Ω) =

∑n
j,k=1 ‖∂j∂kw‖2

L2(Ω),
and consequently

‖w‖H2(Ω) ≤ C ‖f‖2
L2(Ω) . (3.8)

3.3. Existence of solutions

Now the splitting of u into solenoidal and potential part is justified, and we discuss
the existence of solutions.

The existence of the solenoidal part is obvious:

Proposition 3.1 (Existence of the solenoidal part). Necessary and sufficient for the
global existence of a solution u ∈ Xu of the wave equation (3.2) with initial data u0

and u1 is

(u0, u1) ∈ H2(Ω) ×H1(Ω), Bu0 = 0, γ0u
1
1 = 0.

The existence of the potential part upo will be established in Proposition 3.3, after
several preparatory lemmas.

Now let (u, θ) from X be a solution to (3.4) and introduce a vector W with n(n+
1) + 1 components,

W = (W (1), . . . ,W (n+2))>, (3.9)

where W (1), . . . , W (n+1) are n–vectors,

W (k) = graduk, (1 ≤ k ≤ n), W (n+1) =
1√
α
∂tu, (3.10)

and W (n+2) is a scalar,

W (n+2) =
1√
α
θ. (3.11)

Then we obtain the system

∂tW + AW = 0, (3.12)

A =















0 . . . 0 a1 0
...

. . .
...

...
...

0 . . . 0 an 0
a>1 . . . a>n 0 β grad
0 . . . 0 β div −κ4















, (3.13)
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where ak is an n× n matrix of the form

ak = −
√
α







0 . . . ∂1 . . . 0
...

...
...

0 . . . ∂n . . . 0







with non-vanishing entries in the k–th column.

Lemma 3.11. If (u, θ) ∈ X is a solution to (3.4), then the function W constructed
above is a solution to (3.12) of the regularity



















W (k) ∈ C1([0,∞),∇H1(Ω))
⋂

C([0,∞),∇H2(Ω)), 1 ≤ k ≤ n,

W (n+1) ∈ C1([0,∞), L2(Ω))
⋂

C([0,∞), H1(Ω)),

W (n+2) ∈ C([0,∞), H2(Ω))
⋂

C1([0,∞), L2(Ω))

(3.14)
and boundary conditions

γ0W
(1)
k = γ0W

(k)
1 = γ0W

(n+1)
1 = γ0∂νW

(n+2) = 0, 2 ≤ k ≤ n. (3.15)

Conversely, let W be given with the properties (3.14) and (3.15). Then there are
(u0, u1, θ0) ∈ H2(Ω) ×H1(Ω) ×H1(Ω) such that

θ(t, x) :=
√
αW (n+2)(t, x),

u(t, x) := u0(x) +
√
α

∫ t

τ=0

W (n+1)(τ, x) dτ

satisfy (u, θ) ∈ X and solve (3.3) with initial conditions (1.2).

PROOF. We start with constructing (u0, u1, θ0). By (3.14), there is a scalar function

ψ1 ∈ H2(Ω) with W (1)(0, x) = gradψ1(x). From the boundary condition γ0W
(1)
k =

0 we then find that ψ1 is constant on {0} × Rn−1 and on {1} × Rn−1. Since the
trace γ0ψ1 at the boundary belongs to H3/2(Rn−1), both constants must be zero, and
then u0

1 := ψ1 has homogeneous Dirichlet boundary conditions. For k ≥ 2, there
are functions ψk ∈ H2(Ω) with W (k)(0, x) = gradψk(x). Then u0

k := ψk has
vanishing Neumann boundary values. Next, we put u1(x) =

√
αW (n+1)(0, x) and

θ0(x) :=
√
αW (n+2)(0, x).

For k ≥ 1, we remark

graduk(t, x) = gradu0
k(x) +

√
α

∫ t

τ=0

gradW
(n+1)
k (τ, x) dτ

= gradu0
k(x) +

∫ t

τ=0

∂τW
(k)(τ, x) dτ = W (k)(t, x).

Then (3.3) follows easily, and the proof is finished.
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To define the domain of the operator A, we bring into play that u shall be a vector
potential field. But first we define the ground space H.

Definition 3.2. A vector (W (1), . . . ,W (n+2)) belongs to H if and only if

• there is a scalar functionϕ such that ∇ϕ ∈ H1(Ω)∩G2(Ω) andB∇ϕ = 0, with
W (k) = ∂k∇ϕ for k = 1, . . . , n,

• W (n+1) ∈ G2(Ω),

• W (n+2) ∈ L2(Ω).

Lemma 3.12. The space H, equipped with the L2(Ω) norm, is a Banach space.

PROOF. The spaceH1(Ω)∩G2(Ω), endowed with theH1(Ω) norm, is the intersection
space of two Banach spaces. Its subspace Ztmp consisting of all those elements ∇ϕ
with B∇ϕ = 0 is a closed subspace, since Ztmp is the null space of a bounded trace
operator. Applying the closed graph theorem to the operators ∂k : Ztmp → L2(Ω) for
k = 1, . . . , n concludes the proof.

Of course, the condition B∇ϕ = 0 reduces to γ0∂1ϕ = 0, due to the limited smooth-
ness of ϕ.

We also define a closed subspace of H:

H+ :=
{

(W (1), . . . ,W (n+2)) = (∂1∇ϕ, . . . , ∂n∇ϕ,∇ψ, ϑ) ∈ H :

P0ϕ ≡ P0ψ ≡ P0ϑ ≡ 0} .
(3.16)

By repeated use of Poincare’s inequalities, we deduce the estimates

‖ϕ‖L2(Ω) ≤ C ‖∂1ϕ‖L2(Ω) ≤ C ′ ‖∂1∇ϕ‖L2(Ω) ,

‖ψ‖L2(Ω) ≤ C ‖∂1ψ‖L2(Ω) ,

valid for W ∈ H+.
We also note that the vector W = (∂1∇ϕ, . . . , ∂n∇ϕ,∇ψ, ϑ) is mapped by A to

the vectorAW = (−√
α∂1∇ψ, . . . ,−

√
α∂n∇ψ,∇(−√

α4ϕ+βϑ), β4ψ−κ4ϑ).

Definition 3.3. The domain of the operator A is fixed as

D(A) =
{

W = (W (1), . . . ,W (n+2)) ∈ H : AW ∈ H, W (n+2) ∈ D(4N )
}

.

Lemma 3.13. A vector W belongs to D(A) if and only if W ∈ H and

• W (k) ∈ H1(Ω) for 1 ≤ k ≤ n+ 1 and W (n+2) ∈ H2(Ω),

• the boundary conditions (3.15) hold.

Furthermore, if W ∈ C([0,∞), D(A)) and ∂tW ∈ C([0,∞),H), then W has the
regularity (3.14).
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PROOF. From (AW )(k) ∈ L2(Ω) for 1 ≤ k ≤ n we find W (n+1) ∈ H1(Ω) ∩
G2(Ω). And W (n+2) ∈ D(4N ) ⊂ H2(Ω) together with (AW )

(n+1)
k ∈ L2(Ω) imply

divW (k) ∈ L2(Ω) for 1 ≤ k ≤ n. We know that W (k) = ∂k∇ϕ for some scalar
function ϕ and all k, hence we obtain 4 ∂kϕ ∈ L2(Ω). From

4(∂1ϕ) ∈ L2(Ω), γ0(∂1ϕ) = 0, ∂1ϕ ∈ H1(Ω),

we conclude that ∂1ϕ ∈ H2
D(Ω) = H2(Ω)∩H1

0 (Ω). Then the boundary values γ0∂1ϕ
belong to H3/2(∂Ω), and for k ≥ 2 we find γ0(∂1∂kϕ) = 0, and therefore we know
for such k that

4(∂kϕ) ∈ L2(Ω), γ0∂1(∂kϕ) = 0, ∂kϕ ∈ H1(Ω),

hence ∂kϕ ∈ H2
N (Ω) and B∇ϕ = 0, from which W (k) ∈ H1(Ω) and the condi-

tions (3.15) follow. The proof is complete.

Lemma 3.14. The embeddingD(A) ⊂ H is dense.

PROOF. We concentrate our discussion to the components W (1), . . . , W (n). Let
∇ϕ ∈ H1(Ω) ∩ G2(Ω) be given with γ0∂1ϕ = 0 and W (k) = ∂k∇ϕ. Choose a
smooth vector field v (which will in general not be a potential field) with γ0v1 = 0 and
‖∇ϕ− v‖H1(Ω) small and set ∇ψ := (id−P )v. Then also ‖∇ϕ−∇ψ‖H1(Ω) will
be small, by the continuity of id−P as mapping between Sobolev spaces of the same
order. Lemma 3.3 gives B∇ψ = 0. It remains to set W̃ (k) := ∂k∇ψ for 1 ≤ k ≤ n.

Further, we define an operator A+ with domain D(A+) := D(A) ∩ H+, with
A+W := AW for W ∈ D(A+). This operator maps D(A+) into H+.

Lemma 3.15. Suppose AW = F with F ∈ H, W ∈ D(A), and W (k) = ∇∂kϕ for
1 ≤ k ≤ n. Then we have the estimates

∥

∥

∥∇W (n+1)
∥

∥

∥

L2(Ω)
≤ C ‖F‖L2(Ω) , (3.17)

∥

∥

∥4W (n+2)
∥

∥

∥

L2(Ω)
≤ C ‖F‖L2(Ω) , (3.18)

‖∂1ϕ‖H2(Ω) ≤ C

(

∥

∥

∥F
(n+1)
1

∥

∥

∥

L2(Ω)
+
∥

∥

∥∂1W
(n+2)

∥

∥

∥

L2(Ω)

)

. (3.19)

To each F ∈ H+, there is exactly one W ∈ D(A+) with A+W = F , and we have
the following estimate, with some constant C independent of F :

∥

∥

∥(W (1), . . . ,W (n+1))
∥

∥

∥

H1(Ω)
+
∥

∥

∥W (n+2)
∥

∥

∥

H2(Ω)
≤ C ‖F‖H . (3.20)

PROOF. Estimate (3.17) follows from F (k) = akW
(n+1) for 1 ≤ k ≤ n, having

(3.18) as a direct consequence. Finally, the equation for the first component F (n+1)
1 of

F (n+1) implies

4(∂1ϕ) = c1F
(n+1)
1 + c2∂1W

(n+2), γ0∂1ϕ = 0,
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with certain constants c1, c2, and then (3.8) completes the proof of (3.19).
Concerning the last claim, we know F (k) = ∂k∇ϕF for k = 1, . . . , n, with ϕF ∈

H2(Ω), γ0∂1ϕF = 0 and P0ϕF ≡ 0; F (n+1) = ∇ψF with ψF ∈ H1(Ω) and P0ψF ≡
0; as well as F (n+2) = ϑF ∈ L2(Ω) with P0ϑF ≡ 0.

We wish to find ϕ, ψ, ϑ with −√
α∂k∇ψ = ∂k∇ϕF , ∇(−√

α4ϕ+βϑ) = ∇ψF ,
β4ψ − κ4ϑ = ϑF , and additionally ∇ϕ ∈ H2(Ω), ∇ψ ∈ H1(Ω), ϑ ∈ H2(Ω),
γ0∂ν(ϕ, ψ, θ) = 0, and P0ϕ ≡ P0ψ ≡ P0ϑ ≡ 0.

Then necessarily ψ = −ϕF /
√
α. Next ϑ is uniquely determined via 4(−κϑ +

βψ) = ϑF , which is solvable since P0ϑF ≡ 0. After having determined ϑ, we finally
consider −√

α4ϕ = ψF −βϑ+const. It turns out that this integration constant must
be zero, since the other three items of this equation are members of L2(Ω). Then ϕ
is uniquely determined with the desired properties. Here we have made repeated use
of (3.8), which also gives (3.20), finishing the proof.

Lemma 3.16. The operator A is a closed operator, A : D(A) → H.

PROOF. Take a sequence (Ws)s∈N ⊂ D(A) which converges in the norm of H to
an element W∗ ∈ H. Additionally, suppose lims→∞ ‖AWs − Y∗‖H = 0 for some
Y∗ ∈ H. We intend to show W∗ ∈ D(A) and AW∗ = Y∗.

From our assumption, we have already the convergence lims→∞W
(k)
s = W

(k)
∗ in

the topology ofL2(Ω), for k = 1, . . . , n+2. From (3.17) we directly obtainW (n+1)
∗ ∈

H1(Ω), with the H1(Ω) convergence lims→∞W
(n+1)
s = W

(n+1)
∗ , and γ0W

(n+1)
∗,1 =

0. The Neumann Laplacian 4N : D(4N ) → L2(Ω) is closed, then (3.18) implies

W
(n+2)
∗ ∈ D(4N ) = H2

N (Ω), and we have the convergence lims→∞W
(n+2)
s =

W
(n+2)
∗ in H2(Ω).

Next, we know that there are functions ϕs and ϕ∗ with the properties

W (k)
s = ∂k∇ϕs (1 ≤ k ≤ n), ∇ϕs ∈ H2(Ω), B∇ϕs = 0,

W
(k)
∗ = ∂k∇ϕ∗ (1 ≤ k ≤ n), ∇ϕ∗ ∈ H1(Ω), γ0∂1ϕ∗ = 0.

Since (Ws)s∈N converges to W∗ in H, we get lims→∞ ‖∂1(∂1ϕs − ∂1ϕ∗)‖L2(Ω) = 0,
from which (3.5) yields lims→∞ ‖∂1ϕs − ∂1ϕ∗‖L2(Ω) = 0. Now consider the case
k = 1 first. From (3.19) and the closedness of the Dirichlet Laplacian4D : D(4D) →
L2(Ω), we find ∂1ϕ∗ ∈ D(4D) = H2

D(Ω) with lims→∞ ‖∂1ϕs − ∂1ϕ∗‖H2(Ω) = 0.

Next take 2 ≤ k ≤ n. The k-th component of ((AWs)
(n+1))s∈N is a Cauchy

sequence in L2(Ω), hence also the sequence (4 ∂kϕs)s∈N. We know already that the
sequence (∂2

1∂kϕs)s∈N converges in L2(Ω) to the limit ∂2
1∂kϕ∗, and therefore also

the sequence (
∑n

l=2 ∂
2
l ∂kϕs)s∈N has a limit in L2(Ω). Via a partial Fourier transform

which replaces the variable x′ := (x2, . . . , xn) with ξ′ := (ξ2, . . . , ξn), we conclude
that also (∂α′

x′ ∂kϕs)s∈N is a Cauchy sequence, for all multi–indices α′ = (α2, . . . , αn)
with |α′| = 2. Then it follows that

lim
s→∞

‖∂α
x (ϕs − ϕ∗)‖L2(Ω) = 0, ∀ α = (α1, . . . , αn), |α| = 3.

This means that (W
(k)
s )s∈N converges to W (k)

∗ not only in the norm of L2(Ω), but also
in the norm of H1(Ω). Now the closedness of A quickly follows.
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The next result is proved by a similar technique as the previous one.

Lemma 3.17. The adjoint operator A∗ has the same domain, D(A) = D(A∗), and it
is given by

A∗ =















0 . . . 0 −a1 0
...

. . .
...

...
...

0 . . . 0 −an 0
−a>1 . . . −a>n 0 −β grad

0 . . . 0 −β div −κ4















.

For W ∈ D(A), we have

< 〈AW,W 〉L2(Ω) = κ
∥

∥

∥∇W (n+2)
∥

∥

∥

2

L2(Ω)
.

Proposition 3.2. The operator −A generates a C0 semigroup of contractions on the
space H. For each W0 ∈ D(A), the system (3.12) has a unique solution W ∈
C([0,∞), D(A)) with W (0) = W0 and ‖W (t)‖H ≤ ‖W0‖H for all t ∈ (0,∞).

PROOF. This follows from the above results on A as well as A∗, and the Lumer–
Phillips theorem.

For later use, we study higher regularity of the solution:

Lemma 3.18. Let W ∈ D(Am) := {W ∈ D(A) : AW ∈ D(Am−1)} for an odd
integer m ≥ 1. Then

• W (k) ∈ Hm(Ω) for 1 ≤ k ≤ n+ 1 and W (n+2) ∈ Hm+1(Ω),

• if W = (∂1∇ϕ, . . . , ∂n∇ϕ,∇ψ, θ)>, then ∇ϕ ∈ Hm+1(Ω) as well as ∇ψ ∈
Hm(Ω), and the following boundary conditions are valid:

γ0∂
m
1 ϕ = γ0∂

m
1 ψ = γ0∂

m
1 θ = 0.

PROOF. By Lemma 3.13, the claim is valid for m = 1. Now let the assertion be
shown for m, and suppose W ∈ D(Am+2), where W = (∂1∇ϕ, . . . , ∂n∇ϕ,∇ψ, θ).
Then we have AW ∈ D(Am), to which we apply the induction assumption and find
(AW )(k) ∈ Hm(Ω) and (AW )(n+2) ∈ Hm+1(Ω). In the manner of the proof of
Lemma 3.16 we show step by step: W (n+1) ∈ Hm+1(Ω), W (n+2) ∈ Hm+2(Ω),
∇ϕ ∈ Hm+2(Ω) and W (k) ∈ Hm+1(Ω) for 1 ≤ k ≤ n.

Moreover, we have

AW =
(

a1W
(n+1), . . . , anW

(n+1),

n
∑

k=1

a>k W
(k) + β∇W (n+2),

− κ4W (n+2) + β divW (n+1)
)>

=
(

−
√
α∂1∇ψ, . . . ,−

√
α∂n∇ψ,∇(−

√
α4ϕ+ βθ),−κ4 θ + β4ψ

)>
,
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and the induction assumption concerning the boundary values gives

γ0∂
m
1 (−

√
α4ϕ+ βθ) = γ0∂

m
1 (−κ4 θ + β4ψ) = 0. (3.21)

Because we also have γ0∂
m
1 θ = 0, the first desired identity γ0∂

m+2
1 ϕ = 0 is obtained.

In a second step, we consider A2W ∈ D(Am). By the same procedure as in the
first step, we show W (k) ∈ Hm+2(Ω) for 1 ≤ k ≤ n + 1 and W (n+2) ∈ Hm+3(Ω).
And we also have

A2W =

(

. . . , . . . , . . . ,

n
∑

k=1

a>k (AW )(k) + β∇(AW )(n+2), . . .

)>

,

n
∑

k=1

a>k (AW )(k) + β∇(AW )(n+2) = α∇4ψ + β∇(−κ4 θ + β4ψ),

and the induction assumption is

γ0∂
m
1

(

α4ψ + β(−κ4 θ + β4ψ)
)

= 0,

from which we find γ0∂
m
1 4ψ = 0, by (3.21), hence γ0∂

m+2
1 ψ = 0, and then also

γ0∂
m+2
1 θ = 0. The proof is finished.

To obtain a better feeling of the elements of D(Am), we describe a subset:

Lemma 3.19. For m being an odd integer ≥ 1, we define

Ym =
{

W = (∂1∇ϕ, . . . , ∂n∇ϕ,∇ψ, θ)> : (∇ϕ,∇ψ, θ) ∈ H2m(Ω),

γ0∂
k
1 (ϕ, ψ, θ) = 0, k = 1, 3, . . . , 2m− 1

}

.

Then Ym ⊂ D(Am).

For the proof, we only note that A2 maps Ym into Ym−2, and Y1 ⊂ D(A).

Proposition 3.3 (Existence of the potential part). Suppose that we are given initial
data (u0, u1, θ0) with the regularity

u0 ∈ H2(Ω) ∩G2(Ω), Bu0 = 0,

u1 ∈ H1(Ω) ∩G2(Ω), γ0u
1
1 = 0,

θ0 ∈ H2(Ω), γ0∂1θ
0 = 0.

Then the thermoelastic system (3.4) with the initial conditions (1.2) possesses a unique
solution (u, θ) ∈ X .

Moreover, for each m ∈ N there is a number M such that: if the above introduced
initial data (u0, u1, θ0) additionally satisfy (u0, u1, θ0) ∈ HM (Ω) and

B4k u0 = 0, γ0 4k u1
1 = 0, γ0∂1 4k θ0 = 0, 1 ≤ k ≤M/2− 1,

then the solution (u, θ) has higher regularity in the sense of (4k u,4k θ) ∈ X for
0 ≤ k ≤ m.

PROOF. It suffices to combine Lemma 3.7, Lemma 3.11, Lemma 3.13, Proposition 3.2
and Lemma 3.19.
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4. Decay Estimates

In this section, we prove decay properties of the solution u to (2.1) which will be
the main part of the proof of Theorem 2.1. First we consider the solenoidal part uso:

Proposition 4.1. If uso solves (3.2) with uso ∈ Xu, then Eso(t) = const with

Eso(t) =
1

2

(

‖uso
t ‖2

L2(Ω) + µ ‖∇uso‖2
L2(Ω)

)

.

Moreover, we have the decay estimates
∥

∥

∥
(∇uso

[0], ∂tu
so
[0])(t, ·)

∥

∥

∥

L∞(Ω)
(4.1)

≤ C

(1 + t)(n−2)/2

(

∥

∥

∥u
0,so
[0]

∥

∥

∥

W K+1
1 (Ω)

+
∥

∥

∥u
1,so
[0]

∥

∥

∥

W K−1
1 (Ω)

)

,

∥

∥

∥(∇uso
[+], ∂tu

so
[+])(t, ·)

∥

∥

∥

L∞(Ω)
(4.2)

≤ C

(1 + t)(n−1)/2

(

∥

∥

∥u
0,so
[+]

∥

∥

∥

W K+1
1 (Ω)

+
∥

∥

∥u
1,so
[+]

∥

∥

∥

W K−1
1 (Ω)

)

,

under the following assumptions on the inital data:

u0,so
1 ∈ D(4Kso/2

D ) ∩WK+1
1 (Ω), u1,so

1 ∈ D(4(Kso−1)/2
D ) ∩WK−1

1 (Ω),

u0,so
k ∈ D(4Kso/2

N ) ∩WK+1
1 (Ω), u1,so

k ∈ D(4(Kso−1)/2
N ) ∩WK−1

1 (Ω),

where 2 ≤ k ≤ n, Kso = bn
2 c + 3 and K = 2bn

2 c + 5. Here u0,so
1 (x) = uso

1 (0, x)

and u1,so
1 (x) = ∂tu

so(0, x) denote the initial data of the first component of uso, and
the initial data u0,so and u1,so are split into zero mode parts and higher mode parts as
in Definition 3.1.

PROOF. The energy estimate follows from Lemma 3.1, and the estimates (4.1), (4.2)
can be found in [10].

Now we handle the potential part: let (v, θ) ∈ X with v := upo be a solution
to (3.4) and write

v =

(

v1
v′

)

, v′ = (v2, . . . , vn)>,

x′ = (x2, . . . , xn), ∇′ = (∂2, . . . , ∂n), and 4′ =
∑n

k=2 ∂
2
k . Accordingly, we also

introduce div′.
Zero mode solutions to (2.1) solve thermoelasticity problems in domains of one

dimension less, because zero mode functions do not depend on x1:
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Proposition 4.2. If (u[0], θ[0]) ∈ X solves (2.1) and (1.3) with u[0] being a potential
field, then Epo

[0] (t) = const with

Epo
[0](t) =

1

2

(

∥

∥

∥∂tu
po
[0]

∥

∥

∥

2

L2(Ω)
+ µ

∥

∥

∥∇upo
[0]

∥

∥

∥

2

L2(Ω)

+(µ+ λ)
∥

∥

∥div upo
[0]

∥

∥

∥

2

L2(Ω)
+
∥

∥θ[0]
∥

∥

2

L2(Ω)

)

.

Moreover, we have the decay estimates
∥

∥∂α
x (∇u[0], ∂tu[0], θ[0])(t, ·)

∥

∥

L∞(Ω)
(4.3)

≤ C

(1 + t)(n−1+|α|)/2

∥

∥

∥(∇u0
[0], u

1
[0], θ

0
[0])
∥

∥

∥

W
N+|α|
1 (Ω)

,

where α ∈ Nn, and N ≥ n is an integer, under the following assumption on the initial
data:

(u0
[0], u

1
[0], θ

0
[0]) ∈W

N+|α|
1 (Ω).

PROOF. We only have to remark that the inequality (4.3) is just the L∞–L1 decay
estimate for the potential part of a solution to a thermoelasticity problem in the spatial
domain Rn−1, compare [2, Lemma 4.15].

Note that the vector potential part of a zero mode vector field remains a zero mode
vector field, by Lemma 3.8.

The Propositions 4.1 and 4.2 describe the decay of the solenoidal part and the zero
mode of the potential part, and therefore we can now restrict our attention to (v, θ) ∈ X
as solution to (3.4) with v = upo

[+] and θ = θ[+]. The decay estimate will be given in
Proposition 4.3.

4.1. Fourier decomposition and fundamental solution
Let φ1, φ2, . . . denote the eigenfunctions to −∂2

1 with Dirichlet boundary condi-
tions on (0, 1), with eigenvalues λ1, λ2, . . . , and write ψ0, ψ1, . . . for the eigenfunc-
tions to −∂2

1 with Neumann boundary conditions on (0, 1), with the associated eigen-
values λ0, λ1, . . . . We assume the usual normalization:

∫ 1

0

φ2
j (x1) dx1 =

∫ 1

0

ψ2
j (x1) dx1 = 1,

and we have the explicit representations φj(x1) = const sin(jπx1) and ψj(x1) =
const cos(jπx1), as well as λj = π2j2.

Recalling the boundary conditions Bv = 0, the following Fourier decomposition
is natural:

v1(t, x) =

∞
∑

j=1

v1,j(t, x
′)φj(x1), v′(t, x) =

∞
∑

j=1

v′j(t, x
′)ψj(x1),

θ(t, x) =

∞
∑

j=1

θj(t, x
′)ψj(x1),
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and we regard the Fourier coefficients v1,j : [0,∞)×Rn−1 → R, v′j : [0,∞)×Rn−1 →
Rn−1, θj : [0,∞)×Rn−1 → R as new unknown functions for which we seek estimates.
Note that terms with the function ψ0 do not appear because of the absence of zero
modes.

Making use of ∂1φk = λ
1/2
k ψk, we then derive the systems for j ≥ 1:

∂2
t v1,j − α(4′ −λj)v1,j − βλ

1/2
j θj = 0,

∂2
t v

′
j − α(4′ −λj)v

′
j + β∇′θj = 0,

∂tθj − κ(4′ −λj)θj + β∂tλ
1/2
j v1,j + β∂t div′ v′j = 0.

Next we perform a Fourier transform, exchanging the variable x′ ∈ Rn−1 against
ξ′ = (ξ2, . . . , ξn) ∈ Rn−1:

v̂1,j(t, ξ
′) =

∫

R
n−1

x′

exp(−ix′ · ξ′)v1,j(t, x
′) dx′,

and accordingly for v̂′j and θ̂j . Setting %j = %j(ξ
′) :=

√

α(|ξ′|2 + λj), we then find
for all j ≥ 1:

∂2
t v̂1,j + %2

j v̂1,j − βλ
1/2
j θ̂j = 0,

∂2
t v̂

′
j + %2

j v̂
′
j + βiξ′θ̂j = 0,

∂tθ̂j +
κ

α
%2

j θ̂j + βλ
1/2
j ∂tv̂1,j + β∂tiξ

′ · v̂′j = 0,

where ξ′ ·v̂′j stands for the euclidean bilinear product of vectors with n−1 components.
To bring this system into first order form, we set for j ≥ 1:

ŵ1,j(t, ξ
′) := ∂tv̂1,j(t, ξ

′) + i%j(ξ
′)v̂1,j(t, ξ

′),

ŵ2,j(t, ξ
′) := ∂tv̂

′
j(t, ξ

′) + i%j(ξ
′)v̂′j(t, ξ

′),

ŵ3,j(t, ξ
′) := ∂tv̂1,j(t, ξ

′) − i%j(ξ
′)v̂1,j(t, ξ

′),

ŵ4,j(t, ξ
′) := ∂tv̂

′
j(t, ξ

′) − i%j(ξ
′)v̂′j(t, ξ

′),

ŵ5,j(t, ξ
′) :=

√
2θ̂j(t, ξ

′)

and Ŵj := (ŵ1,j , . . . , ŵ5,j)
>. Then we obtain the system

∂tŴj + ÂjŴj = 0,

Âj =















−i%j 0 0 0 −βλ1/2
j /

√
2

0 −i%j 0 0 βiξ′/
√

2

0 0 i%j 0 −λ1/2
j /

√
2

0 0 0 i%j βiξ′/
√

2

βλ
1/2
j /

√
2 βi(ξ′)>/

√
2 βλ

1/2
j /

√
2 βi(ξ′)>/

√
2 (κ/α)%2

j















.

In the sequel, we will determine approximately the fundamental solution to this ODE
system, and therefore we wish to find the eigenvalues and eigenvectors of Âj , modulo
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some remainder terms. To take a more general approach, we fix a cone K in a “fre-
quency space” RN , and introduce symbol classes: a function f mapping from K into
C (or Ck or Cp×q) is said to belong to the symbol class Sα if we have the estimate
|f(η)| ≤ Cf |η|α for all η ∈ K. And it belongs to the homogeneous symbol class Sα

hom

if additionally f(%η) = %αf(η) for all % > 0 and η ∈ K.
In our case, K = [0,∞) × Rn−1 with η = (η1, . . . , ηn) = (

√

λj , ξ
′). We may

ignore during our computations that λj takes discrete values only and is separated from
zero.

Then we write A(η) := Âj(ξ
′) and U(t, η) := Ŵj(t, ξ

′). We end up with the
system

∂tU +AU = 0, (4.4)

A(η) = A2(η) + A1(η),

A2 =





0 0 0
0 0 0
0 0 a2



 ∈ S2
hom, a2(η) :=

κ

α
%2

j (ξ
′),

A1 =





−D 0 b
0 D b

−b∗ −b∗ 0



 ∈ S1
hom,

with D being an imaginary multiple of the n × n identity matrix, b being a column
vector with n complex-valued entries, and b∗ = (b>) the hermitian adjoint. Note that
there are positive constants c1 and c2 with c1|η|2 ≤ a2(η) ≤ c2|η|2 for all η ∈ K.

To the (2n+ 1) × (2n+ 1) matrix A, 2n− 2 eigenvalues and eigenvectors can be
found right away:

Lemma 4.1. Let c1, . . . , cn−1 be vectors from Cn with the properties

b∗cm = 0, c∗mck = δmk, 1 ≤ m, k ≤ n− 1.

Then the vectors

fk = (ck, 0, 0)>, 1 ≤ k ≤ n− 1,

fn+k = (0, ck, 0)>, 1 ≤ k ≤ n− 1,

are eigenvectors to the matrix A, and the associated eigenvalues are −i%j and i%j ,
respectively.

The characteristic polynomial of A is

det(A− λI) = (−i%j − λ)n−1(i%j − λ)n−1
(

(a2 − λ)(%2
j + λ2) − 2|b|2λ

)

,

and this polynomial has appeared many times in thermoelasticity, cp. the works [3]
or [7]. Naturally, a detailed understanding of the eigenvalues and eigenvectors of A is
indispensable for proving decay properties for the system (4.4). Our formulas (4.5) and
(A.1) recover results known from [7] and [3], but it seems that the method presented
here is considerably simpler, and we also find the eigenvectors with minimal additional
effort.

To stay away from trivialities, we assume β 6= 0.
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Lemma 4.2. If η 6= 0, thenA can not have purely imaginary eigenvalues except ±i%j ,
both with multiplicity n− 1.

PROOF. The last factor in the characteristic polynomial of A does not vanish for λ =
±i%j . Now suppose λ = iσ were an eigenvalue of A with R 3 σ 6= ±%j , then
(a2 − iσ)(%2

j − σ2) − 2i|b|2σ = 0, and taking the real part gives a contradiction.

4.1.1. The case of large |η|; |η| ≥ C0 � 1

Lemma 4.3. There is a constant C0 such that for |η| ≥ C0, the remaining eigenvalues
of A are



































λn = −i%j +
|b|2
a2

+ O(|η|−1),

λ2n = i%j +
|b|2
a2

+ O(|η|−1),

λ2n+1 = a2 −
2|b|2
a2

+ O(|η|−2),

(4.5)

with |b|2/a2 = β2/(2κ), and with the normalized eigenvectors

fn = (b/|b|, 0, 0)> + O(|η|−1),

f2n = (0, b/|b|, 0)> + O(|η|−1),

f2n+1 = (0, 0, 1)> + O(|η|−1).

PROOF. We clearly have

λ1λ2 . . . λ2n+1 = detA = a2%
2n
j , λ1 + λ2 + . . .+ λ2n+1 = trA = a2.

By Lemma 4.1, only the eigenvalues λn, λ2n and λ2n+1 are not yet known. Then it
follows that

λnλ2nλ2n+1 = a2%
2
j , λn + λ2n + λ2n+1 = a2. (4.6)

We apply the Gershgorin principle (see [22]) to the last row of the matrix A and find

λ2n+1 = a2 + O(|η|). (4.7)

This eigenvalue must be a solution to (a2 − λ)(%2
j + λ2) − 2|b|2λ = 0, which we can

rewrite as

a2 − λ =
2|b|2λ
%2

j + λ2
=

2|b|2
λ(1 + %2

j/λ
2)
.

Plugging (4.7) into the right-hand side gives the desired expression of λ2n+1 from (4.5).
By (4.6) we then get

λnλ2n = %2
j + O(1), λn + λ2n =

2|b|2
a2

+ O(|η|−2),

which has the representations of λn and λ2n in (4.5) as direct consequences.
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For the eigenvector fn to the eigenvalueλn, we make the ansatz fn = (zn, z
′
n, z

′′
n)>

with |fn| = 1. Then we obtain




(|b|2/a2 + O(|η|−1))In 0 b
0 (2i%j + O(1))In b

−b∗ −b∗ a2 − λn









zn

z′n
z′′n



 =





0
0
0



 ,

and reading this system from the bottom line up we show z ′′n = O(|η|−1) and z′n =
O(|η|−1). Then necessarily |zn| = 1 −O(|η|−1), and the first line gives zn ‖ b.

The representations of f2n and f2n+1 are shown in a similar manner. The proof is
complete.

Let g1, . . . , g2n+1 ∈ Cn be the eigenvectors toA∗ = A2−A1 with eigenvalues λm,
hence A∗gm = λmgm, where we can arrange that gm = fm for m = 1, . . . , n− 1 and
m = n+1, . . . , 2n−1. A normalization of the gm is given by the condition g∗mfm = 1
form = 1, . . . , 2n+1; and then we have even g∗mfk = δmk. Since the vectors fk form
an asymptotically unitary matrix for |η| → ∞, the norms |gk| are uniformly bounded
with respect to η if |η| ≥ C0.

Lemma 4.4. Let (v, θ) ∈ X be a solution to (3.4), with v being a vector potential field.
Then the Fourier coefficients Ŵj(t, ξ

′) satisfy, for |(λj , ξ
′)| ≥ C0, the decay estimate

∣

∣

∣
Ŵj(t, ξ

′)
∣

∣

∣
≤ Ce−ct

∣

∣

∣
Ŵj(0, ξ

′)
∣

∣

∣
, 0 ≤ t <∞,

where the constants C and c are independent of j, ξ ′, t.

PROOF. We can write Ŵj(0, ξ) =
∑2n+1

k=1 αkfk, and the αk ∈ C can be determined
via αk = g∗kŴj(0, ξ). However, if v is the gradient of a scalar function that satisfies
homogeneous Neumann boundary conditions, then αk = 0 for k = 1, . . . , n − 1 and
k = n+ 1, . . . , 2n− 1.

4.1.2. The case of intermediate |η|; ε ≤ |η| ≤ C0

Keep C0 fixed as in the previous part, and choose an arbitrary ε between 0 and 1.

Lemma 4.5. Let (v, θ) ∈ X be a solution to (3.4), with v being a vector potential field.
Then the Fourier coefficients Ŵj(t, ξ

′) satisfy, for ε ≤ |(
√

λj , ξ
′)| ≤ C0, the decay

estimate ∣

∣

∣Ŵj(t, ξ
′)
∣

∣

∣ ≤ Ce−ct
∣

∣

∣Ŵj(0, ξ
′)
∣

∣

∣ , 0 ≤ t <∞,

where the constants C and c depend only on ε and C0.

PROOF. We start with describing the eigenvalues λn, λ2n, λ2n+1 (the other eigenval-
ues do not participate in the representation of the solution since v is a vector potential
field). If |η| = C0, then they have positive real part, and by Lemma 4.2, these eigenval-
ues are never on the imaginary axis. Then a compactness argument gives us a positive
number c such that <λk(η) > c for k = n, 2n, 2n + 1, when ε ≤ |η| ≤ C0. It
may happen that two such eigenvalues coincide and Jordan blocks appear during the
construction of the fundamental solution; this situation can be resolved with the same
technique as in [6].
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4.2. Reconstruction
In this section, we show how the reconstruction of the zero mode free vector v

from its Fourier coefficients leads to decay estimates of v, coming from the pointwise
estimates of the Fourier coefficients |Ŵj(t, ξ

′)|.
Proposition 4.3. Let (upo

[+], θ[+]) ∈ X be a solution to (3.4), with upo being a potential

field. Then Epo
[+](t) = const with

Epo
[+](t) =

1

2

(

∥

∥

∥∂tu
po
[+]

∥

∥

∥

2

L2(Ω)
+ µ

∥

∥

∥∇upo
[+]

∥

∥

∥

2

L2(Ω)

+(µ+ λ)
∥

∥

∥div upo
[+]

∥

∥

∥

2

L2(Ω)
+
∥

∥θ[+]

∥

∥

2

L2(Ω)

)

.

Set v := upo
[+] and θ := θ[+] for sake of brevity. Choose a non-negative integer m, and

set Kpo = 2m+ bn−1
2 c + 3. Then under the assumptions

(4k v,4k θ) ∈ X, 0 ≤ k ≤ m ∈ N, (4.8)














v0
1 ∈ D(4Kpo/2

D ), v1
1 ∈ D(4(Kpo−1)/2

D ),

v0
k ∈ D(4Kpo/2

N ), v1
k ∈ D(4(Kpo−1)/2

N ) (2 ≤ k ≤ n),

θ0 ∈ D(4Kpo/2
N ),

(4.9)

the following decay estimates hold:

‖∂α
x (∇v, ∂tv, θ)(t, ·)‖L∞(Ω) ≤ Ce−ct

∥

∥(v0, v1, θ0)
∥

∥

HKpo (Ω)×HKpo−1(Ω)×HKpo (Ω)
,

(4.10)

where α ∈ Nn with |α| ≤ 2m.

PROOF. The point-wise estimates obtained so far can be combined into
∣

∣

∣Ŵj(t, ξ
′)
∣

∣

∣ ≤ Ce−ct
∣

∣

∣Ŵj(0, ξ
′)
∣

∣

∣ , j ≥ 1, ξ′ ∈ R
n−1.

Then we deduce that
∥

∥

∥∂α′

x′Wj(t, ·)
∥

∥

∥

Hs(Rn−1)
≤ Ce−ct

∥

∥

∥∂α′

x′ Wj(0, ·)
∥

∥

∥

Hs(Rn−1)
, (4.11)

where j ≥ 1, s ∈ R, Wj = (w1,j , . . . , w5,j)
> and

w1,j(t, x
′) = (∂t + i

√

α(λj −4′))v1,j(t, x
′),

w2,j(t, x
′) = (∂t + i

√

α(λj −4′))v′j(t, x
′),

w3,j(t, x
′) = (∂t − i

√

α(λj −4′))v1,j(t, x
′),

w4,j(t, x
′) = (∂t − i

√

α(λj −4′))v′j(t, x
′),

w5,j(t, x
′) =

√
2θj(t, x

′).
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We continue with the norm equivalences
∥

∥

∥∂α′

x′ Wj

∥

∥

∥

Hs(Rn−1)
∼
∥

∥

∥∂α′

x′ (∂tv1,j , ∂tv
′
j ,∇′v1,j ,∇′v′j , jv

′
1,j , jv

′
j , θj)

∥

∥

∥

Hs(Rn−1)
,

(4.12)

for s ∈ R, which follow from Fourier transform in Rn−1 and Plancherel.
For α = (α1, α

′) ∈ Nn with α1 + |α′| ≤ 2m+1, the components of the vector val-
ued function x1 7→ ∂α1

1 ∂α′

x′ v(t, x1, x
′) either fulfill homogeneous Dirichlet boundary

conditions, or we have

∫ 1

0

∂α1
1 ∂α′

x′ v(t, x1, x
′) dx1 = 0, a.e. x′ ∈ R

n−1.

Here we have used the absence of zero modes and (4.8). In both cases we can bring
Poincare’s inequality on the bounded domain (0, 1) ⊂ R1 into play:

∣

∣

∣∂α1
1 ∂α′

x′ v(t, x1, x
′)
∣

∣

∣

2

≤ C
∥

∥

∥∂α1
1 ∂α′

x′ v(t, ·, x′)
∥

∥

∥

2

W 1
2 ((0,1))

≤ C
∥

∥

∥∂α1+1
1 ∂α′

x′ v(t, ·, x′)
∥

∥

∥

2

L2((0,1))

=

∞
∑

j=1

j2(α1+1)

(

∣

∣

∣∂α′

x′ v1,j(t, x
′)
∣

∣

∣

2

+
∣

∣

∣∂α′

x′ v′j(t, x
′)
∣

∣

∣

2
)

.

In the last step, we have exploited (4.8) once again. Similar estimates can be derived
for
∣

∣

∣∂α1
1 ∂α′

x′ ∂tv(t, x1, x
′)
∣

∣

∣ (|α| ≤ 2m),
∣

∣

∣∂α1
1 ∂α′

x′ θ(t, x1, x
′)
∣

∣

∣ (|α| ≤ 2m).

Now choose a real number b with (n−1)/2 < b ≤ n/2. Then with the notation 〈ξ ′〉 :=
(1 + |ξ′|2)1/2 and by Sobolev’s embeddingHb(Rn−1) ⊂ L∞(Rn−1) and (4.11),

j2
∣

∣

∣∂α′

x′ v1,j(t, x
′)
∣

∣

∣

2

≤ Cj2
∥

∥

∥∂α′

x′ v1,j(t, ·)
∥

∥

∥

2

Hb(Rn−1)

= Cj2
∫

R
n−1

ξ′

〈ξ′〉2b
∣

∣

∣(ξ′)α′

v̂1,j(t, ξ
′)
∣

∣

∣

2

dξ′

≤ C

∫

R
n−1

ξ′

〈ξ′〉2b
∣

∣

∣
(ξ′)α′

Ŵj(t, ξ
′)
∣

∣

∣

2

dξ′

≤ Ce−2ct

∫

R
n−1

ξ′

〈ξ′〉2b
∣

∣

∣(ξ′)α′

Ŵj(0, ξ
′)
∣

∣

∣

2

dξ′

= Ce−2ct
∥

∥

∥∂α′

x′Wj(0, ·)
∥

∥

∥

2

Hb(Rn−1)
,

25



and consequently, by (4.12),

∣

∣

∣
∂α1
1 ∂α′

x′ v(t, x1, x
′)
∣

∣

∣

2

≤ Ce−2ct
∞
∑

j=1

j2α1

∥

∥

∥
∂α′

x′Wj(0, ·)
∥

∥

∥

2

Hb(Rn−1)
(4.13)

≤ Ce−2ct
∞
∑

j=1

(

j2α1
∥

∥v1
1,j

∥

∥

2

Hb+|α′|(Rn−1)
+ j2α1

∥

∥v1 ′
j

∥

∥

2

Hb+|α′|(Rn−1)

)

+ Ce−2ct
∞
∑

j=1

(

j2α1
∥

∥∇′v0
1,j

∥

∥

2

Hb+|α′ |(Rn−1)
+ j2α1

∥

∥∇′v0 ′
j

∥

∥

2

Hb+|α′ |(Rn−1)

)

+ Ce−2ct
∞
∑

j=1

(

j2(α1+1)
∥

∥v0
1,j

∥

∥

2

Hb+|α′|(Rn−1)
+ j2(α1+1)

∥

∥v0 ′
j

∥

∥

2

Hb+|α′ |(Rn−1)

)

+ Ce−2ct
∞
∑

j=1

j2α1
∥

∥θ0j
∥

∥

2

Hb+|α′|(Rn−1)
,

where v0
1,j , v0 ′

j are the Fourier coefficients of the initial function v0, and similarly for
v1
1,j , v1 ′

j and θ0j .
By the assumption (4.9), we have for α1 + |α′| ≤ 2m+ 1

∑

|β′|≤b+|α′|

∥

∥

∥∂α1
1 ∂β′

x′ v
1
1

∥

∥

∥

2

L2(Ω)
=

∑

|β′|≤b+|α′|

∞
∑

j=1

j2α1

∥

∥

∥∂
β′

x′ v
1
1,j

∥

∥

∥

2

L2(Rn−1)

=

∞
∑

j=1

j2α1
∥

∥v1
1,j

∥

∥

2

Hb+|α′|(Rn−1)
.

The other terms in the right-hand side of (4.13) can be treated similarly, and then (4.10)
follows, finishing the proof of Proposition 4.3.

Now we come to the proof of the first main result.

PROOF (PROOF OF THEOREM 2.1). First we split the vector field u into solenoidal
part uso and potential part upo, and then we split the potential part upo into zero mode
part upo

[0] and higher mode part upo
[+]. Similarly we write θ = θ[0] + θ[+]. These split-

tings have been justified in the Lemmas 3.5, 3.6, 3.7, 3.8, 3.9. By Lemma 3.4, the many
boundary conditions on the initial data u0 and u1, as described in Theorem 2.1, sur-
vive the Helmholtz projection. Then Proposition 3.1 and Proposition 3.3 have shown
that these three parts exist with the desired regularity. The uniqueness was proved in
Lemma 3.1. The decay under the assumption of higher regularity of the initial data is
then proved in the Propositions 4.1, 4.2 and 4.3.

5. Proof of Theorem 2.2

PROOF. We begin by considering the zero mode part (u[0], θ[0]) of the solution (u, θ) ∈
X to (2.2) separately. This pair (u[0], θ[0]) does not depend on x1, and it solves the
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system

∂2
t u[0] − µ4u[0] − (µ+ λ) graddiv u[0] + β gradu[0] = f[0],

∂tθ[0] − κ4 θ[0] + β div ∂tu[0] = g[0],

with initial data (u0
[0], u

1
[0], θ

0
[0]). This can be read as a thermoelastic system in the

spatial domain Rn−1, and we can quote the following decay estimate
∥

∥(∇u[0], ∂tu[0], θ[0])(t, ·)
∥

∥

Lq(Ω)
(5.1)

≤ C

(1 + t)(n−2)(1/p−1/q)/2

∥

∥(∇u[0], u[0], ∂tu[0], θ[0])(0, ·)
∥

∥

W N
p (Ω)

+ C

∫ t

s=0

1

(1 + t− s)(n−2)(1/p−1/q)/2

∥

∥(f[0], g[0])(s, ·)
∥

∥

W N
p (Ω)

ds,

from [2]. Here 1 ≤ p ≤ 2 and 1
p + 1

q = 1. Note that the mappings f 7→ f[0] and

g 7→ g[0] are continuous in the norms of WN
1 (Ω).

Next we study the higher mode part (u[+], θ[+]). We split u[+] further into the
solenoidal part uso

[+] and the potential part upo
[+]. Then uso

[+] solves the decoupled system
of wave equations

∂2
t u

so
[+] − µ4uso

[+] = f so
[+]

with homogeneous Dirichlet boundary conditions for the first component uso
[+],1, and

homogeneous Neumann boundary conditions for the other components uso
[+],k, k ≥ 2.

However, the Neumann Laplacian on Ω has a spectrum separated from zero, since all
functions here are free from zero modes. The initial data are called u0,so

[+] and u1,so
[+] .

Then we can quote the following decay estimate from [10]:
∥

∥

∥(∇uso
[+], ∂tu

so
[+])(t, ·)

∥

∥

∥

Lq(Ω)
(5.2)

≤ C

(1 + t)(n−1)(1/p−1/q)/2

(

∥

∥

∥
(∇u0,so

[+] , u
1,so
[+] , u

0,so
[+] )

∥

∥

∥

W 2K+1
p (Ω)

+

2K−1
∑

j=0

∥

∥

∥∂
j
t f

so
[+](0, ·)

∥

∥

∥

W 2K−j
p (Ω)





+

∫ t

s=0

C

(1 + t− s)(n−1)(1/p−1/q)/2

∥

∥

∥∂2K
s f so

[+](s, ·)
∥

∥

∥

Lp(Ω)
ds

+ C
2K−1
∑

j=0

∥

∥

∥
∂j

t f
so
[+](t, ·)

∥

∥

∥

W 2K−1−j
p (Ω)

,

where now 1 < p ≤ 2, 1
p + 1

q = 1. Here we have to suppose that

f so
[+] ∈

2K
⋂

j=0

Cj
(

[0,∞), H2K−j(Ω) ∩W 2K−j
p (Ω)

)

⋂

C2K+1([0,∞), L2(Ω)), (5.3)

with K ≥ bn
2 c + 1

2 . Additionally, we have to assume:
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Compatibility Condition 5.1. The formally computed higher order derivatives of uso
[+]

at t = 0, (∂j
t u

so
[+])(0, ·) = uj,so

[+] (·) with

uj,so
[+] :=







∑

j
2−1

k=0 (µ4)k∂j−2−2k
t f so

[+](0, ·) + (µ4)
j
2 u0,so

[+] : j even,
∑

j−1
2 −1

k=0 (µ4)k∂j−2−2k
t f so

[+](0, ·) + (µ4)
j−1
2 u1,so

[+] : j odd,

satisfy the compatibility conditions of order 2K:

uj,so
[+] ∈

{

H2K+2−j(Ω) ∩W 2K+2−j
1 (Ω) : j = 0, . . . , 2K + 1,

L2(Ω) : j = 2K + 2.

Here K ≥ bn
2 c + 1

2 . Additionally, the first component uj,so
[+],1 satisfies homogeneous

Dirichlet boundary conditions, and the other components uj,so
[+],k satisfy homogeneous

Neumann boundary conditions.

Note that, by Lemma 3.2, the Helmholtz projector maps Sobolev spaces W k
r (Ω) con-

tinuously into themselves, but only for 1 < r < ∞. Therefore we cannot expect (5.2)
to hold for q = ∞.

It remains to study the potential part upo
[+] of u[+]. We construct a vector W from

upo
[+] and θ[+] as in (3.9), (3.10), (3.11), and obtain the system

∂tW + A+W = F+ (5.4)

with A+ as in (3.13) with domain D(A+) = D(A) ∩ H+, compare Definition 3.2,
(3.16) and Definition 3.3. And we have

F+ =

(

0, . . . , 0,
1√
α
fpo
[+],

1√
α
g[+]

)>

∈ H+.

Under the assumptions F+ ∈ C1([0,∞),H+) and W 0 := W (t = 0) ∈ D(A+), we
then have a unique solution W ∈ C1([0,∞),H+) ∩ C([0,∞), D(A+)). Then the
higher order derivatives of W at t = 0 are formally given by

(∂tW )(t = 0) = W 1 := F 0
+(0) −A+W

0 := F+(0, ·) −A+W
0,

(∂2
tW )(t = 0) = W 2 := F 1

+(0) −A+F
0
+(0) −A2

+W
0

:= (∂tF+)(0, ·) −A+F+(0, ·) −A2
+W

0,

. . .

(∂L
t W )(t = 0) = WL := FL−1

+ (0) −
L−1
∑

l=1

AL−l
+ F l−1

+ (0) −AL
+W

0

:= (∂L−1
t F+)(0, ·) −

L−1
∑

l=1

AL−l
+ (∂l−1

t F+)(0, ·) −AL
+W

0.

The following condition will become useful soon:
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Compatibility Condition 5.2. For l = 1, . . . , L, the above defined term W l is a mem-
ber of D(A+). Here L is chosen in such a way that L+ 1 is the smallest odd integer
greater than or equal to Kpo = bn−1

2 c + 3.

Assuming F ∈ CL+1([0,∞),H+) we then find W ∈ CL+1([0,∞),H+) by stan-
dard semigroup theory, and we can introduce W̃ := A−L

+ ∂L
t W , where we use that A+

is continuously invertible on H+ by (3.20). This function W̃ then solves

∂tW̃ + A+W̃ = F̃ := A−L
+ ∂L

t F, W̃ (0, ·) = A−L
+ WL(·). (5.5)

More precisely, we have:

Lemma 5.1. If the Compatibility condition 5.2 is valid and F+ ∈ CL+1([0,∞),H+),
and if W̃ ∈ C1([0,∞), D(AL

+)) ∩ C([0,∞), D(AL+1
+ )) solves (5.5), then

W (t, x) := A−L
+ FL−1

+ (t, x) −
L−1
∑

l=1

A−l
+ F l−1

+ (t, x) − W̃ (t, x)

is a solution to (5.4) with initial data W 0. Here FM
+ := ∂M

t F+.

The proof is straightforward.
The key advantage of this approach is that decay estimates for W̃ can be obtained

via Proposition 4.3 and Duhamel’s principle because the right–hand side F̃ satisfies a
large number of boundary conditions, compare Lemma 3.18.

Then Ŵ (0, ·) from (5.5) belongs to D(AL+1
+ ), and Proposition 4.3 in connection

with Lemma 3.18 give us

∥

∥

∥W̃ (t, ·)
∥

∥

∥

Lq(Ω)
≤ Ce−ct

∥

∥

∥W̃ (0, ·)
∥

∥

∥

HKpo (Ω)
+C

∫ t

s=0

e−c(t−s)
∥

∥

∥F̃ (s, ·)
∥

∥

∥

HKpo (Ω)
ds,

where Kpo = bn−1
2 c + 3 is as in Proposition 4.3.

Going back to the function W , we obtain, by the continuity of the embeddings
W

Kpo+n/2
p (Ω) ⊂ HKpo(Ω) and W n

p (Ω) ⊂ Lq(Ω),

‖W (t, ·)‖Lq(Ω) ≤
L−1
∑

l=0

∥

∥Al−L
+ ∂L−1−l

t F+(t, ·)
∥

∥

W n
p (Ω)

+ Ce−ct

(

‖W (0, ·)‖
W

Kpo+n/2
p (Ω)

+

L−1
∑

l=0

∥

∥Al−L
+ ∂L−1−l

t F+(0, ·)
∥

∥

W
Kpo+n/2
p (Ω)

)

+ C

∫ t

s=0

e−c(t−s)
∥

∥A−L
+ ∂L

t F+(s, ·)
∥

∥

W
Kpo+n/2
p (Ω)

.

By a method very similar to the proof of (3.20), we can show that
∥

∥A−m
+ G+

∥

∥

W k
r (Ω)

≤ C ‖G+‖W k−m
r (Ω) , 0 ≤ m ≤ k,
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for G+ ∈ H+ ∩W k−m
r (Ω) and 1 < r <∞. Then it follows that

‖W (t, ·)‖Lq(Ω) ≤ C
L
∑

l=1

∥

∥∂l−1
t F+(t, ·)

∥

∥

W
max(n−l,0)
p (Ω)

(5.6)

+ Ce−ct

(

‖W (0, ·)‖
W

Kpo+n/2
p (Ω)

+

L
∑

l=1

∥

∥∂l−1
t F+(0, ·)

∥

∥

W
Kpo+n/2−l
p (Ω)

)

+ C

∫ t

s=0

e−c(t−s)
∥

∥∂L
t F+(s, ·)

∥

∥

W
Kpo+n/2−L
p (Ω)

ds.

Then the proof of the decay estimate (2.3) can be concluded by addition of (5.1), (5.2)
and (5.6). This completes the proof of Theorem 2.2.

A. Appendix

The estimate (4.3) follows from an L∞–L1 estimate of vector potential solutions
to thermoelastic systems in a whole space, and such an estimate can be derived from
pointwise estimates of solutions to (4.4) via Fourier transform. This in turn requires
knowledge about the eigenvalues and eigenvectors to the matrix A from (4.4). By the
Lemmas 4.1 and 4.3 and the proof of Lemma 4.5, only the case of |η| ≤ ε is not yet
covered in this paper. For reasons of self-containedness, we close this gap now, and the
proof we give here seems to have the advantage of being considerably shorter and less
technical than other approaches.

Lemma A.1. There is a positive constant ε such that the eigenvalues λn, λ2n and
λ2n+1 of the matrix A are































λn = −i
√

α+ β2|η| + κβ2

2(α+ β2)
|η|2 + O(|η|3),

λ2n = i
√

α+ β2|η| + κβ2

2(α+ β2)
|η|2 + O(|η|3),

λ2n+1 =
κα

α+ β2
|η|2 + O(|η|4),

(A.1)

for 0 < |η| ≤ ε. The normalized eigenvectors fn, f2n, f2n+1 have the form

(fn, f2n, f2n+1) = (f (0)
n , f

(0)
2n , f

(0)
2n+1) + O(|η|),

the vectors f (0)
k chosen such that (f1, . . . , fn−1, f

(0)
n , fn+1, . . . , f2n−1, f

(0)
2n , f

(0)
2n+1) is

an orthornormal family of eigenvectors of the anti-self-adjoint matrix A1.

PROOF. As in the proof of Lemma 4.3, we start with determining the missing eigen-
values λn, λ2n and λ2n+1. To this end, we write

Ã = |η|−1A(η) =





−D̃ 0 b̃

0 D̃ b̃

−b̃∗ −b̃∗ 0



+





0 0 0
0 0 0
0 0 a2/|η|



 = Ã0 + Ã1,
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with Ã0 ∈ S0
hom and Ã1 ∈ S1

hom. If η approaches 0 radially, then Ã0 ≡ const with the
eigenvalues

λ̃1 = . . . = λ̃n−1 = −i%j/|η|, λ̃n+1 = . . . = λ̃2n−1 = i%j/|η|,

λ̃n = −i
√

%2
j + 2|b|2/|η|, λ̃2n = i

√

%2
j + 2|b|2/|η|, λ̃2n+1 = 0,

which all belong to S0
hom. It is well–known that simple eigenvalues depend analyti-

cally on the perturbation of the matrix, which is in our case a2/|η|. This gives us the
asymptotic expansions

λn = −i
√

%2
j + 2|b|2 + cn|η|2 + O(|η|3),

λ2n = i
√

%2
j + 2|b|2 + c2n|η|2 + O(|η|3),

λ2n+1 = c2n+1|η|2 + O(|η|3),

with coefficients cn, c2n, c2n+1 not yet known. Due to det(A − λI) = 0, these three
λk solve

(a2 − λ)(%2
j + λ2) − 2|b|2λ = 0, (A.2)

with a2 = κ|η|2, %2
j = α|η|2, |b|2 = 1

2β
2|η|2. Bringing (A.2) into the form

λ =
a2(%

2
j + λ2) − λ3

%2
j + 2|b|2 ,

we find the expression for λ2n+1 in (A.1). Then we deduce that

λnλ2n = %2
j

a2

λ2n+1
= (α+ β2)|η|2 + O(|η|4),

λn + λ2n = a2 − λ2n+1 =
κβ2

α+ β2
|η|2 + O(|η|4),

which yields the formulas for λn and λ2n in (A.1).
For the proof of the statement concerning the eigenvectors, we only note that the

normalized eigenvectors to simple eigenvalues depend smoothly on the perturbation of
the matrix.
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