Universität Konstanz

Fachbereich Mathematik und Statistik

Prof. Dr. Salma Kuhlmann Katharina Dupont Gabriel Lehéricy

Real Algebraic Geometry II Exercise Sheet 1

Exercise 1

Let (M_1, v_1) , (M_2, v_2) be two valued models with value sets Γ_1 and Γ_2 respectively. Assume $(M_1, v_1) \cong (M_2, v_2)$ and $h : M_1 \to M_2$ is an isomorphism which preserves the valuation.

- (a) Show that $\tilde{h}: \Gamma_1 \to \Gamma_2$ defined by $\tilde{h}(v_1(x)) := v_2(h(x))$ is a well defined map and an isomorphism of totally ordered sets.
- (b) Show that for $\gamma \in \Gamma_1$ the map

$$\begin{aligned} h_{\gamma} &: B_{1}\left(\gamma\right) \quad \to \quad B_{2}\left(\widetilde{h}\left(\gamma\right)\right) \\ \pi^{M_{1}}\left(\gamma, x\right) \quad \mapsto \quad \pi^{M_{2}}\left(\widetilde{h}\left(\gamma\right), h\left(x\right)\right) \end{aligned}$$

is well defined and an isomorphism of modules.

(c) Show that the skeleton is an isomorphism invariant, i.e. if $(M_1, v_1) \cong (M_2, v_2)$, then $S(M_1) \cong S(M_2)$.

Exercise 2

Let $[\Gamma, \{B(\gamma) : \gamma \in \Gamma\}]$ be a system of torsion free modules.

- (a) Show that $\coprod_{\gamma \in \Gamma} B(\gamma)$ is a valued submodule of $H_{\gamma \in \Gamma} B(\gamma)$.
- (b) Show that

$$S\left(\coprod_{\gamma\in\Gamma} B(\gamma)\right) \cong [\Gamma, \{B(\gamma): \gamma\in\Gamma\}]$$
$$\cong S\left(H_{\gamma\in\Gamma}B(\gamma)\right).$$

Exercise 3

Let (A, \leq_A) and (B, \leq_B) be two ordered sets.

- (a) Show that if A and B are well-ordered, then so is A + B.
- (b) Show that the sum of ordinals is well-defined and not commutative. Hint: Compute $1 + \omega$ and $\omega + 1$.
- (c) For any $n \in \mathbb{N}$ give an example of a subset Q_n of \mathbb{Q} such that $\operatorname{ot}(Q_n) = \omega . n$.
- (d) Show that if A and B are well-ordered, then so is A.B.
- (e) Show that the product of ordinals is well-defined and not commutative. **Hint:** Compute $2.\omega$ and $\omega.2$.
- (f) For any $n \in \mathbb{N}$ give an example of a subset Q_n of \mathbb{Q} such that $\operatorname{ot}(Q_n) = \omega^n$.

The exercise will be collected **Thursday**, 23/04/2015 until 10.00 at the box near F 441.

http://www.math.uni-konstanz.de/~ dupont/rag.htm