Universität Konstanz

Fachbereich Mathematik und Statistik

Prof. Dr. Salma Kuhlmann Katharina Dupont Gabriel Lehéricy

Real Algebraic Geometry II Exercise Sheet 12

Definition:

- (a) Let A be a group and B a subgroup of A. B' is called group complement of B in A, if $A = B \oplus B'$.
- (b) Let G_1, \ldots, G_n be ordered groups. $G_1 \coprod \ldots \coprod G_n := (G_1 \oplus \ldots \oplus G_n, \leq_{\mathsf{lex}})$ the direct product of G_1, \ldots, G_n equipped with the lexicographic order.

Exercise 1 (Additive Lexicographic Decomposition)

Let (K, \leq) be an ordered field. Let v be the natural valuation on K, \overline{K} its residue field, G its value group \mathcal{O} its valuation ring and \mathcal{M} the maximal ideal of \mathcal{O} .

- (a) Show that there exists a group complement A of \mathcal{O} in K and a group complement A' of \mathcal{M} in \mathcal{O} such that $(K, +, 0, <) = A \coprod A' \coprod \mathcal{M}$.
- (b) Show that A and A' in (a) are unique up to order isomorphism.
- (c) Show that A' in (a) is order isomorphic to the archimedean group $(\overline{K}, +, 0, <)$.
- (d) Show that the value set of A as in (a) is $G^{<0}$.
- (e) Show that the value set of \mathcal{M} is $G^{>0}$.
- (f) Show that the non-zero components of A as in (a) are isomorphic to $(\overline{K}, +, 0, <)$.
- (g) Show that the non-zero components of \mathcal{M} are isomorphic to $(\overline{K}, +, 0, <)$.

Exercise 2

Show that the rank of an ordered field is an order isomorphism invariant, i.e. order isomorphic ordered fields have the same rank.

Exercise 3

- (a) Show that $\mathbb{R}(e^x)$ is a Hardy field of rank 1.
- (b) Let H be a Hardy field containing $\mathbb{R}(x)$. Assume H is closed under compositions and compositional inverses for positive infinite germs, i.e. if $f, g \in H$ then $f \circ g \in H$ and $f^{-1} \in H$.

Show that if the principal rank of H has a least element, then the rank of H is 1.

The exercise will be collected **Thursday**, 09/07/2015 until 10.00 at box 13 near F 441.

http://www.math.uni-konstanz.de/~ dupont/rag.htm