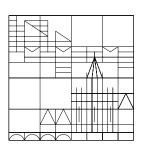
Universität Konstanz

Fachbereich Mathematik und Statistik

Prof. Dr. Salma Kuhlmann Katharina Dupont Gabriel Lehéricy



Real Algebraic Geometry II Exercise Sheet 13

The exercise sheet will not be collected. Please come to our office hours if you have any questions.

Exercise 1 (Multiplicative Lexicographic Decomposition)

Let (K, \leq) be an ordered field. Assume that the group $(K^{>0}, \cdot, 1 <)$ is divisible. Let v be the natural valuation on K, \overline{K} its residue field, G its value group, \mathcal{O} its valuation ring, \mathcal{M} the maximal ideal of \mathcal{O} and $\mathcal{U} := \mathcal{O} \setminus \mathcal{M}$.

- (a) Show that there exists a group complement B of $\mathcal{U}^{>0}$ in $(K^{>0}, \cdot, 1 <)$ and a group complement B' of $1 + \mathcal{M}$ in $(\mathcal{U}^{>0}, \cdot, 1, <)$ such that $(K^{>0}, \cdot, 1 <) = B \coprod B' \coprod (1 + \mathcal{M}, \cdot, 1, <).$
- (b) Show that every group complement B of $\mathcal{U}^{>0}$ in $(K^{>0}, \cdot, 1 <)$ is order isomorphic to G through the isomorphism -v.
- (c) Show that every group complement B' of $1 + \mathcal{M}$ in $(\mathcal{U}^{>0}, \cdot, 1, <)$ is order isomorphic to $(\overline{K}^{>0}, \cdot, 1, <)$.

Definition: Let (K, \leq) be an ordered field and v its non-trivial natural valuation. Let $P_K := K^{>0} \setminus R_v$.

Let \sim be defined by $x \sim y$ if and only if $r \cdot |x| < |y|$ for all $r \in R_v$ and $r \cdot |y| < |x|$ for all $r \in R_v$ $(x, y \in P_K)$.

 \sim denotes the multiplicative equivalence relation on P_K .

Denote the class of a by [a] and call it the multiplicative class of a.

Exercise 2

Let (K, \leq) be an ordered field. Let v be the non-trivial natural valuation of (K, \leq) and R_v its valuation ring. Let w be a valuation on K with valuation ring R_w such that $R_w \neq R_v$ is a convex subring. Let G be the value group of v. Let $G_w := \{v(x) \in G \mid x \in K, w(x) = 0\}$. Let $a \in P_K := K^{>0} \setminus R_v$. Show that the following are equivalent

- (i) R_w is principal convex generated by a.
- (ii) The class $[a]^{\cdot}$ is the largest of all classes of R_w .
- (iii) [a] is a final segment in R_w .
- (iv) G_w is principal with smallest archimedean class [v(a)].
- (v) $v_G(G_w) = \Gamma_w$ is a principal final segment with smallest element $v_G(v(a))$. (where v_G is the natural valuation on G).

Exercise 3

Let Γ_1 and Γ_2 be a totally ordered set.

- (a) Show that if $\Gamma_1 \cong \Gamma_2$, then $\Gamma_1^{sf} \cong \Gamma_2^{sf}$.
- (b) Compute the order type of \mathbb{Q}^{fs} .