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Exercise 1 (Multiplicative Lexicographic Decomposition)
Let (K,≤) be an ordered field. Assume that the group (K>0, ·, 1 <) is divisible.
Let v be the natural valuation on K, K its residue field, G its value group, O
its valuation ring, M the maximal ideal of O and U := O \M.

(a) Show that there exists a group complement B of U>0 in (K>0, ·, 1 <) and
a group complement B′ of 1 +M in (U>0, ·, 1, <) such that
(K>0, ·, 1 <) = B

∐
B′
∐

(1 +M, ·, 1, <).

(b) Show that every group complement B of U>0 in (K>0, ·, 1 <) is order
isomorphic to G through the isomorphism −v.

(c) Show that every group complement B′ of 1 +M in (U>0, ·, 1, <) is order

isomorphic to (K
>0
, ·, 1, <).

Definition: Let (K,≤) be an ordered field and v its non-trivial natural valuation.
Let PK := K>0 \Rv.
Let ∼̇ be defined by x∼̇y if and only if r · |x| < |y| for all r ∈ Rv and r · |y| < |x|
for all r ∈ Rv (x, y ∈ PK).
∼̇ denotes the multiplicative equivalence relation on PK .
Denote the class of a by [a]· and call it the multiplicative class of a.



Exercise 2
Let (K,≤) be an ordered field. Let v be the non-trivial natural valuation of
(K,≤) and Rv its valuation ring. Let w be a valuation on K with valuation ring
Rw such that Rw 6= Rv is a convex subring. Let G be the value group of v. Let
Gw := {v(x) ∈ G | x ∈ K, w(x) = 0}. Let a ∈ PK := K>0 \Rv.
Show that the following are equivalent

(i) Rw is principal convex generated by a.

(ii) The class [a]· is the largest of all classes of Rw.

(iii) [a]· is a final segment in Rw.

(iv) Gw is principal with smallest archimedean class [v(a)].

(v) vG(Gw) = Γw is a principal final segment with smallest element vG
(
v(a)

)
.

(where vG is the natural valuation on G).

Exercise 3
Let Γ1 and Γ2 be a totally ordered set.

(a) Show that if Γ1
∼= Γ2, then Γsf

1
∼= Γsf

2 .

(b) Compute the order type of Qfs.


