Prime Polynomial Values of Linear Functions in Short Intervals

Efrat Bank

School of Mathematical Sciences
Tel-Aviv University
joint with L. Bary-Soroker

Outline

(1) Introduction
(2) Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture
(3) Method of proof

4 Recent related works

Outline

(1) Introduction

2 Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture

3 Method of proof

4 Recent related works

The Prime Number Theorem

- Let $\mathbb{1}$ be the prime characteristic function, i.e.,

$$
\mathbb{1}(h)= \begin{cases}1, & h \text { is prime } \\ 0, & \text { otherwise }\end{cases}
$$

The Prime Number Theorem

- Let $\mathbb{1}$ be the prime characteristic function, i.e.,

$$
\mathbb{1}(h)= \begin{cases}1, & h \text { is prime } \\ 0, & \text { otherwise }\end{cases}
$$

- The Prime Number Theorem (PNT):

$$
\sum_{0<h \leq x} \mathbb{1}(h) \sim \int_{2}^{x} \frac{d t}{\log t} \sim \frac{x}{\log x}
$$

as $x \longrightarrow \infty$.

The Prime Polynomial Theorem

- Let $\mathcal{M}(k, q) \subseteq \mathcal{P}_{\leq k} \subset \mathbb{F}_{q}[t]$

The Prime Polynomial Theorem

- Let $\mathcal{M}(k, q) \subseteq \mathcal{P}_{\leq k} \subset \mathbb{F}_{q}[t]$
- For $h \in \mathbb{F}_{q}[t]$ let $\|h\|=q^{\operatorname{deg} h}$ and $\|0\|=0$.

The Prime Polynomial Theorem

- Let $\mathcal{M}(k, q) \subseteq \mathcal{P}_{\leq k} \subset \mathbb{F}_{q}[t]$
- For $h \in \mathbb{F}_{q}[t]$ let $\|h\|=q^{\text {deg } h}$ and $\|0\|=0$.
- Let $\mathbb{1}$ be the prime polynomial characteristic function, i.e.,

$$
\mathbb{1}(h)= \begin{cases}1, & h \text { is prime } \\ 0, & \text { otherwise } .\end{cases}
$$

(prime polynomial = monic + irreducible polynomial)

The Prime Polynomial Theorem

- The Prime Polynomial Theorem (PPT):

$$
\sum_{h \in \mathcal{M}(k, q)} \mathbb{1}(h) \sim \frac{q^{k}}{k}
$$

The Prime Polynomial Theorem

- The Prime Polynomial Theorem (PPT):

$$
\begin{gathered}
\sum_{h \in \mathcal{M}(k, q)} \mathbb{1}(h) \sim \frac{q^{k}}{k} \\
\sum_{h \in \mathcal{M}(k, q)} \mathbb{1}(h)=\frac{q^{k}}{k}+O\left(\frac{q^{k / 2}}{k}\right)
\end{gathered}
$$

The Prime Polynomial Theorem

- The Prime Polynomial Theorem (PPT):

$$
\begin{gathered}
\sum_{h \in \mathcal{M}(k, q)} \mathbb{1}(h) \sim \frac{q^{k}}{k} \\
\sum_{h \in \mathcal{M}(k, q)} \mathbb{1}(h)=\frac{q^{k}}{k}+O\left(\frac{q^{k / 2}}{k}\right)
\end{gathered}
$$

In comparison with PNT, we replace:

- $0<h \leq x \leftrightarrow h \in \mathcal{M}(k, q)$
- $|[0, x]|=x \leftrightarrow|\{h \in \mathcal{M}(k, q)\}|=q^{k}$
- $\log x \leftrightarrow k$

Limit issues

- In the PNT, we consider the limit $x \longrightarrow \infty$. In the PPT, we consider the limit $q^{k} \longrightarrow \infty$

Limit issues

- In the PNT, we consider the limit $x \longrightarrow \infty$. In the PPT, we consider the limit $q^{k} \longrightarrow \infty$
- $q^{k} \longrightarrow \infty$

Limit issues

- In the PNT, we consider the limit $x \longrightarrow \infty$. In the PPT, we consider the limit $q^{k} \longrightarrow \infty$
- $q^{k} \longrightarrow \infty$
- $k \longrightarrow \infty$

Limit issues

- In the PNT, we consider the limit $x \longrightarrow \infty$. In the PPT, we consider the limit $q^{k} \longrightarrow \infty$
- $q^{k} \longrightarrow \infty$
- $k \longrightarrow \infty$
- $q \longrightarrow \infty$

Outline

(1) Introduction

(2) Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture

3 Method of proof

4 Recent related works

Outline

(1) Introduction

(2) Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture
(3) Method of proof

4 Recent related works

Prime numbers in short intervals

- Let $I=(x, x+\Phi(x)]$. One may naively expect that,

$$
\sum_{h \in I} \mathbb{1}(h) \sim \frac{\Phi(x)}{\log x}
$$

Prime numbers in short intervals

- Let $I=(x, x+\Phi(x)]$. One may naively expect that,

$$
\sum_{h \in I} \mathbb{1}(h) \sim \frac{\Phi(x)}{\log x}
$$

- Clearly, Φ must satisfy $\frac{\Phi(x)}{\log x} \longrightarrow \infty$ as $x \longrightarrow \infty$.

Prime numbers in short intervals

- Let $I=(x, x+\Phi(x)]$. One may naively expect that,

$$
\sum_{h \in I} \mathbb{1}(h) \sim \frac{\Phi(x)}{\log x}
$$

- Clearly, Φ must satisfy $\frac{\Phi(x)}{\log x} \longrightarrow \infty$ as $x \longrightarrow \infty$.
- From PNT, the above holds for $\Phi(x) \sim c x$ for any fixed $0<c<1$.

Prime numbers in short intervals

- Let $I=(x, x+\Phi(x)]$. One may naively expect that,

$$
\sum_{h \in I} \mathbb{1}(h) \sim \frac{\Phi(x)}{\log x}
$$

- Clearly, Φ must satisfy $\frac{\Phi(x)}{\log x} \longrightarrow \infty$ as $x \longrightarrow \infty$.
- From PNT, the above holds for $\Phi(x) \sim c x$ for any fixed $0<c<1$.
- Assuming the Riemann Hypothesis, it holds for $\Phi(x) \sim x^{\frac{1}{2}+\epsilon}$.

Prime numbers in short intervals

- Let $I=(x, x+\Phi(x)]$. One may naively expect that,

$$
\sum_{h \in I} \mathbb{1}(h) \sim \frac{\Phi(x)}{\log x}
$$

- Clearly, Φ must satisfy $\frac{\Phi(x)}{\log x} \longrightarrow \infty$ as $x \longrightarrow \infty$.
- From PNT, the above holds for $\Phi(x) \sim c x$ for any fixed $0<c<1$.
- Assuming the Riemann Hypothesis, it holds for $\Phi(x) \sim x^{\frac{1}{2}+\epsilon}$.
- For $\Phi(x) \sim \log ^{2} x$ Selberg showed (assuming RH) that it is true for almost every x, however, Maier showed that it does not hold for all x.

Conjecture (Primes in short intervals)

$$
\sum_{h \in I} \mathbb{1}(h) \sim \frac{x^{\epsilon}}{\log x}
$$

Where $I=\left(x, x+x^{\epsilon}\right], x$ is large and $0<\epsilon<1$.

Conjecture (Primes in short intervals)

$$
\sum_{h \in I} \mathbb{1}(h) \sim \frac{x^{\epsilon}}{\log x} .
$$

Where $I=\left(x, x+x^{\epsilon}\right], x$ is large and $0<\epsilon<1$.

- Heath-Brown (1988) proved this for $\epsilon=\frac{7}{12}$

Conjecture (Primes in short intervals)

$$
\sum_{h \in I} \mathbb{1}(h) \sim \frac{x^{\epsilon}}{\log x} .
$$

Where $I=\left(x, x+x^{\epsilon}\right], x$ is large and $0<\epsilon<1$.

- Heath-Brown (1988) proved this for $\epsilon=\frac{7}{12}$
- The barrier is $\epsilon=\frac{1}{2}$.

Prime Polynomials in short intervals

- An interval \mathcal{I} around $f_{0} \in \mathcal{M}(k, q)$ is defined as

$$
\mathcal{I}=\mathcal{I}\left(f_{0}, m\right)=\left\{h \in \mathbb{F}_{q}[t]:\left\|f_{0}-h\right\| \leq q^{m}\right\}=f_{0}+\mathcal{P}_{\leq m}
$$

Prime Polynomials in short intervals

- An interval \mathcal{I} around $f_{0} \in \mathcal{M}(k, q)$ is defined as

$$
\mathcal{I}=\mathcal{I}\left(f_{0}, m\right)=\left\{h \in \mathbb{F}_{q}[t]:\left\|f_{0}-h\right\| \leq q^{m}\right\}=f_{0}+\mathcal{P}_{\leq m}
$$

- We want to estimate the number of primes in short intervals, i.e., when $m<k$.

Theorem (B., Bary-Soroker, Rosenzweig)

Let $f_{0} \in \mathcal{M}(k, q), 3 \leq m<k$, and $\mathcal{I}=\mathcal{I}\left(f_{0}, m\right)$. Then,

$$
\sum_{f \in \mathcal{I}} \mathbb{1}(f)=\frac{\# \mathcal{I}}{k}\left(1+O_{k}\left(q^{-1 / 2}\right)\right)
$$

as $q \longrightarrow \infty$ and where the constant depends only on k.

Theorem (B., Bary-Soroker, Rosenzweig)

Let $f_{0} \in \mathcal{M}(k, q), 3 \leq m<k$, and $\mathcal{I}=\mathcal{I}\left(f_{0}, m\right)$. Then,

$$
\sum_{f \in \mathcal{I}} \mathbb{1}(f)=\frac{\# \mathcal{I}}{k}\left(1+O_{k}\left(q^{-1 / 2}\right)\right)
$$

as $q \longrightarrow \infty$ and where the constant depends only on k.

- In particular, if we let $\epsilon=\frac{m}{k}$ we get the full analogue of the Number Theory case.

Theorem (B., Bary-Soroker, Rosenzweig)

Let $f_{0} \in \mathcal{M}(k, q), 3 \leq m<k$, and $\mathcal{I}=\mathcal{I}\left(f_{0}, m\right)$. Then,

$$
\sum_{f \in \mathcal{I}} \mathbb{1}(f)=\frac{\# \mathcal{I}}{k}\left(1+O_{k}\left(q^{-1 / 2}\right)\right),
$$

as $q \longrightarrow \infty$ and where the constant depends only on k.

- In particular, if we let $\epsilon=\frac{m}{k}$ we get the full analogue of the Number Theory case.
- We also deal with the cases $m<3$.

Theorem (B., Bary-Soroker, Rosenzweig)

Let $f_{0} \in \mathcal{M}(k, q), 3 \leq m<k$, and $\mathcal{I}=\mathcal{I}\left(f_{0}, m\right)$. Then,

$$
\sum_{f \in \mathcal{I}} \mathbb{1}(f)=\frac{\# \mathcal{I}}{k}\left(1+O_{k}\left(q^{-1 / 2}\right)\right)
$$

as $q \longrightarrow \infty$ and where the constant depends only on k.

- In particular, if we let $\epsilon=\frac{m}{k}$ we get the full analogue of the Number Theory case.
- We also deal with the cases $m<3$.
- For $m=2$ we show that it holds under additional conditions.

Theorem (B., Bary-Soroker, Rosenzweig)

Let $f_{0} \in \mathcal{M}(k, q), 3 \leq m<k$, and $\mathcal{I}=\mathcal{I}\left(f_{0}, m\right)$. Then,

$$
\sum_{f \in \mathcal{I}} \mathbb{1}(f)=\frac{\# \mathcal{I}}{k}\left(1+O_{k}\left(q^{-1 / 2}\right)\right)
$$

as $q \longrightarrow \infty$ and where the constant depends only on k.

- In particular, if we let $\epsilon=\frac{m}{k}$ we get the full analogue of the Number Theory case.
- We also deal with the cases $m<3$.
- For $m=2$ we show that it holds under additional conditions.
- For $m=1,0$ we show that it fails.

Outline

(1) Introduction

(2) Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture
(3) Method of proof
(4) Recent related works

Primes in Arithmetic Progressions

- Let a and b be fixed, relatively prime integers.

Primes in Arithmetic Progressions

- Let a and b be fixed, relatively prime integers.
- The Prime Number Theorem for Arithmetic Progressions:

$$
\sum_{\substack{0<h<x \\ h \equiv a(\bmod b)}} 1(h) \sim \frac{1}{\varphi(b)} \cdot \frac{x}{\log (x)}
$$

Conjecture (Primes in AP with large modulus)

For every $\delta>0$,

$$
\sum_{\substack{0<h<x \\ h \equiv a(\bmod b)}} \mathbb{1}(h) \sim \frac{1}{\varphi(b)} \cdot \frac{x}{\log (x)}
$$

holds in the range $0<a<b<x^{1-\delta}$

Conjecture (Primes in AP with large modulus)

For every $\delta>0$,

$$
\sum_{\substack{0<h<x \\ h \equiv a(\bmod b)}} \mathbb{1}(h) \sim \frac{1}{\varphi(b)} \cdot \frac{x}{\log (x)}
$$

holds in the range $0<a<b<x^{1-\delta}$

- Assuming GRH, the above remains true when $b<x^{\frac{1}{2}-o(1)}$.

Conjecture (Primes in AP with large modulus)

For every $\delta>0$,

$$
\sum_{\substack{0<h<x \\ h \equiv a(\bmod b)}} \mathbb{1}(h) \sim \frac{1}{\varphi(b)} \cdot \frac{x}{\log (x)}
$$

holds in the range $0<a<b<x^{1-\delta}$

- Assuming GRH, the above remains true when $b<x^{\frac{1}{2}-o(1)}$.
- Bombieri-Vinogradov: true for almost all $b<x^{\frac{1}{2}-o(1)}$.

Theorem (B., Bary-Soroker, Rosenzweig)

Let k be a fixed integer and $\delta>0$. Then,

$$
\sum_{\substack{h \in \mathcal{M}(k, q) \\ h \equiv a(\bmod b)}} \mathbb{1}(h) \sim \frac{1}{\varphi(b)} \cdot \frac{q^{k}}{k}
$$

holds uniformly for all relatively prime $a(t), b(t) \in \mathbb{F}_{q}[t]$ with $\operatorname{deg} b<k(1-\delta)$

Conjecture (Primes in AP in short intervals)

Let $L(X)=b X+a, \quad a, b \in \mathbb{Z}$

$$
\sum_{h \in\left[x, x+x^{\epsilon}\right]} \mathbb{1}(L(h)) \sim \frac{b}{\varphi(b)} \cdot \frac{x^{\epsilon}}{\log (L(x))}, \quad x \rightarrow \infty
$$

where $0<a<b, b^{\delta}<x$ or $b<0,|b|^{1+\delta}<a$ and $|b| x^{\alpha}<a<|b| x^{\beta}$ for $1<\alpha<\beta$.

Outline

(1) Introduction

(2) Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture
(3) Method of proof

4 Recent related works

Correlations between primes

Conjecture (The Hardy-Littlewood n-tuple conjecture)

$\sum_{0<h \leq x} \mathbb{1}\left(h+a_{1}\right) \cdots \mathbb{1}\left(h+a_{n}\right) \sim \mathfrak{S}\left(a_{1}, \ldots, a_{n}\right) \frac{x}{(\log x)^{n}}, \quad x \rightarrow \infty$,
where the a_{i} 's are distinct and $\mathfrak{S}\left(a_{1}, \ldots, a_{n}\right)$ is a constant depending on the a_{i} 's.

Hardy-Littlewood for function fields

Theorem (Hardy-Littlewood for function fields)

$$
\sum_{h \in \mathcal{M}(k, q)} \mathbb{1}\left(h+a_{1}\right) \cdots \mathbb{1}\left(h+a_{n}\right)=\frac{q^{k}}{k^{n}}\left(1+O_{k, n}\left(q^{-1 / 2}\right)\right),
$$

holds uniformly on all $a_{1}, \ldots, a_{n} \in \mathbb{F}_{q}[t]$ of degrees $\operatorname{deg}\left(a_{i}\right)<k$ and for a fixed k.

Hardy-Littlewood for function fields

Theorem (Hardy-Littlewood for function fields)

$$
\sum_{h \in \mathcal{M}(k, q)} \mathbb{1}\left(h+a_{1}\right) \cdots \mathbb{1}\left(h+a_{n}\right)=\frac{q^{k}}{k^{n}}\left(1+O_{k, n}\left(q^{-1 / 2}\right)\right)
$$

holds uniformly on all $a_{1}, \ldots, a_{n} \in \mathbb{F}_{q}[t]$ of degrees $\operatorname{deg}\left(a_{i}\right)<k$ and for a fixed k.

- Bender and Pollack (2009) proved this for the case $n=2$ and q odd.

Hardy-Littlewood for function fields

Theorem (Hardy-Littlewood for function fields)

$$
\sum_{h \in \mathcal{M}(k, q)} \mathbb{1}\left(h+a_{1}\right) \cdots \mathbb{1}\left(h+a_{n}\right)=\frac{q^{k}}{k^{n}}\left(1+O_{k, n}\left(q^{-1 / 2}\right)\right)
$$

holds uniformly on all $a_{1}, \ldots, a_{n} \in \mathbb{F}_{q}[t]$ of degrees $\operatorname{deg}\left(a_{i}\right)<k$ and for a fixed k.

- Bender and Pollack (2009) proved this for the case $n=2$ and q odd.
- Bary-Soroker (2014) proved this for any n and q odd.

Hardy-Littlewood for function fields

Theorem (Hardy-Littlewood for function fields)

$$
\sum_{h \in \mathcal{M}(k, q)} \mathbb{1}\left(h+a_{1}\right) \cdots \mathbb{1}\left(h+a_{n}\right)=\frac{q^{k}}{k^{n}}\left(1+O_{k, n}\left(q^{-1 / 2}\right)\right)
$$

holds uniformly on all $a_{1}, \ldots, a_{n} \in \mathbb{F}_{q}[t]$ of degrees $\operatorname{deg}\left(a_{i}\right)<k$ and for a fixed k.

- Bender and Pollack (2009) proved this for the case $n=2$ and q odd.
- Bary-Soroker (2014) proved this for any n and q odd.
- Dan Carmon (2015) resolved the above for fields of characteristic 2.

Outline

(1) Introduction

(2) Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture
(3) Method of proof
(4) Recent related works

Let $L_{i}=b_{i} X+a_{i}, i=1, \ldots, n$ be distinct primitive linear functions, i.e, $\operatorname{gcd}\left(a_{i}, b_{i}\right)=1$. One may expect that,

Conjecture (Combined conjecture)

$$
\sum_{h \in\left[x, x+x^{\epsilon}\right]} \mathbb{1}\left(L_{1}(h)\right) \cdots \mathbb{1}\left(L_{n}(h)\right) \sim \mathfrak{S}\left(L_{1}, \ldots, L_{n}\right) \frac{x^{\epsilon}}{\prod_{i=1}^{n} \log \left(L_{i}(x)\right)}
$$

holds uniformly, when $x \rightarrow \infty$ and $\mathfrak{S}\left(L_{1}, \ldots, L_{n}\right)$ is a constant depending on the L_{i} 's.

Prime polynomial values of several linear functions in short intervals

Theorem (B., Bary-Soroker)

Let $B>0$ and $f_{0} \in \mathcal{M}(k, q), 2 \leq m<k, \mathcal{I}\left(f_{0}, m\right)$. Then,
$\sum_{f \in \mathcal{I}\left(f_{0}, m\right)} \mathbb{1}\left(L_{1}(f)\right) \cdots \mathbb{1}\left(L_{n}(f)\right)=\frac{\# \mathcal{I}\left(f_{0}, m\right)}{\prod_{i=1}^{n} \operatorname{deg}\left(L_{i}\left(f_{0}\right)\right)}\left(1+O_{B}\left(q^{-1 / 2}\right)\right)$
holds uniformly as $q \longrightarrow \infty$ odd, for:

Prime polynomial values of several linear functions in short intervals

Theorem (B., Bary-Soroker)

Let $B>0$ and $f_{0} \in \mathcal{M}(k, q), 2 \leq m<k, \mathcal{I}\left(f_{0}, m\right)$. Then,
$\sum_{f \in \mathcal{I}\left(f_{0}, m\right)} \mathbb{1}\left(L_{1}(f)\right) \cdots \mathbb{1}\left(L_{n}(f)\right)=\frac{\# \mathcal{I}\left(f_{0}, m\right)}{\prod_{i=1}^{n} \operatorname{deg}\left(L_{i}\left(f_{0}\right)\right)}\left(1+O_{B}\left(q^{-1 / 2}\right)\right)$
holds uniformly as $q \longrightarrow \infty$ odd, for:

- $L_{1}(X), \ldots, L_{n}(X)$ distinct primitive linear functions

Prime polynomial values of several linear functions in short intervals

Theorem (B., Bary-Soroker)

Let $B>0$ and $f_{0} \in \mathcal{M}(k, q), 2 \leq m<k, \mathcal{I}\left(f_{0}, m\right)$. Then,
$\sum_{f \in \mathcal{I}\left(f_{0}, m\right)} \mathbb{1}\left(L_{1}(f)\right) \cdots \mathbb{1}\left(L_{n}(f)\right)=\frac{\# \mathcal{I}\left(f_{0}, m\right)}{\prod_{i=1}^{n} \operatorname{deg}\left(L_{i}\left(f_{0}\right)\right)}\left(1+O_{B}\left(q^{-1 / 2}\right)\right)$
holds uniformly as $q \longrightarrow \infty$ odd, for:

- $L_{1}(X), \ldots, L_{n}(X)$ distinct primitive linear functions
- The L_{i} 's are of bounded height, i.e., $\max \left\{\operatorname{deg} a_{i}(t), \operatorname{deg} b_{i}(t)\right\} \leq B$

Prime polynomial values of several linear functions in short intervals

Theorem (B., Bary-Soroker)

Let $B>0$ and $f_{0} \in \mathcal{M}(k, q), 2 \leq m<k, \mathcal{I}\left(f_{0}, m\right)$. Then,
$\sum_{f \in \mathcal{I}\left(f_{0}, m\right)} \mathbb{1}\left(L_{1}(f)\right) \cdots \mathbb{1}\left(L_{n}(f)\right)=\frac{\# \mathcal{I}\left(f_{0}, m\right)}{\prod_{i=1}^{n} \operatorname{deg}\left(L_{i}\left(f_{0}\right)\right)}\left(1+O_{B}\left(q^{-1 / 2}\right)\right)$
holds uniformly as $q \longrightarrow \infty$ odd, for:

- $L_{1}(X), \ldots, L_{n}(X)$ distinct primitive linear functions
- The L_{i} 's are of bounded height, i.e., $\max \left\{\operatorname{deg} a_{i}(t), \operatorname{deg} b_{i}(t)\right\} \leq B$
- $1 \leq n \leq B$

Prime polynomial values of several linear functions in short intervals

Theorem (B., Bary-Soroker)

Let $B>0$ and $f_{0} \in \mathcal{M}(k, q), 2 \leq m<k, \mathcal{I}\left(f_{0}, m\right)$. Then,
$\sum_{f \in \mathcal{I}\left(f_{0}, m\right)} \mathbb{1}\left(L_{1}(f)\right) \cdots \mathbb{1}\left(L_{n}(f)\right)=\frac{\# \mathcal{I}\left(f_{0}, m\right)}{\prod_{i=1}^{n} \operatorname{deg}\left(L_{i}\left(f_{0}\right)\right)}\left(1+O_{B}\left(q^{-1 / 2}\right)\right)$
holds uniformly as $q \longrightarrow \infty$ odd, for:

- $L_{1}(X), \ldots, L_{n}(X)$ distinct primitive linear functions
- The L_{i} 's are of bounded height, i.e., $\max \left\{\operatorname{deg} a_{i}(t), \operatorname{deg} b_{i}(t)\right\} \leq B$
- $1 \leq n \leq B$
- $3 \leq k \leq B$

Outline

(1) Introduction

2 Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture

4 Recent related works

Main idea

- The main idea is to consider a generic polynomial $\mathcal{F} \in \mathcal{I}\left(f_{0}, m\right)$. This means that we think of such a polynomial as a polynomial of the form

$$
\mathcal{F}(\mathbf{A}, t)=f_{0}(t)+\sum_{i=0}^{m} A_{i} t^{i} \in \mathbb{F}_{q}\left[A_{0}, \ldots, A_{m}\right][t]
$$

Main idea

- The main idea is to consider a generic polynomial $\mathcal{F} \in \mathcal{I}\left(f_{0}, m\right)$. This means that we think of such a polynomial as a polynomial of the form

$$
\mathcal{F}(\mathbf{A}, t)=f_{0}(t)+\sum_{i=0}^{m} A_{i} t^{i} \in \mathbb{F}_{q}\left[A_{0}, \ldots, A_{m}\right][t]
$$

- We are interested in the number of substitutions $A_{i} \mapsto a_{i}$ where $a_{i} \in \mathbb{F}_{q}$ such that $L_{i}\left(\mathcal{F}\left(a_{0}, \ldots, a_{m}, t\right)\right), i=1, \ldots, n$ are all prime polynomials.

Main idea

- The main idea is to consider a generic polynomial $\mathcal{F} \in \mathcal{I}\left(f_{0}, m\right)$. This means that we think of such a polynomial as a polynomial of the form

$$
\mathcal{F}(\mathbf{A}, t)=f_{0}(t)+\sum_{i=0}^{m} A_{i} t^{i} \in \mathbb{F}_{q}\left[A_{0}, \ldots, A_{m}\right][t]
$$

- We are interested in the number of substitutions $A_{i} \mapsto a_{i}$ where $a_{i} \in \mathbb{F}_{q}$ such that $L_{i}\left(\mathcal{F}\left(a_{0}, \ldots, a_{m}, t\right)\right), i=1, \ldots, n$ are all prime polynomials.
- Using this idea, the proof is divided into two main parts:
- Computing Galois groups.
- Counting argument.

Computing Galois group

Proposition

Let L_{1}, \cdots, L_{n} be distinct primitive linear functions and $f_{0} \in \mathbb{F}[t]$ a monic polynomial of degree k. Let $\mathcal{F}=f_{0}+\sum_{j=0}^{m} A_{j} t^{j}$ where $2 \leq m<k$. Then,
$\operatorname{Gal}\left(\prod_{i=1}^{n} L_{i}(\mathcal{F}), \mathbb{F}(\mathbf{A})\right)=\prod_{i=1}^{n} \operatorname{Gal}\left(L_{i}(\mathcal{F}), \mathbb{F}(\mathbf{A})\right)=S_{k_{1}} \times \cdots \times S_{k_{n}}$,
where $k_{i}=\operatorname{deg}\left(L_{i}\left(f_{0}\right)\right)$.

Sketch proof of the proposition

Proof:

- The splitting fields of $L_{i}(\mathcal{F})$ are linearly disjoint.

Sketch proof of the proposition

Proof:

- The splitting fields of $L_{i}(\mathcal{F})$ are linearly disjoint.
- $\operatorname{Gal}\left(L_{i}(\mathcal{F}), \mathbb{F}(\mathbf{A})\right)=S_{k_{i}}$ where $k_{i}=\operatorname{deg}\left(L_{i}\left(f_{0}\right)\right)$

Sketch proof of the proposition

Proof:

- The splitting fields of $L_{i}(\mathcal{F})$ are linearly disjoint.
- $\operatorname{Gal}\left(L_{i}(\mathcal{F}), \mathbb{F}(\mathbf{A})\right)=S_{k_{i}}$ where $k_{i}=\operatorname{deg}\left(L_{i}\left(f_{0}\right)\right)$
- $L_{i}(\mathcal{F})$ is separable in t and irreducible in the ring $\mathbb{F}(\mathbf{A})[t]$.

Sketch proof of the proposition

Proof:

- The splitting fields of $L_{i}(\mathcal{F})$ are linearly disjoint.
- $\operatorname{Gal}\left(L_{i}(\mathcal{F}), \mathbb{F}(\mathbf{A})\right)=S_{k_{i}}$ where $k_{i}=\operatorname{deg}\left(L_{i}\left(f_{0}\right)\right)$
- $L_{i}(\mathcal{F})$ is separable in t and irreducible in the ring $\mathbb{F}(\mathbf{A})[t]$.
- The Galois group of $L_{i}(\mathcal{F})$ over $\mathbb{F}(\mathbf{A})$ is doubly transitive.

Sketch proof of the proposition

Proof:

- The splitting fields of $L_{i}(\mathcal{F})$ are linearly disjoint.
- $\operatorname{Gal}\left(L_{i}(\mathcal{F}), \mathbb{F}(\mathbf{A})\right)=S_{k_{i}}$ where $k_{i}=\operatorname{deg}\left(L_{i}\left(f_{0}\right)\right)$
- $L_{i}(\mathcal{F})$ is separable in t and irreducible in the ring $\mathbb{F}(\mathbf{A})[t]$.
- The Galois group of $L_{i}(\mathcal{F})$ over $\mathbb{F}(\mathbf{A})$ is doubly transitive.
- The Galois group of $L_{i}(\mathcal{F})$ contains a transposition.

Counting argument

Proposition (An explicit Chebotarev density theorem)

Let

$$
\mathcal{H}(\mathbf{A}, t)=\mathcal{F}_{1} \cdots \mathcal{F}_{n} \in \mathbb{F}_{q}\left[A_{0}, \ldots, A_{m}\right][t]
$$

Assume that $\operatorname{Gal}\left(\mathcal{H}, \mathbb{F}_{q}(\mathbf{A})\right)=S_{k_{1}} \times \cdots \times S_{k_{n}}$ where $k_{i}=\operatorname{deg}_{t}\left(\mathcal{F}_{i}\right)$. Then,

$$
\sum_{\mathbf{a} \in \mathbb{F}_{q}^{m+1}} \mathbb{1}\left(\mathcal{F}_{1}(\mathbf{a}, t)\right) \cdots \mathbb{1}\left(\mathcal{F}_{n}(\mathbf{a}, t)\right)=\frac{q^{m+1}}{\prod_{i=1}^{n} k_{i}^{n}}\left(1+O_{m, B}\left(q^{-1 / 2}\right)\right)
$$

Outline

(1) Introduction

2 Conjectures vs. Theorems

- Primes in Short Intervals
- Primes in Arithmetic Progressions
- Correlations Between Primes
- Combined Conjecture
(3) Method of proof

4 Recent related works

- Keating-Rudnick (2014)- The variance of primes in short intervals.
- Keating-Rudnick (2014)- The variance of primes in short intervals.
- Carmon-Rudnick, Carmon (2014,2015)- Autocorrelations of the Mobius function and Chowla's conjecture.
- Keating-Rudnick (2014)- The variance of primes in short intervals.
- Carmon-Rudnick, Carmon (2014,2015)- Autocorrelations of the Mobius function and Chowla's conjecture.
- Entin (2015)- Bateman-Horn conjecture.
- Keating-Rudnick (2014)- The variance of primes in short intervals.
- Carmon-Rudnick, Carmon (2014,2015)- Autocorrelations of the Mobius function and Chowla's conjecture.
- Entin (2015)- Bateman-Horn conjecture.
- Rodgers (2015)- The covariance of almost-primes.

