Sums of Two
Squares in
Function
Fields
Bary-Soroker

Sums of Two

Sums of Two Squares in Function Fields

Lior Bary-Soroker
Tel Aviv University

Franco-German Summer School Galois Theory and Number Theory Konstanz, July 2015

Outline

TELAUIU UNIUERSITY

Sums of Two
Squares in
Function
Fields
Bary-Soroker

Sums of Two
Squares
(1) Sums of Two Squares

- Classical Theory
- An Open Problem
(2) Function Fields
- Classical Theory
- Short Intervals
(3) Methods of Proof
- A Galois Description of $b_{q}(f)=1$
- Equidistribution

Outline

TEL AUIU
UNIUERSITY
Sums of Two
Squares in Function Fields

Bary-Soroker

Sums of Two Squares
Classical Theory
An Open Problem
Function
Fields
Classical Theory
Short intervals
Methods of Proof
A Galois Description of $b_{q}(t)=1$
Equidistribution
(1) Sums of Two Squares

- Classical Theory
- An Open Problem
(2) Function Fields
- Classical Theory
- Short Intervals
(3) Methods of Proof
- A Galois Description of $b_{q}(f)=1$
- Equidistribution

Basic Algebraic Theory

teLAUUU UNIUERSITY

Sums of Two
Squares in Function Fields

Bary-Soroker

Sums of Two Squares
Classical Theory
An Open Problem
Function Fields

Short Intervals

Characteristic Function

$$
b(n)= \begin{cases}1, & n=\square+\square \\ 0, & \text { otherwise } .\end{cases}
$$

Examples: $b(1)=b(2)=b(4)=b(5)=1$,
while $b(3)=b(7)=0$

Description as Norms of Gaussian integers

$$
b(n)=1 \Longleftrightarrow n=\operatorname{Norm}_{\mathbb{Z}[I]}(a+b i)
$$

Multiplicative Description - Fermat's Theorem

$$
b(n)=1 \Longleftrightarrow N=2^{\alpha} \prod_{p \equiv 1(4)} p^{e} \prod_{q=3(4)} q^{2 e}
$$

Asymptotic Density

Landau's Theorem

tel aulu
UNIUERSITY
Sums of Two Squares in Function Fields

Bary-Soroker

Sums of Two Squares

$$
\langle\varphi(n)\rangle_{n \in I}=\frac{1}{|| |} \sum_{n \in I} \varphi(n)
$$

the average of the function φ on the set $/$

Theorem (Landau)

$$
\langle b(n)\rangle_{n \leq x}=\frac{K}{\sqrt{\log x}}+O\left(\frac{1}{(\log x)^{3 / 2}}\right), \quad x \rightarrow \infty
$$

Here $K=\frac{1}{\sqrt{2}} \prod_{p \equiv 3(4)}\left(1-p^{-2}\right)^{-1 / 2} \approx 0.764$ is the Landau-Ramanujan constant

Density in Short Intervals

Sums of Two
Squares in Function Fields
Bary-Soroker

Sums of Two
Squares
Classical Theory

$$
\text { for } \sqrt{\log x}<\phi(x)<x \text { with } \phi(x) / \sqrt{\log x} \rightarrow \infty .
$$

Naive Expectation

$$
\langle b(n)\rangle_{|n-x| \leq \phi(x)} \sim\langle b(n)\rangle_{n \leq x} \sim \frac{K}{\sqrt{\log x}}
$$

Density in Short Intervals

TELAUIU UNIUERSITY

Sums of Two Squares in Function Fields

Bary-Soroker

Sums of Two
Squares
Classical Theory
An Open Problem
Function
Fields
Classical Theory
Short Intervals
Methods of
Proof
A Galois Description of $b_{q}(t)=1$

Naive Expectation

$$
\langle b(n)\rangle_{|n-x| \leq \phi(x)} \sim\langle b(n)\rangle_{n \leq x} \sim \frac{K}{\sqrt{\log x}}
$$

for $\sqrt{\log x}<\phi(x)<x$ with $\phi(x) / \sqrt{\log x} \rightarrow \infty$.

Open Problem

How small can $\phi(x)$ be so that the naive expectation will hold?

History of the Problem

Sums of Two Squares in Function Fields

Bary-Soroker

History of the Problem

TELAUIU UNIUERSITY

Sums of Two Squares in Function Fields

Bary-Soroker

Sums of Two Squares

How small can $\phi(x)$ be so that $\langle b(n)\rangle_{|n-x| \leq \phi(x)} \sim \frac{k}{\sqrt{\log x}}$?

Not Too Small

Balog-Wooley: Fails for any $\phi(x)=(\log x)^{A}$

History of the Problem

TELAUIU UNIUERSITY

Sums of Two
Squares in
Function Fields

Bary-Soroker

Sums of Two Squares
Classical Theory An Open Problem

Function
Fields
Classical Theory Short Intervals

Methods of Proof

How small can $\phi(x)$ be so that $\langle b(n)\rangle_{|n-x| \leq \phi(x)} \sim \frac{k}{\sqrt{\log x}}$?

Not Too Small

Balog-Wooley: Fails for any $\phi(x)=(\log x)^{A}$

Best Result

 Huxely, Heath-Brown (methods from primes): $\phi(x) \geq x^{7 / 12}$
History of the Problem

telaviu UNIUERSITY

Sums of Two
Squares in
Function
Fields
Bary-Soroker

Sums of Two Squares
Classical Theory An Open Problem Function Fields

How small can $\phi(x)$ be so that $\langle b(n)\rangle_{|n-x| \leq \phi(x)} \sim \frac{k}{\sqrt{\log x}}$?

Not Too Small

Balog-Wooley: Fails for any $\phi(x)=(\log x)^{A}$

Best Result

Huxely, Heath-Brown (methods from primes): $\phi(x) \geq x^{7 / 12}$

Sieve Methods

- Iwaniec (1976)
- Hooley (1974, 1994), Friedlander (1982),

Plaskin (1987), Harman (1991)

- Balog-Wooley (2000)

Folklore Conjecture

TEL AUIU
UNIUERSITY
UNIUERSITY
Sums of Two Squares in Function Fields

Bary-Soroker

Sums of Two Squares
Classical Theory An Open Problem

Conjecture

Let $\epsilon>0$. Then

$$
\langle b(n)\rangle_{|n-x| \leq x^{\epsilon}} \sim\langle b(n)\rangle_{n \leq x} \sim \frac{K}{\sqrt{\log x}}, \quad x \rightarrow \infty
$$

Folklore Conjecture

TELAUIU UNIUERSITY

Sums of Two Squares in Function Fields

Bary-Soroker

Sums of Two Squares

Conjecture

Let $\epsilon>0$. Then

$$
\langle b(n)\rangle_{|n-x| \leq x^{e}} \sim\langle b(n)\rangle_{n \leq x} \sim \frac{K}{\sqrt{\log x}}, \quad x \rightarrow \infty
$$

Since this conjecture is completely open we will study it in function fields

Outline

TEL AUUU
UNIUERSITY
Sums of Two
Squares in Function Fields

Bary-Soroker

Sums of Two Squares
Classical Theory
An Open Problem
Function Fields
Classical Theory Short Intervals

Methods of Proof
(1) Sums of Two Squares

- Classical Theory
- An Open Problem
(2) Function Fields
- Classical Theory
- Short Intervals
(3) Methods of Proof
- A Galois Description of $b_{q}(f)=1$
- Equidistribution

What is the Analogue of Sums of Two Squares?

Instead of \mathbb{Z} we work with $\mathbb{F}_{q}[T]$ with q odd

$$
f(T)=A(T)^{2}+B^{2}(T)
$$

What is the Analogue of Sums of Two Squares?

Instead of \mathbb{Z} we work with $\mathbb{F}_{q}[T]$ with q odd

$$
f(T)=A(T)^{2}+B^{2}(T), \text { e.g. }=(A+2 B)(A-2 B) \bmod 5
$$

What is the Analogue of Sums of Two Squares?

Instead of \mathbb{Z} we work with $\mathbb{F}_{q}[T]$ with q odd

$$
f(T)=A(T)^{2}+B^{2}(T), \text { e.g. }=(A+2 B)(A-2 B) \bmod 5
$$

$f(T)=A(T)^{2}+T B^{2}(T)$ - a norm from $\mathbb{F}_{q}[\sqrt{-T}] / \mathbb{F}_{q}[T]$ $b_{q}(f)=1$ in this case, otherwise $b_{q}(f)=0$

What is the Analogue of Sums of Two Squares?

telaviu UNIUERSITY

Sums of Two
Squares in
Function
Fields
Bary-Soroker

Sums of Two Squares
Classical Theory An Open Problem

Function Fields Classical Theory Short Intervals

Instead of \mathbb{Z} we work with $\mathbb{F}_{q}[T]$ with q odd

$$
f(T)=A(T)^{2}+B^{2}(T), \text { e.g. }=(A+2 B)(A-2 B) \bmod 5
$$

$f(T)=A(T)^{2}+T B^{2}(T)-$ a norm from $\mathbb{F}_{q}[\sqrt{-T}] / \mathbb{F}_{q}[T]$ $b_{q}(f)=1$ in this case, otherwise $b_{q}(f)=0$

Multiplicative description - "Fermat's Theorem"

$$
b_{q}(f)=1 \Longleftrightarrow f=T^{\alpha} \prod P^{e_{P}} \prod Q^{2 e_{Q}}
$$

where $T \neq P$ (resp. Q) runs over all prime polynomials with $P\left(-T^{2}\right)$ (resp. $Q\left(-T^{2}\right)$) reducible (resp. irreducible)

Function Field Landau's Theorem Two Limits Phenomenon

Sums of Two
Squares in
Function Fields

Bary-Soroker

Denote $M_{n, q} \subseteq \mathbb{F}_{q}[T]$, monic polynomials of degree n

$$
M_{n, q} \nsim\{n: 1 \leq n \leq x\} \quad \text { and } \quad \# M_{n, q}=q^{n} \leftrightarrow x
$$

Function Field Landau's Theorem Two Limits Phenomenon

telaviu UNIUERSITY

Sums of Two Squares in Function Fields

Bary-Soroker

Sums of Two Squares

Denote $M_{n, q} \subseteq \mathbb{F}_{q}[T]$, monic polynomials of degree n

$$
M_{n, q} \nLeftarrow\{n: 1 \leq n \leq x\} \quad \text { and } \quad \# M_{n, q}=q^{n} \longleftrightarrow x
$$

Theorem (BS-Smilanski-Wolf)

$$
\begin{array}{ll}
\left\langle b_{q}(f)\right\rangle_{f \in M_{n, q}}=\frac{K_{q}}{\sqrt{n}}+O_{q}\left(n^{-3 / 2}\right), & n \rightarrow \infty \\
\left\langle b_{q}(f)\right\rangle_{f \in M_{n, q}}=\frac{\binom{2 n}{n}}{4^{n}}+O_{n}\left(q^{-1}\right), & q \rightarrow \infty
\end{array}
$$

Function Field Landau's Theorem

Two Limits Phenomenon
telaviu UNIUERSITY

Sums of Two
Squares in
Function Fields

Bary-Soroker

Sums of Two Squares
Classical Theory
An Open Problem
Function
Fields
Classical Theory
Short Intervals
Methods of Proof
A Galois Description of $b_{q}(f)=1$ Equidistribution

Denote $M_{n, q} \subseteq \mathbb{F}_{q}[T]$, monic polynomials of degree n

$$
M_{n, q} \nsim\{n: 1 \leq n \leq x\} \quad \text { and } \quad \# M_{n, q}=q^{n} \leftrightarrow x
$$

Theorem (BS-Smilanski-Wolf)

$$
\begin{array}{ll}
\left\langle b_{q}(f)\right\rangle_{f \in M_{n, q}}=\frac{K_{q}}{\sqrt{n}}+O_{q}\left(n^{-3 / 2}\right), & n \rightarrow \infty \\
\left\langle b_{q}(f)\right\rangle_{f \in M_{n, q}}=\frac{\binom{2 n}{n}}{4^{n}}+O_{n}\left(q^{-1}\right), & q \rightarrow \infty
\end{array}
$$

Comparison of main terms in the different limits

$$
\lim _{n \rightarrow \infty} \lim _{q \rightarrow \infty} \frac{K_{q}}{\sqrt{n}} \frac{4^{n}}{\binom{2 n}{n}}=\lim _{q \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{K_{q}}{\sqrt{n}} \frac{4^{n}}{\binom{2 n}{n}}
$$

Main Result
 Large Finite Field Limit

$$
\text { Conjecture: }\langle b(n)\rangle_{|n-x| \leq x^{\epsilon}} \sim\langle b(n)\rangle_{n \leq x} \sim \frac{K}{\sqrt{\log x}}
$$

Norm of a polynomial: $|f|=\#\left(\mathbb{F}_{q}[T] / f\right)=q^{\operatorname{deg} f}$ Analogue of $|n-x| \leq x^{\epsilon}:\left|f-f_{0}\right| \leq\left|f_{0}\right|^{\epsilon}, f_{0} \in \mathcal{M}_{n, q}$

Main Result

Large Finite Field Limit

Conjecture: $\langle b(n)\rangle_{|n-x| \leq x^{\epsilon}} \sim\langle b(n)\rangle_{n \leq x} \sim \frac{k}{\sqrt{\log x}}$
Norm of a polynomial: $|f|=\#\left(\mathbb{F}_{q}[T] / f\right)=q^{\operatorname{deg} f}$ Analogue of $|n-x| \leq x^{\epsilon}:\left|f-f_{0}\right| \leq\left|f_{0}\right|^{\epsilon}, f_{0} \in \mathcal{M}_{n, q}$

Theorem (Bank-BS-Fehm)

Fix n and $\frac{2}{n} \leq \epsilon<1$. Then

$$
\left\langle b_{q}(f)\right\rangle_{\left|f-f_{0}\right| \leq\left|f_{0}\right|^{\mid c}}=\frac{\binom{2 n}{n}}{4^{n}}+O_{n}\left(q^{-1 / 2}\right), \quad q \rightarrow \infty
$$

uniformly on $f_{0} \in \mathcal{M}_{n, q}$.

Main Result

Large Finite Field Limit

Conjecture: $\langle b(n)\rangle_{|n-x| \leq x^{\epsilon}} \sim\langle b(n)\rangle_{n \leq x} \sim \frac{k}{\sqrt{\log x}}$
Norm of a polynomial: $|f|=\#\left(\mathbb{F}_{q}[T] / f\right)=q^{\operatorname{deg} f}$ Analogue of $|n-x| \leq x^{\epsilon}:\left|f-f_{0}\right| \leq\left|f_{0}\right|^{\epsilon}, f_{0} \in \mathcal{M}_{n, q}$

Theorem (Bank-BS-Fehm)

Fix n and $\frac{2}{n} \leq \epsilon<1$. Then

$$
\left\langle b_{q}(f)\right\rangle_{\left|f-f_{0}\right| \leq\left|f_{0}\right|^{\prime}}=\frac{\binom{2 n}{n}}{4^{n}}+O_{n}\left(q^{-1 / 2}\right), \quad q \rightarrow \infty
$$

uniformly on $f_{0} \in \mathcal{M}_{n, q}$.
Completely settles the function field conjecture for large q

Outline

TEL AUIU
UNIUERSITY
Sums of Two
Squares in Function Fields

Bary-Soroker

Sums of Two Squares
(1) Sums of Two Squares

- Classical Theory
- An Open Problem
(2) Function Fields
- Classical Theory
- Short Intervals
(3) Methods of Proof
- A Galois Description of $b_{q}(f)=1$
- Equidistribution

The Hyperoctahedral Group as Galois Group

 Over a General Fieldtel AUIU UNIUERSITY

Sums of Two Squares in Function Fields

Bary-Soroker

Sums of Two Squares

Observation

Let $f(T)=\prod_{i=1}^{n}\left(T+y_{i}\right)$ and
$g(T)=f\left(-T^{2}\right)= \pm \prod_{i=1}^{n}\left(T-\sqrt{y_{i}}\right)\left(T+\sqrt{y_{i}}\right)$ be squarefree polynomials over a field K of characteristic $\neq 2$. Then

$$
\operatorname{Gal}(g(T) / K) \hookrightarrow H_{n}
$$

$$
H_{n}=A u t
$$

The Hyperoctahedral Group as Galois Group

 Over a Finite FieldTELAUIU UNIUERSITY

Sums of Two Squares in Function Fields

Bary-Soroker

Sums of Two Squares
Classical Theory An Open Problem

$$
\begin{aligned}
& g(T)=f\left(-T^{2}\right)=\prod_{f\left(-y_{i}\right)=0}\left(T-\sqrt{y_{i}}\right)\left(T+\sqrt{y_{i}}\right) \\
& \operatorname{Gal}\left(g(T) / \mathbb{F}_{q}\right)=\left\langle\phi_{q}\right\rangle, \quad \phi_{q}(x)=x^{q}
\end{aligned}
$$

So g gives an element $\phi_{q, g} \in H_{n}$.

Proposition

There exists $X_{n} \subseteq H_{n}$ such that $b_{q}(f)=1$ if and only if $\phi_{q} \in X_{n}$

The Hyperoctahedral Group as Galois Group

 Over a Finite Fieldtelaviu UNIUERSITY

Sums of Two
Squares in
Function
Fields
Bary-Soroker

Sums of Two Squares
Classical Theory An Open Problem

Function
Fields
Classical Theory
Short Intervals
Methods of

$$
\begin{aligned}
& g(T)=f\left(-T^{2}\right)=\prod_{f\left(-y_{i}\right)=0}\left(T-\sqrt{y_{i}}\right)\left(T+\sqrt{y_{i}}\right) \\
& \operatorname{Gal}\left(g(T) / \mathbb{F}_{q}\right)=\left\langle\phi_{q}\right\rangle, \quad \phi_{q}(x)=x^{q}
\end{aligned}
$$

So g gives an element $\phi_{q, g} \in H_{n}$.

Proposition

There exists $X_{n} \subseteq H_{n}$ such that $b_{q}(f)=1$ if and only if $\phi_{q} \in X_{n}$

The Hyperoctahedral Group as Galois Group

 Over a Finite Fieldtelaviu UNIUERSITY

Sums of Two
Squares in
Function
Fields
Bary-Soroker

Sums of Two Squares
Classical Theory An Open Problem

Function
Fields
Classical Theory Short Intervals

$$
\begin{aligned}
& g(T)=f\left(-T^{2}\right)=\prod_{f\left(-y_{i}\right)=0}\left(T-\sqrt{y_{i}}\right)\left(T+\sqrt{y_{i}}\right) \\
& \operatorname{Gal}\left(g(T) / \mathbb{F}_{q}\right)=\left\langle\phi_{q}\right\rangle, \quad \phi_{q}(x)=x^{q}
\end{aligned}
$$

So g gives an element $\phi_{q, g} \in H_{n}$.

Proposition

There exists $X_{n} \subseteq H_{n}$ such that $b_{q}(f)=1$ if and only if $\phi_{q} \in X_{n}$

The Hyperoctahedral Group as Galois Group

 Over a Finite Fieldtelaviu UNIUERSITY

Sums of Two Squares in Function Fields

Bary-Soroker

Sums of Two Squares
Classical Theory An Open Problem

Function
Fields
Classical Theory
Short Intervals

$$
\begin{aligned}
& g(T)=f\left(-T^{2}\right)=\prod_{f\left(-y_{i}\right)=0}\left(T-\sqrt{y_{i}}\right)\left(T+\sqrt{y_{i}}\right) \\
& \operatorname{Gal}\left(g(T) / \mathbb{F}_{q}\right)=\left\langle\phi_{q}\right\rangle, \quad \phi_{q}(x)=x^{q}
\end{aligned}
$$

So g gives an element $\phi_{q, g} \in H_{n}$.

Proposition

There exists $X_{n} \subseteq H_{n}$ such that $b_{q}(f)=1$ if and only if $\phi_{q} \in X_{n}$

Explicit Chebotarev's Theorem

tel aulu UNIUERSITY

Sums of Two Squares in Function Fields

Bary-Soroker

Sums of Two Squares

For $f_{0} \in \mathcal{M}_{n, q}$ put

$$
\mathcal{F}_{A}(T)=f_{0}(T)+\sum_{i \leq \epsilon n} A_{i} T^{i}
$$

with $A=\left(A_{0}, \ldots, A_{m}\right)$ a tuple of variables $(m=\lfloor\epsilon n\rfloor)$. Let

$$
\mathcal{G}_{A}(T)=\mathcal{F}_{A}\left(-T^{2}\right) \quad \text { and } \quad G=\operatorname{Gal}\left(\mathcal{G}_{A}\right) \subseteq H_{n}
$$

Theorem

$$
\operatorname{Prob}\left(a \in \mathbb{F}_{q}^{\lfloor\lfloor n\rfloor+1}: \phi_{q, \mathcal{G}_{a}} \in X_{n}\right) \sim \operatorname{Prob}_{G}\left(\sigma \in X_{n}\right)
$$

Note that LHS $=\langle b(f)\rangle_{\left|f-f_{0}\right| \leq\left|f_{0}\right|^{c}}$

Conclusion of the Proof

TELAUIU UNIUERSITY

Sums of Two
Squares in Function Fields

Bary-Soroker

Sums of Two
Squares
Classical Theory
An Open Problem
Function
Fields
Classical Theory Short Intervals

Methods of
Proof
A Galois Description of $b_{q}(f)=1$

$$
G=\operatorname{Gal}\left(\mathcal{G}_{A}(T)\right)=\operatorname{Gal}\left(\mathcal{F}_{A}\left(-T^{2}\right)\right) \subseteq H_{n}
$$

Key Proposition

$$
G=H_{n}
$$

(Builds on Bank-BS-Rosenzweig: $\operatorname{Gal}\left(\mathcal{F}_{A}(T)\right)=S_{n}$)

Corollary

$$
\langle b(f)\rangle_{\left|f-f_{0}\right| \leq\left|f_{0}\right|^{\epsilon}} \sim \frac{\# X_{n}}{\# H_{n}}=\frac{1}{4^{n}}\binom{2 n}{n}
$$

Conclusion of the Proof

TELAUUU UNIUERSITY

Sums of Two
Squares in Function Fields

Bary-Soroker

Sums of Two Squares
Classical Theory
An Open Problem
Function
Fields
Classical Theory Short Intervals

Methods of
Proof
A Galois Description of $b_{q}(f)=1$
Equidistribution

$$
G=\operatorname{Gal}\left(\mathcal{G}_{A}(T)\right)=\operatorname{Gal}\left(\mathcal{F}_{A}\left(-T^{2}\right)\right) \subseteq H_{n}
$$

Key Proposition

$$
G=H_{n}
$$

(Builds on Bank-BS-Rosenzweig: $\operatorname{Gal}\left(\mathcal{F}_{A}(T)\right)=S_{n}$)

Corollary

$$
\langle b(f)\rangle_{\left|f-f_{0}\right| \leq\left|f_{0}\right|^{\epsilon}} \sim \frac{\# X_{n}}{\# H_{n}}=\frac{1}{4^{n}}\binom{2 n}{n}
$$

Remarks

- This completes the proof

Conclusion of the Proof

TELAUUU UNIUERSITY

Sums of Two
Squares in Function Fields

Bary-Soroker

Sums of Two
Squares
Classical Theory
An Open Problem
Function
Fields
Classical Theory Short Intervals

Methods of
Proof
A Galois Description of $b_{q}(f)=1$
Equidistribution

$$
G=\operatorname{Gal}\left(\mathcal{G}_{A}(T)\right)=\operatorname{Gal}\left(\mathcal{F}_{A}\left(-T^{2}\right)\right) \subseteq H_{n}
$$

Key Proposition

$$
G=H_{n}
$$

(Builds on Bank-BS-Rosenzweig: $\operatorname{Gal}\left(\mathcal{F}_{A}(T)\right)=S_{n}$)

Corollary

$$
\langle b(f)\rangle_{\left|f-f_{0}\right| \leq\left|f_{0}\right|^{\epsilon}} \sim \frac{\# X_{n}}{\# H_{n}}=\frac{1}{4^{n}}\binom{2 n}{n}
$$

Remarks

- This completes the proof
- The last inequality comes from Ewens' sampling formula

Further Problems to Think About

Sums of Two Squares in Function Fields
Bary-Soroker

Sums of Two Squares
Classical Theory
An Open Problem
Function
Fields
Classical Theory
Short Intervals
Methods of Proof
A Galois Description
of $b_{q}(f)=1$
Equidistribution

Further Problems to Think About

Sums of Two
Squares in
Function Fields

Bary-Soroker

Sums of Two Squares
Classical Theory
An Open Problem
Function
Fields
Classical Theory
Short Intervals
Methods of Proof
A Galois Description
of $b_{q}(f)=1$
Equidistribution

- Limit $n \rightarrow \infty$

Further Problems to Think About

TELAUIU UNIUERSITY

Sums of Two Squares in
Function Fields

Bary-Soroker

Sums of Two
Squares
Classical Theory
An Open Problem
Function
Fields
Classical Theory
Short Intervals
Methods of
Proof

- Limit $n \rightarrow \infty$
- Further study of the error term

$$
E=\left\langle b_{q}(f)\right\rangle_{\left|f-f_{0}\right| \leq\left|f_{0}\right|^{\epsilon}}-\frac{1}{4^{n}}\binom{2 n}{n}
$$

(Sharper upper bounds on $|E|$, average, variance,...)

Further Problems to Think About

TELAUIU UNIUERSITY

Sums of Two
Squares in
Function Fields

Bary-Soroker

Sums of Two
Squares
Classical Theory An Open Problem

- Limit $n \rightarrow \infty$
- Further study of the error term

$$
E=\left\langle b_{q}(f)\right\rangle_{\left|f-f_{0}\right| \leq\left|f_{0}\right|^{\epsilon}}-\frac{1}{4^{n}}\binom{2 n}{n}
$$

(Sharper upper bounds on $|E|$, average, variance,...)

- Obtaining main terms in different problems, e.g.

$$
\left\langle b_{q}(f) b_{q}(f+h)\right\rangle_{f \in M_{n, q}}
$$

Further Problems to Think About

 UNIUERSITYSums of Two
Squares in
Function Fields

Bary-Soroker

Sums of Two
Squares
Classical Theory An Open Problem

- Limit $n \rightarrow \infty$
- Further study of the error term

$$
E=\left\langle b_{q}(f)\right\rangle_{\left|f-f_{0}\right| \leq\left|f_{0}\right|^{\epsilon}}-\frac{1}{4^{n}}\binom{2 n}{n}
$$

(Sharper upper bounds on $|E|$, average, variance,...)

- Obtaining main terms in different problems, e.g.

$$
\left\langle b_{q}(f) b_{q}(f+h)\right\rangle_{f \in M_{n, q}}
$$

- Landau's theorem in $q^{n} \rightarrow \infty$ Some progress was already obtained by Ofir Gorodetsky

