Irreducibility and Rational Points Problem Set 1

French-German Summer School Galois Theory and Number Theory Konstanz, July 18-24 2015

- 1. Let $g(X) \in \mathbb{Z}[X]$ be a polynomial. Assume that g(n) is a perfect square for every positive integer $n \ge 1$. Prove (without using Hilbert's irreducibility theorem) that there exists $h(X) \in \mathbb{Z}[X]$ with $g = h^2$.
- 2. Let $f(T_1, \ldots, T_r, X) \in K[T, X] \setminus K[T]$ (where $T = (T_1, \ldots, T_r)$) be a monic, irreducible, and Galois in X. For $\tau \in K^r$, we saw in class the implication:

 $f(\tau, X)$ is irreducible \implies $\operatorname{Gal}(f(\tau, X)/\mathbb{Q}) \cong \operatorname{Gal}(f(T, X)/K(T)).$

Show that the assumption "Galois" can't be dropped.

3. Show that the asymptotic density of a Hilbert set in the integers is 1; that is, if H = H(f), then there exists $0 < \delta < 1$ such that

$$\#\{1 \le n \le x : n \in H(f)\} = x + O(x^{1-\delta}).$$

- 4. Show that an Hilbert set H in \mathbb{Q} is dense in the *p*-adic topology. (That is to say H intersect any open set $\{x \in \mathbb{Q} : v_p(x-a) \ge r\}$ for any r > 0 and $a \in \mathbb{Q}$.)
- 5. Show that \mathbb{Q}_p is not Hilbertian.