Mathematik und Statistik
  Logo der Universität Konstanz
Schwerpunkt Reelle Geometrie und Algebra > Jun.-Prof. Dr. Arno Fehm

French-German Summer School
Galois Theory and Number Theory
Konstanz, July 18-24 2015

organized by Lior Bary-Soroker (Tel Aviv University), Pierre Dèbes (Université de Lille), Arno Fehm (Universität Konstanz), Zeev Rudnick (Tel Aviv University)

Prerequisites and recommended literature

A good knowledge of Galois theory and some familiarity with the basics of Number Theory and of Algebraic Geometry are recommended.
The following references cover the basic material that the courses will rely on:
  • Jean-Pierre Serre, Local fields. GTM Mathematics, 67. Springer-Verlag, New York-Berlin, 1979. Chapters 1,2,3
  • Robin Hartshorne, Algebraic geometry. GTM Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977. Chapter 1
  • Michael D. Fried and Moshe Jarden, Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete, 11. Springer-Verlag, Berlin, 2008. Chapters 1,2,3
  • Michael Rosen, Number theory in function fields. Springer-Verlag, New York, 2002. Chapters 1,2,3
  • Pierre Dèbes, Arithmétique des revêtements de la droite, 3.1 and 3.2 (some of this will be rapidly reviewed)