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Abstract

This paper identifies a non-(or /iso-)thermal variant of Ruggeri’s 1983 formulation
of viscous heat-conductive fluid dynamics as a hyperbolic system of balance laws and
shows that both the original model and this variant have (a) time-asymptotically sta-
ble equilibria and (b) principal parts deriving from a protopotential: a single scalar
function that induces the temporospatial flux as an appropriate part of its Hessian.

1 Ruggeri’s first model and a nonthermal variant

The first appealing formulation for the dynamics of viscous heat-conductive fluids as a sym-
metric hyperbolic system of balance laws was given by Ruggeri in his groundbreaking 1983
paper [18]. It is of the form

∂

∂t

(
∂X0(Υ)

∂Υ

)
+

3∑
j=1

∂

∂xj

(
∂Xj(Υ)

∂Υ

)
= I(Υ), (1.1)

equations that are defined by given functions X0, X1, X2, X3, and I of the local state Υ of
the fluid and to be solved for Υ as a function of time and space variables t, x1, x2, x3. The
form of the differential operator suggested in previous considerations by Godunov [10] and
Boillat [3], Ruggeri chose the state variable (‘main field’) as

Υ = (ψ̃, ũ, θ̃, Σ̃, σ̃, q̃) (1.2)

with

ψ̃ ≡ ψ − u2/2

θ
, ũ ≡ u

θ
, θ̃ = −1

θ
, Σ̃ ≡ Σ

θ
, σ̃ ≡ σ

θ
, q̃ ≡ q

θ2
, (1.3)
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the potentials as

X0 =
p

θ
, Xj = ((pI + θ(Σ̃ + σ̃I))ũ)j + θq̃j (1.4)

with

p = p̂
(
θ, ψ + Ψ(Σ̃, σ̃.q̃)

)
, (1.5)

and the source as

I =

(
01, 03, 01,−

Σ

2η
,−σ

ζ
,− q

χ

)
, (1.6)

where u ∈ R3, θ, ψ = g/θ,−(Σ + σI) with Σ ∈ R3×3 tracefree and symmetric, and q ∈ R3

denote velocity, temperature, thermal potential (with g the free enthalpy), viscous stress,
and heat flux. In Ruggeri’s model the fluid is specified by the pressure function p̂, the
positive dissipation coefficients η, ζ of viscosity, χ of thermal conductivity, and the associated
‘extension’ Ψ. Incorporating ideas of Maxwell [14] and Cattaneo [4] in an ingenious way,
his equations (1.1)–(1.6) are a delayed version of the Navier-Stokes-Fourier system, to which
they reduce when one replaces Ψ by 0.

His paper was a response to the ideas of “Extended Irreversible Thermodynamics” (cf. ref-
erences in [18], p. 169) that had developed starting with Müller’s early paper [15]. In their
ensuing extensive work leading to the fundamental theory of Rational Extended Thermody-
namics (RET), Ruggeri and Müller proceeded to more refined formulations of dissipative
compressible fluid dynamics. Still first-order symmetric hyperbolic systems of balance laws,
these are based on main fields that are different from (1.3), and there is an infinite hierarchy
of such formulations, both in the classical and in the relativistic setting [16].

Despite these later refinements, it seems that the abovedescribed ‘Ruggeri’s first model’
still deserves attention at least from mathematical points of view, as it may serve as a
prototype regarding the latter. That is why in this note we return to it and do three things:
We (i) identify a nonthermal version thereof, (ii) establish the time-asymptotic stability of
homogeneous equilibrium solutions for both this nonthermal variant and the original model,
and (iii) formulate the existence of a protopotential as a natural requirement on symmetric
hyperbolic systems of balance laws modelling the dynamics of compressible fluids.

Reconsidering Ruggeri’s model for an isothermal situation suggests a nonthermal variant
that uses

Υ = (h̃, u,Σ, σ) with h̃ ≡ h− u2/2, (1.7)

as state variable, where u,Σ, σ are as before and h denotes enthalpy. This variant is again
of the form (1.1), with now

X0 = p, Xj = ((pI + (Σ + σI))u)j , (1.8)
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where

p = p̂(h+H(Σ, σ)), (1.9)

and

I =

(
01, 03,−

Σ

2η
,−σ

ζ

)
. (1.10)

The formulation (1.1),(1.7)-(1.10) is similar to one proposed by Yong [22].

Before turning to the stability question (in Secs. 2 and 3) and the protopotential (in Sec.
4), we now state our assumptions on the ‘non-extended’ equations of state p = p̂(h) and
p = p̂(θ, ψ). They are

p̂′(h) > 0 and p̂′′(h) > 0, (1.11)

resp.

p̂ψ(θ, ψ) > 0 and

(
θ−1p̂ψψ(θ, ψ) (−p̂ψ + θp̂θψ)(θ, ψ)

(−p̂ψ + θp̂θψ)(θ, ψ) θ3p̂θθ(θ, ψ)

)
> 0. (1.12)

In either case, the first condition just states positivity of the material density ρ which in the
non-extended context equals p̂′(h) or θ−1p̂ψ(θ, ψ), respectively, while the second condition
means convexity of the pressure as a function of the enthalpy h or as a function p̃(g, θ) =
p̂(θ, g/θ) of temperature θ and free enthalpy g, respectively. To see the latter, one confirms
by a straightforward calculation that (1.12)2 is equivalent to(

p̃gg(g, θ) p̃gθ(g, θ)
p̃θg(g, θ) p̃θθ(g, θ)

)
> 0. (1.13)

Condition (1.13) (see also [20]) is the same as requiring convexity of the specific energy as a
function e(v, s) of specific volume v and specific entropy s,(

evv(v, s) evs(v, s)
esv(v, s) ess(v, s)

)
> 0, (1.14)

as is obvious from the fact that g(p, θ) and e(v, s) are Legendre conjugate; similarly, in the
nonthermal case where e = e(v) is the Legendre transform of h = h(p), (1.11)2 is equivalent
to

e′′(v) > 0. (1.15)

Assumptions (1.12),(1.11) thus just reexpress the well-known standard requirements on the
fluid’s equation of state that make its usual Euler equations hyperbolic.

The considerations of the following sections hold whenever the extensions H or Ψ of the (free)
enthalpy are general strictly convex functions of Σ̃, σ̃ (/ and q̃) that attain their minimal
value 0 at the origin. For the sake of concreteness, we do however also write down the
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equations of motion for an “interesting special case” highlighted already in Sec. 7 of [18] and
an analogous case in the nonthermal setting; see (2.6) and (3.2).

My thinking leading to this paper (cf. [6] for documentation of its earlier steps) was prompted
by Yong’s pioneering paper [22]; independently of [18], Yong also had the fine idea of revising
Maxwell’s constitutive relation

εΣ̇ + Σ = −η
[
∇u+ (∇u)> − 2

3
∇ · v

]
− ζ∇ · uI

by relaxing different dissipative effects, here shear viscosity and bulk viscosity, separately.

2 Stability for Ruggeri’s first model

The purpose of this section is to show the following.

Theorem 1. Consider system (1.1)–(1.6), with p̂ satisfying the standard conditions (1.12),
Ψ assuming its minimum at 0 and strictly convex in the sense that its Hessian D2Ψ is positive
definite. Let θ∗, ψ∗ ∈ R be physically meaningful values of the temperature and the thermal
potential (in particular, θ∗ must be positive), and Υ0 regular1 data on R3 for which the Hs

norm, with s > 5/2, of Υ0 − (ψ∗, 0, θ∗, 0, 0, 0) is sufficiently small. Then the unique global
solution Υ with these data, Υ(0, .) = Υ0, decays as

‖Dβ
x(Υ(t, .)−Υ0)‖L2(R3) ∼ t−

3
4
− |β|

2 for t→∞. (2.1)

Very much like Ruggeri did for his own analogous observation on a more elaborate model
of relativistic fluid dynamics in Sec. 6.2 of [17], we show this by appealing to a deep result
of Bianchini, Hanouzet, Natalini on general ‘partially dissipative hyperbolic systems with a
convex entropy’ [2].

By Theorem 5.4 in [2], Theorem 1 is a direct consequence of the following observation on
the Hessians of the Godunov-Boillat potentials X0, X1, X2, X3 from (1.4) with respect to
the main field (1.3).

Proposition 1. The Kawashima condition is satisfied:

No eigenvector of ξjD
2Xj, ξ 6= 0, with respect to D2X0 lies in ker(DI). (2.2)

Condition (2.2), originally first formulated for hyperbolic-parabolic systems, means that the
single equations of (1.1) are coupled in a way that transfers the damping effect of the terms
present on the right-hand sides of some of the equations to all of them [12, 19, 21].

The rest of this section is devoted to proving Proposition 1.

1In order to get (2.1) for all multiindices up to any given order, the data must have sufficiently many
derivatives in L2. Cf. Sec. 5 of [2].
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The first derivatives of the potentials with respect to the main field variables are

∂X0

∂ψ̃
=
p̂ψ
θ

∂Xj

∂ψ̃
= p̂ψũ

j

∂X0

∂ũm
= p̂ψũ

m ∂Xj

∂ũm
= p̂ψθũ

mũj + (p̂+ θσ̃)δmj + θΣ̃mj

∂X0

∂θ̃
= −p̂+ θp̂θ +

1

2
p̂ψθ|ũ|2

∂Xj

∂θ̃
= θ2

(((
p̂θ +

1

2
p̂ψθ|ũ|2

)
I + (Σ̃ + σ̃I)

)
ũ+ q̃

)j
∂X0

∂Σ̃kl

=
p̂ψ
θ

∂Ψ

∂Σ̃kl

∂Xj

∂Σ̃kl

= θ

(
Cijklũi +

p̂ψ
θ

∂Ψ

∂Σ̃kl

ũj
)

∂X0

∂σ̃
=
p̂ψ
θ

∂Ψ

∂σ̃

∂Xj

∂σ̃
= θ

(
1 +

p̂ψ
θ

∂Ψ

∂σ̃

)
ũj

∂X0

∂q̃m
=
p̂ψ
θ

∂Ψ

∂q̃m

∂Xj

∂q̃m
= θ

(
δmj +

p̂ψ
θ

∂Ψ

∂q̃m
ũj
)
,

(2.3)

where, as henceforth, we use

Cijkl := δikδjl + δilδjk − 2

3
δklδij (2.4)

and the Einstein summation convention. Note that the tracefree symmetric character of Σ
relates its nine components Σkl among each other; in differentiating the term Σ̃ũ we have
correspondingly treated it as as Σ̃′ũ where Σ̃′ = Σ′/θ with

Σ′ ≡

2
3
Σ11 − 1

3
(Σ22 + Σ33) 1

2
(Σ12 + Σ21) 1

2
(Σ13 + Σ31)

1
2

(Σ21 + Σ12) 2
3
Σ22 − 1

3
(Σ11 + Σ33) 1

2
(Σ23 + Σ32)

1
2

(Σ31 + Σ13) 1
2

(Σ32 + Σ23) 2
3
Σ33 − 1

3
(Σ11 + Σ22)

 . (2.5)

With the extended density and extended eneryg ρ = p̂ψ/θ and ρe = θp̂θ − p̂, one readily
confirms that in the interesting special case that

Ψ(Σ̃, σ̃.q̃) =
1

2
τ1Σ̃ : Σ̃ +

1

2
τ2σ̃

2 +
1

2
τ3q̃

2,

the equations of motion read (cf. [18], Secs. 5,7)

∂ρ

∂t
+ divx(ρu) = 0

∂(ρu)

∂t
+ divx(ρu⊗ u+ (p+ σ)I + Σ) = 0

∂(ρ(e+ |u|2/2))

∂t
+ divx((ρ(e+ |u|2/2) + p+ σ)I + Σ)u) = 0

τ1

(
∂(ρΣ̃)

∂t
+ divx(ρΣ̃⊗ u)

)
+ divx(C ⊗ u) = (−1/2η)Σ

τ2

(
∂(ρσ̃)

∂t
+ divx(ρσ̃u)

)
+ divxu = (−1/ζ)σ

τ3

(
∂(ρq̃)

∂t
+ divx(ρq̃ ⊗ u)

)
+ gradxθ = (−1/χ)q.

(2.6)
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Lemma 1. (i) The Hessian D2X0 is always positive definite.
(ii) For ũ = Σ̃ = σ = q̃ = 0, the Hessians

D2Xα =



Xα
ψ̃ψ̃

Xα
ψ̃ũn

Xα
ψ̃θ̃

Xα
ψ̃Σ̃rs

Xα
ψ̃σ̃

Xα
ψ̃q̃n

Xα
ũmψ̃

Xα
ũmũn Xα

ũmθ̃
Xα
ũmΣ̃rs

Xα
ũmσ̃ Xα

ũmq̃n

Xα
θ̃ψ̃

Xα
θ̃ũn

Xα
θ̃θ̃

Xα
θ̃Σ̃rs

Xα
θ̃σ̃

Xα
θ̃q̃n

Xα
Σ̃klψ̃

Xα
Σ̃klũn

Xα
Σ̃klθ̃

Xα
Σ̃klΣ̃rs

Xα
Σ̃klσ̃

Xα
Σ̃klq̃n

Xα
σ̃ψ̃

Xα
σ̃ũn Xα

σ̃θ̃
Xα
σ̃Σ̃rs

Xα
σ̃σ̃ Xα

σ̃q̃n

Xα
q̃mψ̃

Xα
q̃mũn Xα

q̃mθ̃
Xα
q̃mΣ̃rs

Xα
q̃mσ̃ Xα

q̃mq̃n


, α = 0, 1, 2, 3,

assume the values

D2X0|E =


θ−1p̂ψψ 0 −p̂ψ + θp̂θψ 0 0 0

0 p̂ψ 0 0 0 0
−p̂ψ + θp̂θψ 0 θ3p̂θθ 0 0 0

0 0 0 ΨΣ̃klΣ̃rs
(0) ΨΣ̃klσ̃

(0) ΨΣ̃klq̃n
(0)

0 0 0 Ψσ̃Σ̃rs
(0) Ψσ̃σ̃(0) Ψσ̃q̃n(0)

0 0 0 Ψq̃mΣ̃rs
(0) Ψq̃mσ̃(0) Ψq̃mq̃n(0)



D2Xj|E =


0 p̂ψδ

nj 0 0 0 0
p̂ψδ

mj 0 θ2p̂θδ
mj θCmjrs θδmj 0

0 θ2p̂θδ
nj 0 0 0 θ2δnj

0 θCnjkl 0 0 0 0
0 θδnj 0 0 0 0
0 0 θ2δmj 0 0 0

 , j = 1, 2, 3,

while the Jacobian of the source is

DI|E =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −(1/2η)δ(kl)(rs) 0 0
0 0 0 0 −1/ζ 0
0 0 0 0 0 −1/χδmn

 .

Proof. (i) As D2Ψ > 0 by assumption, transforming

D2X0 =− θ̃p̂ψψ


1 θũ> 0 DΨ
θũ θ2ũ⊗ ũ 0 θũ⊗DΨ
0 0 0 0

D>Ψ (θũ⊗DΨ)> 0 (DΨ)>DΨ



+


0 0 0 0
0 p̂ψ̃I θp̂ψ̃ũ

> 0

0 θp̂ψ̃ũ X0
θ̃θ̃

0

0 0 0 θ−1p̂ψ̃D
2Ψ

+X0
θ̃ψ̃


0 0 1 0
0 0 θũ> 0
1 θũ 0 DΨ
0 0 DΨ 0
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with

M =


1 0 0 0
0 I 0 0
0 0 1 0

−D>Ψ 0 0 I


shows that M(D2X0)M>

=− θ̃p̂ψψ


1 θũ> 0 0
θũ θ2ũ⊗ ũ 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 p̂ψ̃I θp̂ψ̃ũ

> 0

0 θp̂ψ̃ũ X0
θ̃θ̃

0

0 0 0 ρD2Ψ

+X0
θ̃ψ̃


0 0 1 0
0 0 θũ> 0
1 θũ 0 0
0 0 0 0


=

(
D2
ψ̃,ũ,θ̃

(p̂/θ) 0

0 ρD2Ψ

)
.

and thus D2X0 itself are positive definite iff only

D2
ψ̃,ũ,θ̃

(p̂/θ) > 0.

The latter is a well known consequence of the facts that (i) by virtue of (1.14), the entropy
S = ρs is a strictly convex function of the conserved quantities ρ,m = ρu, E = ρ(e+ |u|2/2),
and (ii) X0 is the Legendre transform of S, with ψ̃, ũ, θ̃ as argument variables that are
Legendre dual to ρ,m, E [10, 5].

(ii) now follows by straightforward computation.

Now, ker(DI) consists exactly of all vectors of the form Ῡ = (ψ̄, (ūn)n, θ̄, 0, 0, 0)> and if for
any such v and any λ ∈ R, ξ ∈ R3 \ {0},

(−λD2X0 + ξjD
2Xj)Ῡ = 0,

then necessarily (ūn)n = 0, θ̄ = 0 and thus also ψ̄ = 0. Theorem 1 is proved.

Remark on hyperbolicity. Both in Lemma 1 and Lemma 2, the respective assertion (i)
confirms that the system in question is symmetric hyperbolic in the sense of Friedrichs [8, 1]
everywhere in its state space. Cf. Sec. 6 of [18].

Remark on possible dichotomy. Dynamical systems of PDE – cf., e. g., [13] regarding systems
of balance laws – can of course be dichotomous in the sense that while sufficiently small
perturbations of a homogeneous reference state induce global smooth solutions which time-
asymptotically decay to that state, large data may lead to blowup in finite time. Hu et al.
have recently demonstrated the latter for a model which is somewhat similar to Ruggeri’s,
but not completely in the form of balance laws [11]. Could their methods be used to show
blowup of classical solutions to Ruggeri’s model?
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3 Stability for the nonthermal model

Here we demonstrate the counterpart of Theorem 1 for the nonthermal model:

Theorem 2. Consider the nonthermal variant (1.1),(1.7)-(1.10) of Ruggeri’s model, with p̂
satisfying the standard conditions (1.11), H assuming its minimum at 0 and strictly convex
in the sense that its Hessian D2H is positive definite. Let ψ∗ ∈ R be a physically meaningful
value of the thermal potential and Υ0 regular1 data on R3 for which the Hs norm, with
s > 5/2, of Υ0 − (ψ∗, 0, 0, 0) is sufficiently small. Then the unique global solution Υ with
these data, Υ(0, .) = Υ0, decays as (2.1).

By the same argumentation as in Sec. 2, this follows once we have shown that Proposition
1 holds also for the Hessians of the potentials X0, X1, X2, X3 from (1.8) with respect to the
Godunov variables (1.7). This is what the rest of this section serves to.

The first derivatives are

∂X0

∂h̃
= ρ

∂Xj

∂h̃
= ρuj

∂X0

∂um
= ρum

∂Xj

∂um
= ρumuj + (p+ σ)δmj + Σmj

∂X0

∂Σkl

= ρ
∂H

∂Σkl

∂Xj

∂Σkl

= Cijklui + ρ
∂H

∂Σkl

uj

∂X0

∂σ
= ρ

∂H

∂σ

∂Xj

∂σ
= uj + ρ

∂H

∂σ
uj

(3.1)

with Cijkl as in (2.4) and
ρ = p̂′(h+H).

If, for instance,

H =
1

2
τ1Σ : Σ +

1

2
τ2σ

2,

the equations of motion thus read

∂ρ

∂t
+ divx(ρu) = 0

∂ρu

∂t
+ divx(ρu⊗ u+ (p+ σ)I + Σ) = 0

τ1

(
ρΣ

∂t
+ divx(ρu⊗ Σ)

)
+ divx(C ⊗ u) = (−1/2η)Σ

τ2

(ρσ
∂t

+ divx(ρuσ)
)

+ divx(u) = (−1/ζ)σ.

(3.2)
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Lemma 2. (i) The Hessian

D2X0 =


X0
h̃h̃

X0
h̃un

X0
h̃Σrs

X0
h̃σ

X0
umh̃

X0
umun X0

umΣrs X0
umσ

X0
Σklh̃

X0
Σklun

X0
ΣklΣrs

X0
Σklσ

X0
σh̃

X0
σun X0

σΣrs X0
σσ


of the temporal potential X0 with respect to the main field is always positive definite.
(ii) For u = Σ = σ = 0, it assumes the form

D2X0|E =


p̂′′ 0 0 0
0 ρδmn 0 0
0 0 HΣklΣrs(0) HΣklσ)(0)
0 0 HσΣrs(0) Hσσ(0)

 , (3.3)

and the Hessians of the spatial potentials are

D2Xj|E =


Xj

h̃h̃
Xj

h̃un
Xj

h̃Σrs
Xj

h̃σ

Xj

umh̃
Xj
umun Xj

umΣrs
Xj
umσ

Xj

Σklh̃
Xj

Σklun
Xj

ΣklΣrs
Xj

Σklσ

Xj

σh̃
Xj
σun Xj

σΣrs
Xj
σσ

 =


0 ρδnj 0 0

ρδmj 0 Cmjrs δmj

0 Cnjkl 0 0
0 δnj 0 0

 ,

while the Jacobian of the source is

DI|E =


0 0 0 0
0 0 0 0
0 0 −(1/2η)δ(kl)(rs) 0
0 0 0 −1/ζ

 .

Proof. (i) We readily find
DX0 = p̂′(.)

(
1, u>, DH

)
and

D2X0 = p̂′(.)

0 0 0
0 I 0
0 0 D2H

+ p̂′′(.)
(
1, u>, DH

)> (
1, u>, DH

)
,

which is always positive by virtue of (1.11) and obviously reduces to (3.3) at rest and
equilibrium.

(ii) results from a straightforward computation.

Now, ker(DI) consists exactly of all vectors of the form Ῡ = (h̄, (ūn)n, 0, 0)> and if for any
such Ῡ and any λ ∈ R, ξ ∈ R3 \ {0},

(−λD2X0 + ξjD
2Xj)Ῡ = 0,

then necessarily (ūn)n = 0 and thus h̄ = 0. Theorem 2 is proved.
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4 Protopotentials

Both models considered above are based on a Godunov-Boillat type differential operator

∂

∂t

(
∂X0(Υ)

∂Υ

)
+

d∑
j=1

∂

∂xj

(
∂Xj(Υ)

∂Υ

)
(4.1)

where the values of Υ = (Υ0, ...,Υn−1) range in some convex state space U ⊂ Rn. For any
such operator we will call a function X : U → R a protopotential if U = V ×W with V ⊂ R4

and

Xα(Υ) =
∂X(Υ)

∂Υα

, α = 0, 1, 2, 3. (4.2)

The existence of a protopotential is equivalent to the field

Tαβ =
∂Xα(Υ)

∂Υβ

(4.3)

being symmetric in α, β ∈ {0, 1, 2, 3}. A prototypical case of this was noticed by Geroch
and Lindblom [9] in relativistic fluid dynamics, where Tαβ is the energy-momentum-stress
tensor.

In classical fluid dynamics, Tαβ is the Galilei invariant 4× 4 mass-momentum-stress tensor(
ρ ρu>

ρu ρu⊗ u+ (Σ + (p+ σ)I)

)
, (4.4)

which is naturally symmetric already since it is the non-relativistic residue of the Lorentz
invariant energy-momentum-stress tensor (cf., e. g., [7], p. 17). The two models considered
above correspondingly possess protopotentials. As one easily checks, the function

X(h̃, u,Σ, σ) = P̂ (h+H(Σ, σ)) +
1

2
u>(Σ + σI)u (4.5)

with P̂ ′ = p̂ is a protopotential for the nonthermal model (1.1),(1.7)-(1.10) with respect to
(Υ0,Υ1,Υ2,Υ3) = (h̃, u,Σ, σ), and

X(ψ̃, ũ, θ̃, Σ̃, σ̃, q̃) = P̂ (θ, ψ + Ψ(Σ̃, σ̃, q̃))/θ +
1

2
u · (Σ + σI)u+ q · u (4.6)

with P̂ψ = p̂ is a protopotential for Ruggeri’s model (1.1)–(1.6) with respect to (Υ0,Υ1,Υ2,Υ3) =
(ψ̃, ũ, Σ̃, σ̃).

This structural property has helped me in finding the nonthermal model. It might also be a
guideline in further attempts to identify appropriate formulations of fluid dynamics in terms
of systems of balance laws.

10



References

[1] S. Benzoni-Gavage, D. Serre: Multidimensional Partial Differential Equations. First-
Order Systems and Applications. Oxford University Press, Oxford, 2007.

[2] S. Bianchini, B. Hanouzet, R. Natalini: Asymptotic behavior of smooth solutions for
partially dissipative hyperbolic systems with a convex entropy. Comm. Pure Appl. Math.
60 (2007), 1559–1622.

[3] G. Boillat: Sur l’existence et la recherche d’équations de conservation supplémentaires
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