
SKETCH SOLUTIONS TO EXERCISE SHEET 12

Solution 12.1:
(a) The volume of Y (s, 0, τ) is∣∣∣∣∣

∫
Y (s,0,τ)

dx1dx2...dxs

∣∣∣∣∣ .
Base case: ∣∣∣∣∣

∫
Y (s,0,τ)

dx1

∣∣∣∣∣ =

∣∣∣∣∫ τ

0
dx1

∣∣∣∣ =
τ

1!

Induction step:

Suppose the volume of Y (s′, 0, τ) is τs
′

s′! for all s′ < s.
Using Fubini we get that∣∣∣∣∣

∫
Y (s,0,τ)

dx1dx2...dxs

∣∣∣∣∣ =

∣∣∣∣∫ τ

0

(τ − xs)s−1

(s− 1)!
dxs

∣∣∣∣ .
So the volume of Y (s, 0, τ) is∣∣∣∣∣

[
−(τ − xs)s

s · (s− 1)!

]τ
xs=0

∣∣∣∣∣ =
τ s

s!
.

(b) The volume of Y (s, t+ 1, τ) is∣∣∣∣∣
∫
Y (s,t+1,τ)

dx1dx2...dxsda1db1...dat+1dbt+1

∣∣∣∣∣ .
Using Fubini we get that

∣∣∣∫Y (s,t+1,τ) dx1dx2...dxsda1db1...dat+1dbt+1

∣∣∣ is∣∣∣∣∣
∫
2|a2t+1+b

2
t+1|1/2≤τ

(π/2)t(τ − 2(a2t+1 + b2t+1)
1/2)s+2t

(s+ 2t)!
dat+1dbt+1

∣∣∣∣∣ .
Using the change of variables at+1 = r cos(θ), bt+1 = r sin(θ) we get that

the volume of Y (s, t+ 1, τ) is∣∣∣∣∣
∫ τ/2

r=0

∫ 2π

θ=0

(π/2)t(τ − 2r)s+2t

(s+ 2t)!
rdrdθ

∣∣∣∣∣ .
(b)Fix s ∈ N0. We show by induction on t the volume of Y (s, t, τ) is

(π/2)tτs+2t

(s+2t)! .

Base case: If s ≥ 1 then part (a) is the base case.
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The volume of Y (0, 1, τ) is∣∣∣∣∣
∫
Y (0,1,τ)

da1db1

∣∣∣∣∣ =

∣∣∣∣∣
∫
|a21+b21|1/2<τ/2

da1db1

∣∣∣∣∣
. This is just the area of a circle of radius τ/2, so the volume of Y (0, 1, τ) is

πτ2

4
=

(π/2)τ2

2!
.

Induction step:
Suppose the volume of Y (s, t, τ) is

(π/2)tτ s+2t

(s+ 2t)!
.

By part (b) the volume of Y (s, t+ 1, τ) is∣∣∣∣∣
∫ τ/2

r=0

∫ 2π

θ=0

(π/2)t(τ − 2r)s+2t

(s+ 2t)!
rdrdθ

∣∣∣∣∣ .
This is equal to

2π · (π/2)t

(s+ 2t)!

∣∣∣∣∣
∫ τ/2

r=0
(τ − 2r)s+2trdr

∣∣∣∣∣ .
A quick calculation gives us that for any n ∈ N0

(τ − 2r)nr =
1

−2(n+ 1)

d

dr

(
(τ − 2r)n+1r − (τ − 2r)n+2

−2 · (n+ 2)

)
So the volume of Y (s, t+ 1, τ) is∣∣∣∣∣∣2π · (π/2)t

(s+ 2t)!
· 1

−2((s+ 2t) + 1)

[
(τ − 2r)(s+2t)+1r − (τ − 2r)(s+2t)+2

−2 · ((s+ 2t) + 2)

]τ/2
r=0

∣∣∣∣∣∣ .
This is ∣∣∣∣∣2π · (π/2)t

(s+ 2t)!
· 1

−2((s+ 2t) + 1)
· (τ)(s+2t)+2

−2 · ((s+ 2t) + 2)

∣∣∣∣∣ .
So the volume of Y (s, t+ 1, τ) is

(π/2)t+1τ s+2(t+1)

(s+ 2(t+ 1))!
.

Thus, by induction on t we have that the volume of Y (s, t, τ) is

(π/2)tτ s+2t

(s+ 2t)!

(d) The volume of X(s, t, τ) is 2s times the volume of Y (s, t, τ) since
X(s, t, τ) is symmetric about the xi-axis for 1 ≤ i ≤ s.
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Solution 12.2:
Let K = Q(

√
d). The Minkowski bound cK is

1

2

(
4

π

)t√
|DK |

where t is the number of pairs of complex embeddings of K in C and DK is
the discriminant of K.

d -1 -3 -7 2 3 6 13 17
d mod 4 3 1 1 2 3 2 1 1
|DK | 4 3 7 8 12 24 13 17

cK 4/π 2
√

3/π 2
√

7/π
√

2
√

3
√

6
√

13/2
√

17/2

If cK < 2 then all ideal classes of OK contain an ideal of norm 1.
Thus all ideal classes of OK contain a principal ideal. So OK is a prin-
cipal ideal domain. The table above shows that cK is smaller than 2 for
d = −1,−3,−7, 2, 3 and 13. Thus, for these values of d, the ring of integers
OK is a principal ideal domain.

For d = 6, cK < 3. Thus every ideal class of OK contains an ideal of
norm 1 or 2. So every ideal class contains a product of prime ideals which
either divide 〈2〉 or are principal.

Since −2 = 22 − 6 · 12,
〈2〉 = 〈2−

√
6〉〈2 +

√
6〉.

Since
N(2−

√
6) = N(2 +

√
6) = −2,

the ideals 〈2 −
√

6〉 and 〈2 +
√

6〉 are prime. Thus all ideal classes of OK
contain a principal ideal. Therefore OK is a principal ideal domain.

For d = 17, cK < 3. Thus every ideal class of OK = Z[1+
√
17

2 ] contains
and ideal of norm 1 or 2. So every ideal class contains a product of prime
ideals which either divide 〈2〉 or are principal.

The ideals 〈1 + 1+
√
17

2 〉 and 〈2−
(
1+
√
17

2

)
〉 both have norm 2. So they are

prime. Since

〈2〉 = 〈1 +
1 +
√

17

2
〉〈2−

(
1 +
√

17

2

)
〉,

all ideal classes of OK contain a principal ideal. Thus OK is a principal
ideal domain.
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Solution 2.3: Let K = Q(
√
−5). Then DK = −20 and cK = 2

√
20/π <

3. So every ideal class of OK contains an ideal of norm 1 or 2. If I C OK
and N(I) = 2 then I is a prime ideal occurring in the factorisation of 〈2〉
into prime ideals.

From Aufgabe 1.4 we have that

〈2〉 = 〈2, 1 +
√
−5〉〈2, 1−

√
−5〉

and that

〈2, 1 +
√
−5〉 and 〈2, 1−

√
−5〉

are prime.

The equation a2 + 5b2 = ±2 has no solution mod 5. Thus Z[
√
−5] has no

elements with norm ±2.
Let a, b ∈ Z. We have that a+ b

√
−5 ∈ 〈2, 1 +

√
−5〉 if and only if a ≡ b

mod 2. So N(〈2, 1 +
√
−5〉) = 2.

Thus 〈2, 1 +
√
−5〉 is not principal. So the class number of OK is at least

2.
Thus the class group of OK has two elements the ideal class of OK and

the ideal class of 〈2, 1 +
√
−2〉.

Let K = Q(
√

10). Then DK = 40 and cK =
√

40/2 =
√

10 < 4. In order
to calculate the class group we need need to find the prime factorisations of
〈2〉 and 〈3〉.

Let a, b ∈ Z. We have that a + b
√

10 ∈ 〈2,
√

10〉 if and only if a is even.
Thus |OK/〈2,

√
10〉| = 2. So 〈2,

√
10〉 is prime and contains 2. Since

〈2,
√

10〉2 = 〈4, 2
√

10, 10〉 = 〈2, 2
√

10〉 = 〈2〉,

the ideal 〈2,
√

10〉 is the only prime ideal dividing 2.
Suppose, for a contradiction, that 〈2,

√
10〉 is principal with generator

a+ b
√

10. Then |N(a+ b
√

10)| = N(〈2,
√

10〉) = 2. So a2 − 10b2 = ±2. So
a2 ≡ ±2 mod 5. But 2 and −2 are not squares mod 5. Thus 〈2,

√
10〉 is not

principal.
Let a, b ∈ Z. We have that a+ b

√
10 ∈ 〈3, 1−

√
10〉 if and only if a ≡ −b

mod 3. Thus |OK/〈3, 1−
√

10〉| = 3. So 〈3, 1−
√

10〉 is prime.
Let a, b ∈ Z. We have that a + b

√
10 ∈ 〈3, 1 +

√
10〉 if and only if a ≡ b

mod 3. Thus |OK/〈3, 1 +
√

10〉| = 3. So 〈3, 1 +
√

10〉 is prime.
Suppose, for a contradiction, that 〈3, 1+

√
10〉 (respectively 〈3, 1−

√
10〉) is

principal with generator a+b
√

10. Then |N(a+b
√

10)| = N(〈3, 1+
√

10〉) =
N(〈3, 1 −

√
10〉) = 3. So a2 − 10b2 = ±3. So a2 ≡ ±3 mod 5. But 3 and

−3 are not a squares mod 5. Thus neither 〈3, 1 +
√

10〉 nor 〈3, 1 +
√

10〉 are
principal.

Since

〈3, 1 +
√

10〉〈3, 1−
√

10〉 = 〈3〉,
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the ideals
〈3, 1 +

√
10〉 and 〈3, 1−

√
10〉 =

are the only prime ideals dividing 〈3〉.
We now know that our class group contains at least 2 elements since

Z[
√

10] is not a principal ideal domain and at most 4 elements. Thus the
ideal class group of OK is isomorphic to Z2, Z2 × Z2 or Z4.

Since −2 +
√

10 ∈ 〈3, 1 +
√

10〉 and −2 +
√

10 ∈ 〈2,
√

10〉, we know that

I〈3, 1 +
√

10〉〈2,
√

10〉 = 〈−2 +
√

10〉
for some I COK .

Thus

N(I) · 3 · 2 = N(I)N(〈3, 1 +
√

10)N(〈2,
√

10〉) = |N(−2 +
√

10)| = 6.

So N(I) = 1. Thus I = OK . Thus

〈3, 1 +
√

10〉〈2,
√

10〉 = 〈−2 +
√

10〉.
So our ideal class group has 2 elements: the ideal class of OK and the

ideal class of 〈2,
√

10〉.
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Solution 12.4:
(a) Let K = Q(

√
d). Then OK = Z[

√
d]. Let x, y ∈ Z. The element

x + y
√
d ∈ OK has norm 1 if and only if x2 − dy2 = 1. So it is enough

to show that there are infinitely many elements of OK with norm 1. An
element a of OK has norm ±1 if and only if a is a unit. The field K has 2
real embeddings into C. So by the Dirichlet unit theorem O×K has free rank

1. Thus O×K contains an element u of infinite order. Since u is a unit, it
has norm ±1. Thus, since the norm is multiplicative, w = u2 has norm 1
and wn has norm 1 for all n ∈ N. Since u is of infinite order, so is w. Thus
wn = wm implies n = m for all m,n ∈ N. Thus OK contains infinitely many
elements of norm 1.

(b) Let K = Q(
√
d). Then OK = Z[1+

√
d

2 ]. Suppose that a, b ∈ Z and

a+ b1+
√
d

2 has norm 1. Then

a2 + ab+
1− d

4
b2 = 1.

So
4 = 4a2 + 4ab+ (1− d)b2 = (2a+ b)2 − db2.

Note that if a+ b1+
√
d

2 6= c+ d1+
√
d

2 then a+ 2b 6= c+ 2d or b 6= d. Thus it
is enough to show that OK contains infinitely many elements with norm 1.
The field K has 2 real embeddings into C. So by the Dirichlet unit theorem
O×K has free rank 1. Using exactly the same argument as above we get that
OK has infinitely many elements with norm 1.
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Solution 12.5:
Let a, b ∈ Z. The element a + b

√
3 is a unit in OQ(

√
3) = Z[

√
3] if and

only if
a2 − 3b2 = N(a+ b

√
3) = ±1.

If a+ b
√

3 is a torsion element of O×K then |a+ b
√

3| = 1. Since

1 = |N(a+ b
√

3)| = |a− b
√

3||a+ b
√

3|,
we have that |a− b

√
3| = 1. Thus

2 = |a+ b
√

3|+ |a− b
√

3| ≥ |2a|.
So 1 ≥ |a|. So a = −1, 0 or 1. If a = ±1 then b = 0 because a2 − 3b2 = ±1.
If a = 0 then a+ b

√
3 is not a unit.

Thus the only torsion elements of OK are ±1.
The field Q(

√
3) has two real embeddings. So by the Dirichlet unit theo-

rem the free rank of O×K is 1. So O×K is isomorphic to {±1} × Z.

We now show that if u ∈ O×K is such that u > 1 and has the property
that:

for all w ∈ OK , w > 1 implies w ≥ u
then OK is generated by the set {−1, u}. Note that the following argument
works for all real quadratic extensions of Q.

First suppose that x ∈ O×K and x > 1. Since u > 1 there exists an n ∈ N
such that un ≤ x < un+1. So 1 ≤ x/un < u. Since x/un is a unit by choice
of u, x = un.

Suppose x ∈ O×K with 0 < x < 1. Then 1/x is a unit and 1/x > 1. Thus
there exists an n ∈ N with 1/x = un. So x = u−n.

So for all x ∈ O×K with x > 0 there exists an n ∈ Z such that un = x.
Suppose x ∈ OK and x < 0. Then −x is a unit and −x > 0. Thus there

exists an n ∈ Z such that −x = un. So x = −un.
Thus all x ∈ OK are of the form ±un for some n ∈ Z.
It remains to show that 2 +

√
3 is a unit and that for all a, b ∈ Z with

a2 − 3b2 = ±1 and 1 < a+ b
√

3,

2 +
√

3 ≤ a+ b
√

3.

First note that N(2 +
√

3) = 22 − 3 = 1. So 2 +
√

3 is a unit.
Suppose a, b ∈ Z with a2−3b2 = 1 and 1 < a+b

√
3. Then 0 < a−b

√
3 < 1.

So 1 < 2a. So a ≥ 1. So b
√

3 > a − 1 > 0. So b ≥ 1. So
√

3 ≤ b
√

3 < a.
Thus 2 ≤ a. Therefore 2 +

√
3 ≤ a+ b

√
3.

Suppose a, b ∈ Z with a2 − 3b2 = −1 and 1 < a + b
√

3. Then 0 <
−a + b

√
3 < 1. So 1 < 2

√
3b. So b ≥ 1. Since a > b

√
3 − 1 > 0, we have

a ≥ 1. Now, if a+b
√

3 < 2+
√

3 then a < 2. So a = 1. So 1+b
√

3 < 2+
√

3.
So 1 ≤ b < 2. But 1 +

√
3 is not a unit in OK . Therefore 2 +

√
3 ≤ a+ b

√
3.
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