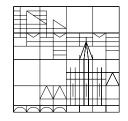
Universität Konstanz Fachbereich Mathematik und Statistik

Prof. Dr. Salma Kuhlmann

Dr. Lorna Gregory Katharina Dupont



Algebra Übungsblatt 2

Alle Ringe seien kommutativ mit Eins.

Aufgabe 2.1

- (a) Sei $n\in\mathbb{N}$. Es sei U(n) die Menge der Einheiten von \mathbb{Z}_n . Die eulersche Phi-Funktion $\phi:\mathbb{N}\to\mathbb{N}$ ist definiert durch $\phi(1):=1$ und für n>1 $\phi(n):=|U(n)|$. Zeigen Sie:
 - (i) für jede Primzahl p und jedes $\nu \in \mathbb{N}$ gilt $\phi(p^{\nu}) = p^{\nu} p^{\nu-1}$
 - (ii) für alle $a,b\in\mathbb{N}$ mit ggT(a,b)=1 gilt $\phi(ab)=\phi(a)\phi(b)$
 - (iii) für alle $n \in \mathbb{N}$ gilt

$$\phi(n) = n \prod_{p|n, \ p \text{ prim}} (1 - \frac{1}{p})$$

(b) Geben Sie ein Beispiel für $a, b \in \mathbb{N}$ mit $\phi(ab) \neq \phi(a)\phi(b)$.

Aufgabe 2.2

Sei R ein Ring.

(a) Seien $I, J \triangleleft R$ Ideale von R. Zeigen Sie, dass

$$I + J := \{a + b \mid a \in I \text{ und } b \in J\}$$

das kleinste Ideal von R ist, welches $I \cup J$ enthält.

(b) Seien $I, J \triangleleft R$ Ideale von R. Zeigen Sie, dass

$$IJ:=\{\sum_{1\leq i\leq n}a_ib_i\mid n\in\mathbb{N},\ a_i\in I\ \mathrm{und}\ b_i\in J\ \mathrm{f\"{u}r}\ 1\leq i\leq n\}$$

ein Ideal von R ist und $IJ\subseteq I\cap J$. Geben Sie ein Beispiel für einen Ring R und Ideale $I,J\lhd R$ mit $IJ\ne I\cap J$ an. Zeigen Sie, dass $I\cap J=IJ$ gilt, falls I+J=R ist.

- (c) Sei $I \triangleleft R$ ein Ideal von R. Wir definieren durch induction $I^1 := I$ und $I^{n+1} := II^n$ für $n \in \mathbb{N}$. Folgern Sie, dass I^n für alle $n \in \mathbb{N}$ ein Ideal von R ist und $I^n \subseteq I$ gilt.
- (d) Sei $I \triangleleft R$ ein Ideal von R. Zeigen Sie, dass

$$rad(I) := \{ a \in R \mid \exists \ n \in \mathbb{N} \text{ mit } a^n \in I \}$$

ein Ideal von R ist.

- (e) Sei \mathcal{I} eine Menge und für $i \in \mathcal{I}$ sei $I_i \triangleleft R$ ein Ideal von R. Zeigen Sie, dass $\cap_{i \in \mathcal{I}} I_i$ ein Ideal von R ist.
- (f) Seien $I_1 \subseteq I_2 \subseteq \cdots$ Ideale von R. Zeigen Sie, dass $\bigcup_{i=1}^{\infty} I_i$ ein Ideal von R ist.

Aufgabe 2.3

- (a) Sei R ein Ring. Seien S ein Unterring und $I \triangleleft R$ ein Ideal von R. Zeigen Sie, dass:
 - (i) $S+I:=\{s+i\mid s\in S \text{ und } i\in I\}$ ein Unterring von R ist
 - (ii) $S \cap I$ ein Ideal von S ist
 - (iii) I ein Ideal von S + I ist
- (b) Seien $j:S\to S+I$ die Einbettung von S nach S+I (also j(s):=s) und $\pi:S+I\to \frac{S+I}{I}$ der kanonische Homomorphismus. Zeigen Sie, dass $\ker(\pi j)=S\cap I$. Folgern Sie, dass $\frac{S+I}{I}$ und $\frac{S}{S\cap I}$ isomorph sind.
- (c) Seien R ein Ring und $I,J\lhd R$ Ideale mit $I\subseteq J$. Zeigen Sie, dass die Funktion $\tau:R/I\to R/J$ definiert durch $r+I\mapsto r+J$ wohldefiniert und ein Homomorphismus ist. Zeigen Sie, dass

$$\frac{R/I}{J/I}$$
 und $\frac{R}{J}$

isomorph sind.

Aufgabe 2.4

Seien R ein Ring und $I \lhd R$ ein Ideal von R. Sei $\phi: R \to R/I$ der kanonische Homomorphismus.

(a) Seien $\mathcal{R}_{R,I}$ die Menge der Unterringe von R, die I enthalten und $\mathcal{R}_{R/I}$ die Menge der Unterringe von R/I. Zeigen Sie, dass die Abbildung

$$\phi^*: \mathcal{R}_{R,I} \to \mathcal{R}_{R/I}, \ \phi^*: S \mapsto \phi(S)$$

bijektiv und inklusionserhaltend ist.

(b) Seien $\mathcal{I}_{R,I}$ die Menge der Ideale von R, die I enthalten und $\mathcal{I}_{R/I}$ die Menge der Ideale von R/I. Zeigen Sie, dass die Abbildung

$$\phi^*: \mathcal{I}_{R,I} \to \mathcal{I}_{R/I}, \ \phi^*: J \mapsto \phi(J)$$

bijektiv und inklusionserhaltend ist.

Aufgabe 2.5

Sei R ein Ring. Sei M eine multiplikative Untermenge mit $0 \notin M$ (d.h. für $a,b \in M$ gilt $ab \in M$ und $1 \in M$). Zeigen Sie:

- (a) Es gibt ein echtes Ideal $I \lhd R$, das maximal ist mit der Eigenschaft $I \cap M = \emptyset$.
- (b) Jedes solche *I* ist prim.

Hinweis: Benutzen Sie das Lemma von Zorn.

Aufgabe 2.6

Sei K ein Körper.

- (a) Zeigen Sie, dass jeder K-Vektorraum V mit $V \neq \{0\}$ eine Basis hat.
- (b) Sei V ein K-Vektorraum mit $V \neq \{0\}$. Zeigen Sie, dass jede erzeugende Untermenge von V eine Basis für V enthält.

Hinweis: Benutzen Sie das Lemma von Zorn.

Abgabe Montag, 12.11.2012 bis 12.00 Uhr in die Briefkästen bei F 411.