
1 Lagrange’s theorem

Definition 1.1. The index of a subgroup H in a group G, denoted
[G : H], is the number of left cosets of H in G ( [G : H] is a natural
number or infinite).

Theorem 1.2 (Lagrange’s Theorem). If G is a finite group and H is
a subgroup of G then |H| divides |G| and

[G : H] =
|G|
|H|

.

Proof. Recall that (see lecture 16) any pair of left cosets of H are either
equal or disjoint. Thus, since G is finite, there exist g1, ..., gn ∈ G such
that

• G = ∪ni=1giH and

• for all 1 ≤ i < j ≤ n, giH ∩ gjH = ∅.
Since n = [G : H], it is enough to now show that each coset of H has
size |H|.
Suppose g ∈ G. The map ϕg : H → gH : h 7→ gh is surjective by
definition. The map ϕg is injective; for whenever

gh1 = ϕg(h1) = ϕg(h2) = gh2

, multiplying on the left by g−1, we have that h1 = h2. Thus each coset
of H in G has size |H|.
Thus

|G| =
n∑

i=1

|giH| =
n∑

i=1

|H| = [G : H]|H|

Note that in the above proof we could have just as easily worked with
right cosets. Thus if G is a finite group and H is a subgroup of G then
the number of left cosets is equal to the number of right cosets. More
generally, the map gH 7→ Hg−1 is a bijection between the set of left
cosets of H in G and the set of right cosets of H in G.



Corollary 1.3. Let G be a finite group. For all x ∈ G, |x| divides |G|.
In particular, for all x ∈ G, x|G| = 1.

Proof. By Lagrange’s theorem |x| = |〈x〉| divides |G|.
Corollary 1.4. Every group of prime order is cyclic.

Proof. Let G be a finite group with |G| prime. Take x ∈ G\{1}.
By lagrange, |x| divides G and thus, since |G| is prime, |x| = |G| or
|G| = 1. Since x 6= 1, |x| 6= 1. Thus |x| = |G| and so, 〈x〉 = G.

Example: The converse of Lagrange’s theorem does not hold. The
group A4 is of size 12 and has no subgroup of size 6. See exercise
sheet 8 (Recall from linear algebra that A4 is the group of all even
permutations on 4 elements concretely: the set of permutations

(123), (132), (234), (243), (134), (143), (124), (142), (12)(34), (13)(24), (14)(23), e).

Definition 1.5. Let G be a group and S, T subsets of G. We write

ST := {st | s ∈ S and t ∈ T}.

Proposition 1.6. If K and H are subgroups of a finite group G then

|HK||H ∩K| = |H||K|.

Proof. Let ϕ : H × K → HK be the map defined by ϕ(h, k) := hk.
This map is surjective by definition.

Claim: If h ∈ H and k ∈ K then ϕ−1(hk) = {(hd−1, dk) | d ∈ K∩H}.

Clearly, if d ∈ K ∩ H and h′ = hd−1, k′ = dk then h′ ∈ H, k′ ∈ K
and h′k′ = hk. Conversely, if h′ ∈ H, k′ ∈ K and h′k′ = hk then
k′k−1 = h′−1h ∈ K ∩ H, h′ = h(h′−1h)−1 and k′ = (h′−1h)k. This
proves the claim.

Therefore for each x ∈ HK, |ϕ−1(x)| = |H ∩K|. So,

|HK||H ∩K| = |H ×K| = |H||K|.



Proposition 1.7. Let H and K be subgroups of a group G. The set
HK is a subgroup of G if and only HK = KH.

Proof. Suppose h ∈ H and k ∈ K. Then (hk)−1 = k−1h−1 ∈ KH.
Thus g ∈ HK if and only if g−1 ∈ KH. So, if HK is a subgroup then
HK = KH.
Suppose HK = KH. Take h1, h2 ∈ H and k1, k2 ∈ K. Consider
h1k1h2k2. Since k1h2 ∈ KH = HK, there exist h3 ∈ H and k3 ∈ K
such that k1h2 = h3k3. Thus h1(k1h2)k2 = h1(h3k3)k2 ∈ HK. So HK
is closed under multiplication.
From above we know that if g ∈ HK then g−1 ∈ KH = HK. Thus,
since HK is non-empty, it is a subgroup of G.

Definition 1.8. Let G be a group and A a subgroup of G. The nor-
maliser, NG(A), of A in G is the set of x ∈ G such that xAx−1 = A.

Remark 1.9. Let A ≤ B ≤ G be groups. Note that NG(A) is a
subgroup of G containing A; in fact, it is the largest subgroup of G in
which A is normal.

The subgroup A is normal in B if and only if B ≤ NG(A). In partic-
ular, A is normal in G if and only if NG(A) = G. (Please convince
yourself that this is true)

Corollary 1.10. If H and K are subgroups of G and H ≤ NG(K),
then HK is a subgroup of G. In particular, if K E G then HK ≤ G
for any H ≤ G.

Proof. It is enough to show that HK = KH. Suppose that h ∈ H
and k ∈ K. Then h−1kh, hkh−1 ∈ K since H ≤ NG(K). Thus hk =
(hkh−1)h ∈ KH and kh = h(h−1kh) ∈ HK. Thus HK = KH.

2 Isomorphism theorems

Theorem 2.1. If ϕ : G → H is a homomorphism of groups, then
kerϕEG and

G/kerϕ ∼= imϕ.



Proof. We have already seen that the kernel of a homomorphism of
groups is normal.
Define f : G/ kerϕ→ H by f(a kerϕ) = ϕ(a).
This map is well-defined since: if a kerϕ = b kerϕ then ab−1 ∈ kerϕ.
So 1 = ϕ(ab−1) = ϕ(a)ϕ(b)−1. Thus ϕ(a) = ϕ(b).
The map f is a homomorphism since:

f(a kerϕb kerϕ) = f(ab kerϕ) = ϕ(ab) = ϕ(a)ϕ(b) = f(a kerϕ)f(b kerϕ).

The image of f is clearly equal to the image of ϕ. Lastly, f is injective
for if f(a kerϕ) = f(b kerϕ) then ϕ(a) = ϕ(b) and so ϕ(ab−1) ∈ kerϕ
i.e. a kerϕ = b kerϕ.
Thus f gives a bijective group homomorphism from G/ kerϕ to imϕ.

Corollary 2.2. Let ϕ : G→ H be a homomorphism of groups.

1. ϕ is injective if and only if kerϕ = 1

2. |G : kerϕ| = |ϕ(G)|

Proof. (1) The forward direction follows directly from the definition of
injective. Suppose kerϕ = 1 and ϕ(a) = ϕ(b). Then ϕ(ab−1) = 1. So
ab−1 = 1 and thus a = b.
(2) |G : kerϕ| = |G/ kerϕ| = |ϕ(G)|.

Theorem 2.3 (The second isomorphism theorem). Let G be a group
and let A and B be subgroups of G with A ≤ NG(B). Then AB is a
subgroup of G, B E AB, A ∩B E A and AB/B ∼= A/A ∩B.

Proof. Since A ≤ NG(B), AB is a subgroup of G. Since B ≤ NG(B),
AB ≤ NG(B); that is B is normal in AB.
Consider the canonical projection π : AB → AB/B. If a ∈ A and
ϕ(a) = 1 then a ∈ B. Thus a ∈ A ∩ B. So π restricted to A has
kernel A ∩ B (and thus is normal). Now suppose a ∈ A and b ∈ B.
We have that π(a) = π(ab). Thus π restricted to A is surjective i.e.
imπ|A = AB/B. So by first iso theorem AB/B ∼= A/A ∩B.



Theorem 2.4 (The third isomorphism theorem). Let G be a group and
let H and K be normal subgroups with H ≤ K. Then K/H E G/H
and

(G/H)/(K/H) ∼= G/K.

Proof. Consider the map f : G/H → G/K defined by f(gH) = gK.
This map is well defined: If g1H = g2H then g−11 g2 ∈ H and thus
g−11 g2 ∈ K. So g1K = g2K.
This map is a group homomorphism since

f(aHbH) = f(abH) = abK = aKbK = f(aH)f(bH).

It is clearly surjective. Suppose a ∈ G. Then f(aH) = 1K if only if
aK = 1K; that is if and only if a ∈ K. Thus K/H is the kernel of f
and so K/H is normal in G/H and

(G/H)/(K/H) ∼= G/K
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