1 Lagrange's theorem

Definition 1.1. The *index* of a subgroup H in a group G, denoted [G:H], is the number of left cosets of H in G ([G:H] is a natural number or infinite).

Theorem 1.2 (Lagrange's Theorem). If G is a finite group and H is a subgroup of G then |H| divides |G| and

$$[G:H] = \frac{|G|}{|H|}.$$

Proof. Recall that (see lecture 16) any pair of left cosets of H are either equal or disjoint. Thus, since G is finite, there exist $g_1, \ldots, g_n \in G$ such that

- $G = \bigcup_{i=1}^{n} g_i H$ and
- for all $1 \le i < j \le n$, $g_i H \cap g_j H = \emptyset$.

Since n = [G : H], it is enough to now show that each coset of H has size |H|.

Suppose $g \in G$. The map $\varphi_g : H \to gH : h \mapsto gh$ is surjective by definition. The map φ_g is injective; for whenever

$$gh_1=arphi_g(h_1)=arphi_g(h_2)=gh_2$$

, multiplying on the left by g^{-1} , we have that $h_1 = h_2$. Thus each coset of H in G has size |H|.

Thus

$$|G| = \sum_{i=1}^{n} |g_i H| = \sum_{i=1}^{n} |H| = [G:H]|H|$$

Note that in the above proof we could have just as easily worked with right cosets. Thus if G is a finite group and H is a subgroup of G then the number of left cosets is equal to the number of right cosets. More generally, the map $gH \mapsto Hg^{-1}$ is a bijection between the set of left cosets of H in G and the set of right cosets of H in G. **Corollary 1.3.** Let G be a finite group. For all $x \in G$, |x| divides |G|. In particular, for all $x \in G$, $x^{|G|} = 1$.

Proof. By Lagrange's theorem $|x| = |\langle x \rangle|$ divides |G|.

Corollary 1.4. Every group of prime order is cyclic.

Proof. Let G be a finite group with |G| prime. Take $x \in G \setminus \{1\}$. By lagrange, |x| divides G and thus, since |G| is prime, |x| = |G| or |G| = 1. Since $x \neq 1$, $|x| \neq 1$. Thus |x| = |G| and so, $\langle x \rangle = G$. \Box

Example: The converse of Lagrange's theorem does not hold. The group A_4 is of size 12 and has no subgroup of size 6. See exercise sheet 8 (Recall from linear algebra that A_4 is the group of all even permutations on 4 elements concretely: the set of permutations

(123), (132), (234), (243), (134), (143), (124), (142), (12)(34), (13)(24), (14)(23), e).

Definition 1.5. Let G be a group and S, T subsets of G. We write

 $ST := \{ st \mid s \in S \text{ and } t \in T \}.$

Proposition 1.6. If K and H are subgroups of a finite group G then

 $|HK||H \cap K| = |H||K|.$

Proof. Let $\varphi : H \times K \to HK$ be the map defined by $\varphi(h, k) := hk$. This map is surjective by definition.

Claim: If $h \in H$ and $k \in K$ then $\varphi^{-1}(hk) = \{(hd^{-1}, dk) \mid d \in K \cap H\}.$

Clearly, if $d \in K \cap H$ and $h' = hd^{-1}, k' = dk$ then $h' \in H, k' \in K$ and h'k' = hk. Conversely, if $h' \in H, k' \in K$ and h'k' = hk then $k'k^{-1} = h'^{-1}h \in K \cap H, h' = h(h'^{-1}h)^{-1}$ and $k' = (h'^{-1}h)k$. This proves the claim.

Therefore for each $x \in HK$, $|\varphi^{-1}(x)| = |H \cap K|$. So, $|HK||H \cap K| = |H \times K| = |H||K|$.

Proposition 1.7. Let H and K be subgroups of a group G. The set HK is a subgroup of G if and only HK = KH.

Proof. Suppose $h \in H$ and $k \in K$. Then $(hk)^{-1} = k^{-1}h^{-1} \in KH$. Thus $g \in HK$ if and only if $g^{-1} \in KH$. So, if HK is a subgroup then HK = KH.

Suppose HK = KH. Take $h_1, h_2 \in H$ and $k_1, k_2 \in K$. Consider $h_1k_1h_2k_2$. Since $k_1h_2 \in KH = HK$, there exist $h_3 \in H$ and $k_3 \in K$ such that $k_1h_2 = h_3k_3$. Thus $h_1(k_1h_2)k_2 = h_1(h_3k_3)k_2 \in HK$. So HK is closed under multiplication.

From above we know that if $g \in HK$ then $g^{-1} \in KH = HK$. Thus, since HK is non-empty, it is a subgroup of G.

Definition 1.8. Let G be a group and A a subgroup of G. The normaliser, $N_G(A)$, of A in G is the set of $x \in G$ such that $xAx^{-1} = A$.

Remark 1.9. Let $A \leq B \leq G$ be groups. Note that $N_G(A)$ is a subgroup of G containing A; in fact, it is the largest subgroup of G in which A is normal.

The subgroup A is normal in B if and only if $B \leq N_G(A)$. In particular, A is normal in G if and only if $N_G(A) = G$. (Please convince yourself that this is true)

Corollary 1.10. If H and K are subgroups of G and $H \leq N_G(K)$, then HK is a subgroup of G. In particular, if $K \leq G$ then $HK \leq G$ for any $H \leq G$.

Proof. It is enough to show that HK = KH. Suppose that $h \in H$ and $k \in K$. Then $h^{-1}kh$, $hkh^{-1} \in K$ since $H \leq N_G(K)$. Thus $hk = (hkh^{-1})h \in KH$ and $kh = h(h^{-1}kh) \in HK$. Thus HK = KH. \Box

2 Isomorphism theorems

Theorem 2.1. If $\varphi : G \to H$ is a homomorphism of groups, then $ker\varphi \trianglelefteq G$ and

$$G/ker\varphi \cong im\varphi.$$

Proof. We have already seen that the kernel of a homomorphism of groups is normal.

Define $f: G/\ker \varphi \to H$ by $f(a \ker \varphi) = \varphi(a)$. This map is well-defined since: if $a \ker \varphi = b \ker \varphi$ then $ab^{-1} \in \ker \varphi$. So $1 = \varphi(ab^{-1}) = \varphi(a)\varphi(b)^{-1}$. Thus $\varphi(a) = \varphi(b)$. The map f is a homomorphism since:

 $f(a \ker \varphi b \ker \varphi) = f(ab \ker \varphi) = \varphi(ab) = \varphi(a)\varphi(b) = f(a \ker \varphi)f(b \ker \varphi).$

The image of f is clearly equal to the image of φ . Lastly, f is injective for if $f(a \ker \varphi) = f(b \ker \varphi)$ then $\varphi(a) = \varphi(b)$ and so $\varphi(ab^{-1}) \in \ker \varphi$ i.e. $a \ker \varphi = b \ker \varphi$.

Thus f gives a bijective group homomorphism from $G/\ker\varphi$ to $\operatorname{im}\varphi$.

Corollary 2.2. Let $\varphi : G \to H$ be a homomorphism of groups.

1. φ is injective if and only if $ker\varphi = 1$

2.
$$|G: ker\varphi| = |\varphi(G)|$$

Proof. (1) The forward direction follows directly from the definition of injective. Suppose ker $\varphi = 1$ and $\varphi(a) = \varphi(b)$. Then $\varphi(ab^{-1}) = 1$. So $ab^{-1} = 1$ and thus a = b.

(2) $|G: \ker \varphi| = |G/ \ker \varphi| = |\varphi(G)|.$

Theorem 2.3 (The second isomorphism theorem). Let G be a group and let A and B be subgroups of G with $A \leq N_G(B)$. Then AB is a subgroup of G, $B \leq AB$, $A \cap B \leq A$ and $AB/B \cong A/A \cap B$.

Proof. Since $A \leq N_G(B)$, AB is a subgroup of G. Since $B \leq N_G(B)$, $AB \leq N_G(B)$; that is B is normal in AB.

Consider the canonical projection $\pi : AB \to AB/B$. If $a \in A$ and $\varphi(a) = 1$ then $a \in B$. Thus $a \in A \cap B$. So π restricted to A has kernel $A \cap B$ (and thus is normal). Now suppose $a \in A$ and $b \in B$. We have that $\pi(a) = \pi(ab)$. Thus π restricted to A is surjective i.e. $\operatorname{im} \pi|_A = AB/B$. So by first iso theorem $AB/B \cong A/A \cap B$. **Theorem 2.4** (The third isomorphism theorem). Let G be a group and let H and K be normal subgroups with $H \leq K$. Then $K/H \leq G/H$ and

$$(G/H)/(K/H) \cong G/K.$$

Proof. Consider the map $f: G/H \to G/K$ defined by f(gH) = gK. This map is well defined: If $g_1H = g_2H$ then $g_1^{-1}g_2 \in H$ and thus $g_1^{-1}g_2 \in K$. So $g_1K = g_2K$.

This map is a group homomorphism since

$$f(aHbH) = f(abH) = abK = aKbK = f(aH)f(bH).$$

It is clearly surjective. Suppose $a \in G$. Then f(aH) = 1K if only if aK = 1K; that is if and only if $a \in K$. Thus K/H is the kernel of f and so K/H is normal in G/H and

$$(G/H)/(K/H) \cong G/K$$