1 Useful English/German Vocabulary

simple group -einfache Gruppe
normal series - Normalreihe
composition series - Kompositionsreihe
refinement - Verfeinerung

2 Isomorphism theorems continued

Theorem 2.1 (Lattice isomorphism theorem). Let G be a group and let N be a normal subgroup of G. If A is a subgroup of G containing N, let $\bar{A}:=A / N$. Let $\pi: G \rightarrow G / N$ be the canonical projection.

The map $A \mapsto \pi(A)=\bar{A}$ is a bijection between the set of subgroups of G containing N and the set of subgroups of G / N.

Moreover, if $A, B \leq G$ with $N \leq A$ and $N \leq B$ then:

1. $A \leq B$ if and only if $\bar{A} \leq \bar{B}$; and in this case $[B: A]=[\bar{B}: \bar{A}]$
2. $A \triangleleft B$ is and only if $\bar{A} \triangleleft \bar{B}$; and in this case $B / A \cong \bar{B} / \bar{A}$
3. $\overline{\langle A, B\rangle}=\langle\bar{A}, \bar{B}\rangle$
4. $\overline{A \cap B}=\bar{A} \cap \bar{B}$

Proof. UB9

Theorem 2.2 (Butterfly Lemma /Zassenhaus Lemma). Let $a \triangleleft A$ and $b \triangleleft B$ be subgroups of a group G. Then

$$
\begin{gathered}
a(A \cap b) \text { is a normal in } a(A \cap B), \\
b(B \cap a) \text { is normal in } b(B \cap A), \\
(A \cap b)(B \cap a) \text { is normal in }(A \cap B)
\end{gathered}
$$

and

$$
\frac{a(A \cap B)}{a(A \cap b)} \cong \frac{(A \cap B)}{(A \cap b)(B \cap a)} \cong \frac{b(B \cap A)}{b(B \cap a)}
$$

Proof. Note first that since $A \leq N_{G}(a)$ and $B \leq N_{G}(b)$, we have that

$$
A \cap b \leq A \cap B \leq N_{G}(a)
$$

and

$$
B \cap a \leq A \cap B \leq N_{G}(b)
$$

Thus $a(A \cap b), a(A \cap B), b(B \cap a)$ and $b(B \cap A)$ are subgroups of G (see lecture 17 corollary 1.10).

We first show that

$$
(A \cap b)(B \cap a) \text { is normal in }(A \cap B) .
$$

First note that $A \cap b$ and $B \cap a$ are normal in $A \cap B$; if $g \in A \cap B$ and $c \in A \cap b$ then $g c g^{-1} \in b$ since $b \triangleleft B$ and $g c g^{-1} \in A$ since $g, c \in A$. Thus $(A \cap b)(B \cap a)$ is a subgroup of $A \cap B$. In fact it is a normal subgroup since if $c_{1} \in A \cap b, c_{2} \in B \cap a$ and $g \in A \cap B$ then $g c_{1} c_{2} g^{-1}=g c_{1} g^{-1} g c_{2} g^{-1} \in(A \cap b)(B \cap a)$.
If $x \in a(A \cap B)$ then $x=\alpha \gamma$ where $\alpha \in a$ and $\gamma \in A \cap B$. Define

$$
f: a(A \cap B) \rightarrow \frac{A \cap B}{(A \cap b)(B \cap a)}
$$

by

$$
x \mapsto \gamma(A \cap b)(B \cap a)
$$

The map f is well-defined for if $\alpha \gamma=\alpha^{\prime} \gamma^{\prime}$ with $\alpha, \alpha^{\prime} \in a$ and $\gamma, \gamma^{\prime} \in$ $A \cap B$ then $\gamma^{\prime} \gamma^{-1}=\left(\alpha^{\prime}\right)^{-1} \alpha \in a \cap A \cap B=a \cap B \leq(A \cap b)(B \cap a)$; i.e.

$$
\gamma^{\prime}(A \cap b)(B \cap a)=\gamma(A \cap b)(B \cap a)
$$

The map is a homomorphism: if $\alpha, \alpha^{\prime} \in a$ and $\gamma, \gamma^{\prime} \in A \cap B$ then $\alpha, \gamma \alpha^{\prime} \gamma^{-1} \in a$ since $a \triangleleft A$. So

$$
f\left(\alpha \gamma \alpha^{\prime} \gamma^{\prime}\right)=f\left(\left(\alpha \gamma \alpha^{\prime} \gamma^{-1}\right) \gamma \gamma^{\prime}\right)=\gamma \gamma^{\prime}(A \cap b)(B \cap a)
$$

and since $(A \cap b)(B \cap a)$ is normal in $A \cap B$
$f(\alpha \gamma) f\left(\alpha^{\prime} \gamma^{\prime}\right)=\gamma(A \cap b)(B \cap a) \gamma^{\prime}(A \cap b)(B \cap a)=\gamma \gamma^{\prime}(A \cap b)(B \cap a)$.

The map f is surjective by definition.
It remains to find the kernel: if $\alpha \in a$ and $\gamma \in A \cap B$ are such that $f(\alpha \gamma)=1(A \cap b)(B \cap a)$ then $\gamma \in(A \cap b)(B \cap a)=(B \cap a)(A \cap b)$. Take $x \in(B \cap a)$ and $y \in(A \cap b)$ such that $\gamma=x y$. Then $\alpha \gamma=(\alpha x) \gamma \in$ $a(A \cap b)$.
Conversely, if $\alpha \in a$ and $\gamma \in A \cap B$ with $\alpha \gamma \in a(A \cap b)$ then there exist $t \in a$ and $s \in A \cap b$ such that $\alpha \gamma=t s$. Now $\alpha^{-1} t \in a$ and since $\gamma, s \in B, \alpha^{-1} t=\gamma s^{-1} \in B$. Thus $\alpha^{-1} t s=\gamma \in(A \cap b)(B \cap a)$. So $\alpha \gamma \in \operatorname{ker} f$.

So by the first isomorphism theorem, $a(A \cap b)$ is normal in $a(A \cap B)$ and

$$
\frac{a(A \cap B)}{a(A \cap b)} \cong \frac{(A \cap B)}{(A \cap b)(B \cap a)} .
$$

Exchanging the roles of A and B respectively a and b, we get that $b(B \cap a)$ is normal in $b(B \cap A)$ and

$$
\frac{b(A \cap B)}{b(B \cap a)} \cong \frac{(A \cap B)}{(A \cap b)(B \cap a)}
$$

3 Jordan-Hölder and Simple and Solvable groups

Definition 3.1. A group G is simple if $|G|>1$ and the only normal subgroups of G are 1 and G.

Remark: A non-trivial abelian group G is simple if and only if its only subgroups are 1 and G (recall: all subgroups of abelian groups are normal).

Thus, if G is simple and abelian then it is generated by every nonidentity element of G. So G is cyclic. Recall that if G is infinite and x generates G then x^{2} does not generate G (lecture 15 Proposition $5(1))$. Thus G is finite. Moreover, if $p \in \mathbb{N}$, a prime, divides $|x|$ then $\left|x^{p}\right|<|x|$ (see lecture 15 Proposition 4(3)) and therefore $x^{p}=1$. Thus $|G|=p$. Thus an abelian group is simple if and only if it is finite and of prime order.

Definition 3.2. Let G be a group. A sequence of subgroups

$$
1=G_{0} \leq G_{1} \leq \ldots \leq G_{s}=G
$$

is called a normal series if G_{i} is normal in G_{i+1}; we call the quotient groups G_{i+1} / G_{i} factor groups of the series.

A normal series is called a composition series if each of the quotient groups G_{i+1} / G_{i} are simple; in this case we call the quotient groups composition factors of G (we will see later that the factor groups really do only depend on G).

A normal series

$$
1=G_{0} \triangleleft G_{1} \triangleleft \ldots \triangleleft G_{s}=G
$$

is a refinement of a normal series

$$
1=H_{0} \triangleleft H_{1} \triangleleft \ldots \triangleleft H_{r}=G
$$

if H_{0}, \ldots, H_{r} is a subsequence of G_{0}, \ldots, G_{s}.

Example: Since A_{4} is index 2 in S_{4}, A_{4} is normal in S_{4}. You will show on the exercise sheet that the subgroup

$$
V:=\{(12)(34),(13)(24),(14)(23), e\}
$$

is normal in A_{4}. So

$$
\{1\} \triangleleft V \triangleleft A_{4} \triangleleft S_{4}
$$

is a normal series for S_{4}. Its factor groups are \mathbb{Z}_{2} and \mathbb{Z}_{3}. So it is in fact a composition series.

Definition 3.3. Two normal series are said to be equivalent if there is a bijection between their factor groups such that corresponding factor groups are isomorphic.

Example:

Consider the following two composition series of $\mathbb{Z}_{3} 0$:

$$
\begin{aligned}
& \mathbb{Z}_{30} \geq\langle 5\rangle \\
& \mathbb{Z}_{30} \geq\langle 3\rangle \geq\langle 6\rangle \geq\{0\} \\
&
\end{aligned}
$$

The composition factors of the first series are $\mathbb{Z}_{30} /\langle 5\rangle \cong \mathbb{Z}_{5},\langle 5\rangle /\langle 10\rangle \cong$ \mathbb{Z}_{2} and $\langle 10\rangle /\{0\} \cong \mathbb{Z}_{3}$.
The composition factors of the second series are $\mathbb{Z}_{30} /\langle 3\rangle \cong \mathbb{Z}_{3},\langle 3\rangle /\langle 6\rangle \cong$ \mathbb{Z}_{2} and $\langle 6\rangle /\{0\} \cong \mathbb{Z}_{5}$.
So the above composition series are equivalent.
Theorem 3.4 (Schreier Refinement Theorem). Any two normal series of a group G have equivalent refinements.

Proof. Let

$$
1=G_{0} \triangleleft G_{1} \triangleleft \ldots \triangleleft G_{s}=G
$$

and

$$
1=H_{0} \triangleleft H_{1} \triangleleft \ldots \triangleleft H_{r}=G
$$

be normal series.
Let $G_{i, j}:=G_{i}\left(G_{i+1} \cap H_{j}\right)$ for $0 \leq j \leq r$. So

$$
G_{i, 0}=G_{i}\{1\}=G_{i} \text { and } G_{i, r}=G_{i}\left(G_{i+1} \cap G\right)=G_{i+1} .
$$

Since $G_{i} \triangleleft G_{i+1}$ and $H_{j} \triangleleft H_{j+1}$, by Zassenhaus (with $a=G_{i}, A=$ $G_{i+1}, b=H_{j}$ and $\left.B=H_{j+1}\right)$,

$$
G_{i, j}=G_{i}\left(G_{i+1} \cap H_{j}\right) \triangleleft G_{i}\left(G_{i+1} \cap H_{j+1}\right)=G_{i, j+1} .
$$

Thus the following series is a refinement of the first normal series:

$$
\{1\}=G_{0,0} \triangleleft G_{0,1} \triangleleft \ldots \triangleleft G_{0, r}=G_{1,0} \triangleleft G_{1,1} \triangleleft \ldots \triangleleft G_{s-1, r}=G_{s}=G
$$

Let $H_{i, j}:=H_{i}\left(H_{i+1} \cap G_{j}\right)$ for $0 \leq j \leq s$.
Exactly as above,

$$
\{1\}=H_{0,0} \triangleleft H_{0,1} \triangleleft \ldots \triangleleft H_{0, s}=H_{1,0} \triangleleft H_{1,1} \triangleleft \ldots \triangleleft H_{r-1, s}=H_{r}=G
$$

is a refinement of the second normal series.
It remains now just to note that by the Zassenhaus lemma (with $a=$ $G_{i}, A=G_{i+1}, b=H_{j}$ and $\left.B=H_{j+1}\right)$

$$
G_{i}\left(G_{i+1} \cap H_{j+1}\right) / G_{i}\left(G_{i+1} \cap H_{j}\right) \cong H_{j}\left(H_{j+1} \cap G_{i+1}\right) / H_{j}\left(H_{j+1} \cap G_{i}\right) ;
$$

that is

$$
G_{i, j+1} / G_{i, j} \cong H_{j, i+1} / H_{j, i} .
$$

Theorem 3.5 (Jordan-Hölder Theorem). Let G be a finite group with $G \neq\{1\}$. Then

1. G has a composition series and
2. all composition series of G are equivalent.

Proof. (1) Suppose G is not simple. If N is a maximal normal subgroup of G then, by the correspondence theorem, G / N is simple. If G is finite G has a maximal normal subgroup. Thus, by induction on $|G|$, every finite group has a composition series.
(2)Composition series have no refinements by the correspondence theorem; that is, if $G_{i+1} \triangleright N \triangleright G_{i}$ then $N / G_{i} \triangleleft G_{i+1} / G_{i}$ and if G_{i+1} / G_{i} is simple then $N=G_{i+1}$ or $N=G_{i}$. By the Schreier Refinement Theorem, every two normal series have equivalent refinements. Thus every two composition series of G are equivalent.

