Useful English/German Vocabulary

Splitting field - Zefällungskörper Field extension - Körpererweiterung

Definition 0.1. Let E/F be a field extension. The **Galois group**, denoted Gal(E/F), of E/F is the group of automorphisms of E which fix F pointwise i.e. the automorphisms μ of E such that for all $\alpha \in F$, $\mu(\alpha) = \alpha$.

Definition 0.2. Let F be a field and G be a subgroup of the group of automorphisms of F. The set

$$Inv(G) := \{ a \in F \mid \sigma(a) = a \text{ for all } \sigma \in G \}$$

is a subfield of F. We call it the G-fixed subfield of F.

Let E be a field and G the group of automorphisms of E. Let Γ be the set of subgroups of G and Σ the set of subfields of E. The maps

$$\Gamma \to \Sigma, \ H \mapsto \operatorname{Inv}(H)$$

and

$$\Sigma \to \Gamma, F \mapsto \operatorname{Gal}(E/F)$$

have the following properties:

- (i) $G_1 \subseteq G_2 \Rightarrow \operatorname{Inv}(G_1) \supseteq \operatorname{Inv}(G_2)$
- (ii) $F_1 \subseteq F_2 \Rightarrow \operatorname{Gal}(E/F_1) \supseteq \operatorname{Gal}(E/F_2)$
- (iii) $\operatorname{Inv}(\operatorname{Gal}(E/F)) \supseteq F$
- (iv) $\operatorname{Gal}(E/\operatorname{Inv}(G)) \supseteq G$

See exercise 1 sheet 12.

Lemma 0.3. Let E/F be a splitting field of a separable polynomial with coefficients in F. Then

$$|Gal(E/F)| = [E:F].$$

Proof. What we will actually show is the following:

Let $\tau : F \to F'$ be an isomorphism of fields. Let $p(x) \in F[x]$ be a separable. Let E be a splitting field for p(x) and E' be a splitting field for $\tau(p)(x)$. There exist exactly [E : F] extensions of τ to an isomorphism $\sigma : E \to E'$.

We proceed by induction on [E : F]. If [E : F] = 1 the statement is clear.

Fix α a root of p(x) in $E \setminus F$ with minimal polynomial $m_{\alpha}(x)$. For each β a root of $\tau(m_{\alpha})(x)$, let $\tau_{\beta} : F(\alpha) \to F'(\beta)$ be the (unique) isomorphism extending τ with $\tau_{\beta}(\alpha) = \beta$.

For each root β of $\tau(m_{\alpha})(x)$ let S_{β} be the set of isomorphisms $E \to E'$ extending τ_{β} . If $\beta \neq \beta'$ then $S_{\beta} \cap S_{\beta'} = \emptyset$.

The field E remains the splitting field of p(x) over $F(\alpha)$ and E' remains the splitting field of $\tau_{\beta}(p)(x)$ over $F'(\beta)$. Since $[E : F(\alpha)] < [E : F]$, by the induction hypothesis,

$$|S_{\beta}| = [E : F(\alpha)].$$

Since $m_{\alpha}(x)$ divides p(x), $m_{\alpha}(x)$ is separable and thus, so is $\tau(m_{\alpha})(x)$. Thus $\tau(m_{\alpha})(x)$ has $[F(\alpha):F]$ distinct roots.

Each isomorphism $\sigma : E \to E'$ extending τ maps α to a root of $\tau(m_{\alpha})(x)$. Thus each σ restricts to some τ_{β} . So each σ is in S_{β} for some β a root of $\tau(m_{\alpha})(x)$.

Thus there are exactly $[E:F(\alpha)][F(\alpha):F]$ isomorphisms $\sigma: E \to E'$ extending $\tau: F \to F'$. So we have proved our claim.

Setting E = E', F = F' and τ equal to the identity homomorphism we get our lemma as stated.

Lemma 0.4. Let G be a finite group of automorphisms of a field E and let F = Inv(G). Then

$$[E:F] \le |G|.$$

Remark/Reminder from linear algebra: A system of n homogeneous linear equations over a field E in m variables with n < m has a non-trivial solution. (See LA I, Korollar 2, 7. Vorlesung am 11.11.11)

proof of lemma. Let n = |G| and $G = \{\mu_1 = 1, \mu_2, ..., \mu_n\}$. We need to show that any m > n elements of E are linearly dependent over F. Let $u_1, ..., u_m \in E$. Consider the system of linear equations in variables $x_1, ..., x_m$

$$\sum_{j=1}^{m} \mu_i(u_j) x_j = 0, \ 1 \le i \le n.$$
 (1)

Let $(b_1, ..., b_m)$ be a non-trivial solution with the least number of $b_i \neq 0$. By permuting the variables x_i we may assume $b_1 \neq 0$ and by multiplying through by b_1^{-1} we may assume $b_1 = 1$.

We now show by contradiction that each $b_i \in F := \text{Inv}(G)$. Without loss of generality we may suppose $b_2 \notin F$ and $1 \leq k \leq n$ is such that $\mu_k(b_2) \neq b_2$.

Applying μ_k to 1 we get that

$$\sum_{j=1}^{m} (\mu_k \mu_i)(u_j) \mu_k(b_j) = 0, \ 1 \le i \le n.$$

Since $\mu_k \mu_1, ..., \mu_k \mu_n$ is just a permutation of $\mu_1, ..., \mu_n$,

$$(\mu_k(1), \mu_k(b_2), ..., \mu_k(b_m)) = (1, \mu_k(b_2), ..., \mu_k(b_m))$$

is a solution to 1. Thus

$$(0, b_2 - \mu_k(b_2), ..., b_m - \mu_k(b_m))$$

is a solution to 1 and is non-trivial since $b_2 - \mu_k(b_2) \neq 0$. But this solutions has fewer zero entries than our original solution. So we have a contradiction. Thus each $b_i \in F$ and from the first equation in 1:

$$\sum_{j=1}^m u_j b_j = 0.$$

Thus $u_1, ..., u_m$ are linearly dependent over F.

Definition 0.5. We say an algebraic field extension E/F is **separable** if the minimal polynomial of every element of E over F is separable.

Theorem 0.6. Let E/F be a field extension. The following are equivalent:

- 1. E is a splitting field of a separable polynomial $p(x) \in F[x]$.
- 2. F = Inv(G) for some finite group of automorphisms of E.
- 3. E is a finite dimensional, normal and separable over F.

Moreover, if E and F are as in (1) and G = Gal(E/F) then F = Inv(G) and if G and F are as in (2), then G = Gal(E/F).

Proof. (1) \Rightarrow (2) Let F' = Inv(Gal(E/F)) and note $F' \supseteq F$. Clearly E is a splitting field of p(x) over F' and since Gal(E/F) fixes F' pointwise, Gal(E/F) = Gal(E/F').

By lemma 0.3, [E : F] = |Gal(E/F)| and [E : F'] = |Gal(E/F')|. Thus, since [E : F] = [E : F'][F' : F], [F' : F] = 1. Thus F = F'. So (2) holds.

Note we have also shown that F := Inv(G) for G := Gal(E/F), which is the first part of the moreover.

(2) \Rightarrow (3) *E* is finite dimensional over *F* by lemma 0.4. Let $\alpha \in E$. Let $\alpha_1 = \alpha, \alpha_2, ..., \alpha_m$ be the orbit of α under the action of *G*. Let $g(x) = \prod_{i=1}^m (x - \alpha_i)$. For any $\sigma \in G$,

$$\sigma(g)(x) = \prod_{i=1}^{m} (x - \sigma(\alpha_i)) = g(x)$$

since σ just permutes the elements of $\{\alpha_1, ..., \alpha_m\}$. Thus $g(x) \in F[x]$.

Since $g(\alpha) = 0$ and $g(x) \in F[x]$, the minimal polynomial of α over F divides g. Since the α_i s are all different, g is separable and thus the minimal polynomial of α is separable. So E/F is separable.

Moreover, all roots of the minimal polynomial of α are in E. Thus E is a normal over F (it is the splitting field of the minimal polynomials over F of all elements $\alpha \in E$).

 $(3) \Rightarrow (1)$ Since E/F is normal and finite dimensional, E is the splitting field of a finite number of polynomials $p_1, \ldots, p_n \in F[x]$. We may as well assume that each of these polynomials is monic, irreducible over F and that no two are equal. Thus, each polynomial p_i is the minimal polynomial of some $\alpha \in E$ over F. Thus, since they are non-equal, they also have no common roots. Therefore, there product $p_1 \cdots p_n$ is separable and E is its splitting field.

We now prove the second part of the "moreover". Suppose F = Inv(G) for some finite group of automorphisms of E. Then by lemma 0.4, $[E : F] \leq |G|$. Since (1) holds, lemma 0.3 says that Gal(E/F) = [E : F]. So, since G is a subgroup of Gal(E/F), G = Gal(E/F).

Definition 0.7. We call a field extension E/F which satisfies any (and hence all) the equivalent conditions of the above theorem a **Galois** extension.

Theorem 0.8 (Fundamental theorem of Galois theory). Let E/F be a Galois extension with G := Gal(E/F). Let Γ be the set of subgroups of G := Gal(E/F) and let Σ be the set of intermediate fields between E and F. The maps

$$H \mapsto Inv(H)$$
$$K \mapsto Gal(E/K)$$

are inverse bijective maps. Moreover, we have the following properties:

- (i) $H_1 \supseteq H_2 \Leftrightarrow Inv(H_1) \subseteq Inv(H_2).$
- (*ii*) |H| = [E : Inv(H)], [G : H] = [Inv(H) : F]
- (iii) H in G is normal if and only if Inv(H) is normal over F. In this case

$$Gal(Inv(H)/F) \cong G/H$$