
1. Terminology English/German

Unique factorisation domain - faktorieller Ring
Field - Körper
Field of fractions - Quotientenkörper
Principal ideal domain - Hauptidealbereich
Field extension - Körpererweiterung
Prime subfield of a field - Primkörper eines Körpers

2. UFD’s and irreducible polynomials over integral
domains

From the last lecture we have the following lemma and corollary:

Lemma 2.1 (Gauss’ lemma). Let R be a unique factorisation do-
main (in German: faktorieller Ring) with field of fractions F and
p(x) ∈ R[x]. If p(x) = A(x)B(x) for some non-constant polynomi-
als A(x), B(x) ∈ F [x] then there exist r, s ∈ F such that rA(x) = a(x)
and sB(x) = b(x) are both are in R[x] and p(x) = a(x)b(x).

Corollary 2.2. Let R be a unique factorisation domain with field of
fractions F (in German: Quotientenkörper) and let p(x) ∈ R[x]. Sup-
pose that the greatest common divisor of the coefficients of p(x) is 1.
Then p(x) is irreducible in R[x] if and only if it is irreducible in F [x].
In particular, if p(x) is a monic polynomial that is irreducible in R[x]
then p(x) is irreducible in F [x].

Theorem 2.3. A ring R is a unique factorisation domain if and only
if R[x] is a unique factorisation domain.

Proof. The reverse direction was covered in the last lecture.
Suppose R is a UFD (unique factorisation domain), F is the field of
fractions of R and p(x) ∈ R[x] is non-zero.
Let d be the greatest common divisor of the coefficients of p(x) (NOTE:
The greatest common divisor exists because R is a UFD) and write
p(x) = dq(x). The greatest common divisor of the coefficients of q is
1. Since R is a UFD, d can be factored in R into irreducibles and
irreducibles in R remain irreducible in R[x] (this is simply because if
d ∈ R\{0} and d = a(x)b(x) then deg(a(x)) = deg(b(x)) = 0; so
a(x), b(x) ∈ R).
We now attempt to write q(x) as a product of irreducibles in R[x]. Since
F [x] is a UFD, there exist q1(x), q2(x), ..., qn(x) ∈ F [x] irreducible in
F [x] such that q(x) = q1(x) · · · qn(x). Gauss’ lemma means we may
assume these factors are in R[x]. Since the greatest common divisor
of the coefficients of q(x) is 1, the greatest common divisor of the
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coefficients of each of the qis is also 1. Thus by corollary 2.2 each of
these factors is irreducible in R[x]. Thus we can write p as a product
of irreducible elements in R[x]:

d1 · · · dmq1(x) · · · qn(x)

where d = d1 · · · dm and each di is irreducible in R.
It remains to show that this factorisation is unique up to ordering and
multiplication by units. This is UB4 exercise 4.

�

Corollary 2.4. If R is a UFD then so is R[x1, ..., xn].

Proof. Use induction on n. �

We will give two methods for testing the irreducibility of a polynomial
over an integral domain.

Proposition 2.5. Let I be a proper ideal of an integral domain (in
German: Integritätsbereich) R and let p(x) be a non-constant monic
(in German: normierte) polynomial in R[x]. If the image of p(x) in
(R/I)[x] can’t be factored in (R/I)[x] into two polynomials of smaller
degree, then p(x) is irreducible.

Proof. Suppose p(x) is non-constant, monic and reducible. Then p(x) =
a(x)b(x) ∈ R[x] with a(x), b(x) non-constant (if either a(x) or b(x) were
constant then would be a unit, since p(x) is monic). We may assume
that a(x) and b(x) are monic since p(x) is monic.
Let p(x), ā(x) and b̄(x) be the images of p(x), a(x) and b(x) in (R/I)[x].
Then p̄(x) = ā(x)b̄(x) and since a(x) and b(x) are monic and non-
constant, ā(x) and b̄(x) are non-constant and monic. By comparing
degrees a(x) and b(x) are polynomials of smaller degree than p(x). �

The most common application of this result is to prove that a poly-
nomial over Z is irreducible. For instance consider the polynomial
X4 + 9X3 + 10X2 + 22X + 1 ∈ Z[X].
Its image in Z2[X] is X4 + X3 + 1. It is clear that this polynomial
does not have a root in Z2 (check 0 and 1). Thus if it were irreducible,
it must factor as a product of two polynomials in Z2[x] of degree 2.
If p(x) ∈ Z2[X] is irreducible of degree 2 then its leading term is 1
and its constant term is also 1 since 0 is not a root. The polynomial
X2 + 1 has root 1. Therefore, there is only one irreducible polynomial
of degree 2 in Z2[X]. That is X2 +X + 1 (check it has no roots). But
(X2 +X + 1)2 = X4 +X2 + 1. So X4 +X3 + 1 is irreducible over Z2.
Thus X4 + 9X3 + 10X2 + 22X + 1 is irreducible over Z.
Unfortunately this does not always work.



Proposition 2.6. (Eisenstein’s Criterion) Let p be a prime ideal of an
integral domain R, n ≥ 1 and let f(x) = xn + an−1x

n−1 + ...+ a1x+ a0
be a polynomial in R[x]. Suppose an−1, ..., a0 ∈ p and a0 /∈ p2. Then
f(x) is irreducible in R[x].

Proof. Claim: If a(x), b(x) are non-constant polynomials over an inte-
gral domain R with a(x)b(x) = xn and n > 0 then b(0) = a(0) = 0.
Proof of claim: Since R is an integral domain either a(0) = 0 or
b(0) = 0. Suppose a(0) = 0. Let m be maximal such that a(x) =
xma′(x) for some a′(x) ∈ R[x]. Thus a′(0) 6= 0. So now a′(x)b(x) =
xn−m. Since b(x) is non-constant n−m > 0. Therefore a′(0)b(0) = 0.
So b(0) = 0. So we have proved the claim.
Suppose f(x) = a(x)b(x) in R[x] where a(x) and b(x) are non-constant
polynomials. It is easy to see that the constant term of f(x) is the
product of the constant term of a(x) and the constant term of b(x).
Let f̄(x), ā(x), b̄(x) be the images of f(x), a(x) and b(x) in (R/p)[x].
Then xn = f̄(x) = ā(x)b̄(x). Thus ā(0) = b̄(0) = 0 since R/p is an
integral domain. But this means that the constant terms of a(x) and
b(x) are in p. Thus the constant term of f(x) is in p2 contradicting our
assumptions. Therefore f(x) is irreducible.

�

Corollary 2.7. Let p be a prime in Z, n ≥ 1 and let f(x) := xn +
an−1x

n−1+...+a0 ∈ Z[x]. Suppose that p divides ai for all 0 ≤ i ≤ n−1
but p2 does not divide a0. Then f(x) is irreducible in both Z[x] and
Q[x].

Proof. Apply Eisenstein at the prime ideal 〈p〉. �

The polynomial X57 + 10X4 + 25X2 + 35 ∈ Z[X] is irreducible by
Eisenstein’s theorem applied at 5.
Extra example:
Consider the polynomial f(X) := X4 + 1Z[x]. We can’t apply Eisen-
stein’s theorem directly. Let g(X) = f(X+1). So g(X) = X4 +4X3 +
6X2 + 4X + 2. Now, by Eisenstein applied at 2, g(x) is irreducible and
if f could be factored as a product of non-constant polynomials then
so could g. Thus f is irreducible.

3. Fields

A reminder from linear algebra:

Definition 3.1. The characteristic of a field F , denoted char(F ) is the
smallest strictly positive integer n such that n · 1F . If such an integer
does not exist we say the characteristic is zero.



Note that the characteristic of a field will always be zero or a primes
(Check you know why?).

Definition 3.2. The prime subfield (Primkörper eines Körpers) of a
field F is the smallest subfield of F . Note that the prime subfield is
always Q (when F has characteristic zero) or Fp (when F has positive
characteristic p).

Note that a field of characteristic p may well have infinitely many ele-
ments. For example consider the field of fractions of Fp[x].

Definition 3.3. If K is a field containing a subfield F then K is
called an extension field (in German: Körpererweiterung) of F , de-
noted K/F . We refer to F as the base field.
If K/F is a field extension, then the multiplication defined in K makes
K as a vector space over F .
The degree of a field extension (Grad einer Körpererweiterung) K/F ,
denoted [K : F ], is the dimension of K as a vector space over F .
The extension is called finite if [K : F ] is finite and is called infinite
otherwise.

Examples: The field extension C/R has degree 2. Every element of
C can be written as a linear combination of 1 and i and if a + bi = 0
then a2 + b2 = (a+ bi)(a− bi) = 0; so a = b = 0. So 1, i are a basis for
C as a vector space over R.

Remark 3.4. A homomorphism of fields is always injective.

Proof. Let ϕ : F → K be a homomorphism between fields F and K.
The kernel of ϕ is an ideal of F . The only ideals of F are {0} and F .
Since ϕ(1F ) = 1K 6= 0, kerϕ = 0. So ϕ is injective. �

Theorem 3.5. Let F be a field and p(x) ∈ F [x] be irreducible. There
exists a field K extension F of K in which p(x) has a root.

Proof. Consider the quotient F [x]/〈p(x)〉. Since p(x) is irreducible and
F [x] is a PID (Hauptidealbereich), the ideal generated by p(x) is max-
imal. Therefore F [x]/〈p(x)〉 is a field.
Let ϕ : F [x] → F [x]/〈p(x)〉 be the canonical homomorphism. The
restriction of ϕ to F is a homomorphism of fields and thus is injective.
Thus F is isomorphic to its image ϕ(F ) in F [x]. We may now identify
F with its image in F [x]/〈p(x)〉.
This is a subtle point: what does it mean to identify F with its image
in F [x]/〈p(x)〉?
If ψ : F → K is a homomorphism of fields (with K and F disjoint as
sets) we simply relabel each element ϕ(f) for f ∈ F as f . We can do



this because ψ is injective; i.e. if ψ(f) = ψ(g) then f = g. Now F as a
set is a subset of K. Because ψ is a homomorphism ψ(0) = 0, ψ(1) = 1
and for all f, g ∈ F , f + g = ψ(f) +ψ(g) and f · g = ψ(f) ·ψ(g). Thus
F is also a subfield of K.
Back to the proof: Let x̄ be the image of x in F [x]/〈p(x)〉. We now

have that p(x) = p(x) since ϕ is a homomorphism. But p(x) ∈ 〈p(x)〉,
so p(x) = 0. Thus x is a root of the polynomial p(x) in K. �
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