1. Terminology English/German

Unique factorisation domain - faktorieller Ring
Field - Körper
Field of fractions - Quotientenkörper
Principal ideal domain - Hauptidealbereich
Field extension - Körpererweiterung
Prime subfield of a field - Primkörper eines Körpers

2. UFD'S AND IRREDUCIBLE POLYNOMIALS OVER INTEGRAL DOMAINS

From the last lecture we have the following lemma and corollary:
Lemma 2.1 (Gauss' lemma). Let R be a unique factorisation domain (in German: faktorieller Ring) with field of fractions F and $p(x) \in R[x]$. If $p(x)=A(x) B(x)$ for some non-constant polynomials $A(x), B(x) \in F[x]$ then there exist $r, s \in F$ such that $r A(x)=a(x)$ and $s B(x)=b(x)$ are both are in $R[x]$ and $p(x)=a(x) b(x)$.

Corollary 2.2. Let R be a unique factorisation domain with field of fractions F (in German: Quotientenkörper) and let $p(x) \in R[x]$. Suppose that the greatest common divisor of the coefficients of $p(x)$ is 1 . Then $p(x)$ is irreducible in $R[x]$ if and only if it is irreducible in $F[x]$. In particular, if $p(x)$ is a monic polynomial that is irreducible in $R[x]$ then $p(x)$ is irreducible in $F[x]$.

Theorem 2.3. A ring R is a unique factorisation domain if and only if $R[x]$ is a unique factorisation domain.

Proof. The reverse direction was covered in the last lecture.
Suppose R is a UFD (unique factorisation domain), F is the field of fractions of R and $p(x) \in R[x]$ is non-zero.
Let d be the greatest common divisor of the coefficients of $p(x)$ (NOTE: The greatest common divisor exists because R is a UFD) and write $p(x)=d q(x)$. The greatest common divisor of the coefficients of q is 1. Since R is a UFD, d can be factored in R into irreducibles and irreducibles in R remain irreducible in $R[x]$ (this is simply because if $d \in R \backslash\{0\}$ and $d=a(x) b(x)$ then $\operatorname{deg}(a(x))=\operatorname{deg}(b(x))=0$; so $a(x), b(x) \in R)$.
We now attempt to write $q(x)$ as a product of irreducibles in $R[x]$. Since $F[x]$ is a UFD, there exist $q_{1}(x), q_{2}(x), \ldots, q_{n}(x) \in F[x]$ irreducible in $F[x]$ such that $q(x)=q_{1}(x) \cdots q_{n}(x)$. Gauss' lemma means we may assume these factors are in $R[x]$. Since the greatest common divisor of the coefficients of $q(x)$ is 1 , the greatest common divisor of the
coefficients of each of the q_{i} s is also 1 . Thus by corollary 2.2 each of these factors is irreducible in $R[x]$. Thus we can write p as a product of irreducible elements in $R[x]$:

$$
d_{1} \cdots d_{m} q_{1}(x) \cdots q_{n}(x)
$$

where $d=d_{1} \cdots d_{m}$ and each d_{i} is irreducible in R.
It remains to show that this factorisation is unique up to ordering and multiplication by units. This is UB4 exercise 4.

Corollary 2.4. If R is a UFD then so is $R\left[x_{1}, \ldots, x_{n}\right]$.
Proof. Use induction on n.
We will give two methods for testing the irreducibility of a polynomial over an integral domain.

Proposition 2.5. Let I be a proper ideal of an integral domain (in German: Integritätsbereich) R and let $p(x)$ be a non-constant monic (in German: normierte) polynomial in $R[x]$. If the image of $p(x)$ in $(R / I)[x]$ can't be factored in $(R / I)[x]$ into two polynomials of smaller degree, then $p(x)$ is irreducible.

Proof. Suppose $p(x)$ is non-constant, monic and reducible. Then $p(x)=$ $a(x) b(x) \in R[x]$ with $a(x), b(x)$ non-constant (if either $a(x)$ or $b(x)$ were constant then would be a unit, since $p(x)$ is monic). We may assume that $a(x)$ and $b(x)$ are monic since $p(x)$ is monic.
Let $\bar{p}(x), \bar{a}(x)$ and $\bar{b}(x)$ be the images of $p(x), a(x)$ and $b(x)$ in $(R / I)[x]$. Then $\bar{p}(x)=\bar{a}(x) \bar{b}(x)$ and since $a(x)$ and $b(x)$ are monic and nonconstant, $\bar{a}(x)$ and $\bar{b}(x)$ are non-constant and monic. By comparing degrees $\bar{a}(x)$ and $\bar{b}(x)$ are polynomials of smaller degree than $\bar{p}(x)$.

The most common application of this result is to prove that a polynomial over \mathbb{Z} is irreducible. For instance consider the polynomial $X^{4}+9 X^{3}+10 X^{2}+22 X+1 \in \mathbb{Z}[X]$.
Its image in $\mathbb{Z}_{2}[X]$ is $X^{4}+X^{3}+1$. It is clear that this polynomial does not have a root in \mathbb{Z}_{2} (check 0 and 1). Thus if it were irreducible, it must factor as a product of two polynomials in $\mathbb{Z}_{2}[x]$ of degree 2. If $p(x) \in \mathbb{Z}_{2}[X]$ is irreducible of degree 2 then its leading term is 1 and its constant term is also 1 since 0 is not a root. The polynomial $X^{2}+1$ has root 1 . Therefore, there is only one irreducible polynomial of degree 2 in $\mathbb{Z}_{2}[X]$. That is $X^{2}+X+1$ (check it has no roots). But $\left(X^{2}+X+1\right)^{2}=X^{4}+X^{2}+1$. So $X^{4}+X^{3}+1$ is irreducible over \mathbb{Z}_{2}. Thus $X^{4}+9 X^{3}+10 X^{2}+22 X+1$ is irreducible over \mathbb{Z}.
Unfortunately this does not always work.

Proposition 2.6. (Eisenstein's Criterion) Let \mathfrak{p} be a prime ideal of an integral domain $R, n \geq 1$ and let $f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ be a polynomial in $R[x]$. Suppose $a_{n-1}, \ldots, a_{0} \in \mathfrak{p}$ and $a_{0} \notin \mathfrak{p}^{2}$. Then $f(x)$ is irreducible in $R[x]$.

Proof. Claim: If $a(x), b(x)$ are non-constant polynomials over an integral domain R with $a(x) b(x)=x^{n}$ and $n>0$ then $b(0)=a(0)=0$.
Proof of claim: Since R is an integral domain either $a(0)=0$ or $b(0)=0$. Suppose $a(0)=0$. Let m be maximal such that $a(x)=$ $x^{m} a^{\prime}(x)$ for some $a^{\prime}(x) \in R[x]$. Thus $a^{\prime}(0) \neq 0$. So now $a^{\prime}(x) b(x)=$ x^{n-m}. Since $b(x)$ is non-constant $n-m>0$. Therefore $a^{\prime}(0) b(0)=0$. So $b(0)=0$. So we have proved the claim.
Suppose $f(x)=a(x) b(x)$ in $R[x]$ where $a(x)$ and $b(x)$ are non-constant polynomials. It is easy to see that the constant term of $f(x)$ is the product of the constant term of $a(x)$ and the constant term of $b(x)$.
Let $\bar{f}(x), \bar{a}(x), \bar{b}(x)$ be the images of $f(x), a(x)$ and $b(x)$ in $(R / \mathfrak{p})[x]$. Then $x^{n}=\bar{f}(x)=\bar{a}(x) \bar{b}(x)$. Thus $\bar{a}(0)=\bar{b}(0)=0$ since R / \mathfrak{p} is an integral domain. But this means that the constant terms of $a(x)$ and $b(x)$ are in \mathfrak{p}. Thus the constant term of $f(x)$ is in \mathfrak{p}^{2} contradicting our assumptions. Therefore $f(x)$ is irreducible.

Corollary 2.7. Let p be a prime in $\mathbb{Z}, n \geq 1$ and let $f(x):=x^{n}+$ $a_{n-1} x^{n-1}+\ldots+a_{0} \in \mathbb{Z}[x]$. Suppose that p divides a_{i} for all $0 \leq i \leq n-1$ but p^{2} does not divide a_{0}. Then $f(x)$ is irreducible in both $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$.
Proof. Apply Eisenstein at the prime ideal $\langle p\rangle$.
The polynomial $X^{5} 7+10 X^{4}+25 X^{2}+35 \in \mathbb{Z}[X]$ is irreducible by Eisenstein's theorem applied at 5 .

Extra example:

Consider the polynomial $f(X):=X^{4}+1 \mathbb{Z}[x]$. We can't apply Eisenstein's theorem directly. Let $g(X)=f(X+1)$. So $g(X)=X^{4}+4 X^{3}+$ $6 X^{2}+4 X+2$. Now, by Eisenstein applied at $2, g(x)$ is irreducible and if f could be factored as a product of non-constant polynomials then so could g. Thus f is irreducible.

3. FieldS

A reminder from linear algebra:
Definition 3.1. The characteristic of a field F, denoted $\operatorname{char}(F)$ is the smallest strictly positive integer n such that $n \cdot 1_{F}$. If such an integer does not exist we say the characteristic is zero.

Note that the characteristic of a field will always be zero or a primes (Check you know why?).

Definition 3.2. The prime subfield (Primkörper eines Körpers) of a field F is the smallest subfield of F. Note that the prime subfield is always \mathbb{Q} (when F has characteristic zero) or \mathbb{F}_{p} (when F has positive characteristic p).

Note that a field of characteristic p may well have infinitely many elements. For example consider the field of fractions of $\mathbb{F}_{p}[x]$.
Definition 3.3. If K is a field containing a subfield F then K is called an extension field (in German: Körpererweiterung) of F, denoted K / F. We refer to F as the base field.
If K / F is a field extension, then the multiplication defined in K makes K as a vector space over F.
The degree of a field extension (Grad einer Körpererweiterung) K / F, denoted $[K: F]$, is the dimension of K as a vector space over F. The extension is called finite if $[K: F]$ is finite and is called infinite otherwise.

Examples: The field extension \mathbb{C} / \mathbb{R} has degree 2. Every element of \mathbb{C} can be written as a linear combination of 1 and i and if $a+b i=0$ then $a^{2}+b^{2}=(a+b i)(a-b i)=0$; so $a=b=0$. So $1, i$ are a basis for \mathbb{C} as a vector space over \mathbb{R}.

Remark 3.4. A homomorphism of fields is always injective.
Proof. Let $\varphi: F \rightarrow K$ be a homomorphism between fields F and K. The kernel of φ is an ideal of F. The only ideals of F are $\{0\}$ and F. Since $\varphi\left(1_{F}\right)=1_{K} \neq 0$, $\operatorname{ker} \varphi=0$. So φ is injective.

Theorem 3.5. Let F be a field and $p(x) \in F[x]$ be irreducible. There exists a field K extension F of K in which $p(x)$ has a root.

Proof. Consider the quotient $F[x] /\langle p(x)\rangle$. Since $p(x)$ is irreducible and $F[x]$ is a PID (Hauptidealbereich), the ideal generated by $p(x)$ is maximal. Therefore $F[x] /\langle p(x)\rangle$ is a field.
Let $\varphi: F[x] \rightarrow F[x] /\langle p(x)\rangle$ be the canonical homomorphism. The restriction of φ to F is a homomorphism of fields and thus is injective. Thus F is isomorphic to its image $\varphi(F)$ in $F[x]$. We may now identify F with its image in $F[x] /\langle p(x)\rangle$.
This is a subtle point: what does it mean to identify F with its image in $F[x] /\langle p(x)\rangle$?
If $\psi: F \rightarrow K$ is a homomorphism of fields (with K and F disjoint as sets) we simply relabel each element $\varphi(f)$ for $f \in F$ as f. We can do
this because ψ is injective; i.e. if $\psi(f)=\psi(g)$ then $f=g$. Now F as a set is a subset of K. Because ψ is a homomorphism $\psi(0)=0, \psi(1)=1$ and for all $f, g \in F, f+g=\psi(f)+\psi(g)$ and $f \cdot g=\psi(f) \cdot \psi(g)$. Thus F is also a subfield of K.
Back to the proof: Let \bar{x} be the image of x in $F[x] /\langle p(x)\rangle$. We now have that $p(\bar{x})=p(x)$ since φ is a homomorphism. But $p(x) \in\langle p(x)\rangle$, so $\overline{p(x)}=0$. Thus \bar{x} is a root of the polynomial $p(x)$ in K.

