PROSEMINAR: POSITIVITÄT UND QUADRATISCHE FORMEN

1. 25 th October - Katrin Loher

Review of topics from linear algebra.
Reference: Section 9.2 Hoffmann, Kunze - Linear Algebra
2. 8th November - Katrin Stocker

In this talk we will give the definitions of positive and non-negative forms on real and complex vector spaces. We will characterise the positive forms in terms of their matrix representation. We will define the principal minors of a matrix and use this definition to take the first step towards finding a more useful characterisation of positivity of a form.
Reference: pages 325-328 Hoffmann, Kunze - Linear Algebra
3. 15th November - Zoe Graser

Following on from the previous talk, we will give a characterisation of positive forms in terms of the principal minors of their matrix representation. We will then compare the real and complex cases. We will give the definition of a positive/non-negative linear operator on an inner product space and explain the relationship between positive operators, positive forms and positive matrices.
Reference: pages 328-331 Hoffmann, Kunze - Linear Algebra
4. 22th November - Martin Faigle

In this talk we review the definition of a bilinear form $\beta: V \times W \rightarrow K$, introduce the space of bilinear forms $\operatorname{Bil}(V, W)$ and show that this space is isomorphic to the space $\operatorname{Hom}\left(V, W^{*}\right)$. We will then define the matrix representation of a bilinear form.
Reference : pages 13-17 (up to end of proof of F5) Lorenz - Lineare Algebra II
5. 29th November - Julia Kraechter

In this talk we will discuss change of basis for bilinear forms and congruence of matrices. We will then go on to prove a theorem about non-degenerate bilinear forms and endomorphisms, that is:
if $\beta: V \times W \rightarrow K$ is a non-degenerate bilinear form and $\gamma: V \times W \rightarrow K$ is an arbitrary bilinear form then there exists a unique endomorphism f of V such that

$$
\beta(f(x), y)=\gamma(x, y) \text { for all } x \in V \text { and } y \in W
$$

Reference: pages 17-22 (from F6, up to F8) Lorenz - Lineare Algebra II
6. 6th December - Jennifer Ihlow

Parallel to the concept of the adjoint of an endomorphism of a vector space with respect to an inner product, we will investigate the concept of the adjoint of an endomorphism of a vector space with respect to a non-degenerate bilinear form. We will then go on to define the orthogonal complement of a subspace with respect to a bilinear form. Reference: pages 22-26 (from F8, up to F10) Lorenz - Lineare Algebra II
7. 13th December - Marie Kracker

We will start this talk by proving a dimension formula for the orthogonal complement of subspace with respect to a bilinear form. We will then go on to discuss symmetric, skew-symmetric and symplectic bilinear forms.
Reference: pages 26-30 (from F10) Lorenz - Lineare Algebra II
8. 20th December - Nikolai Kracker

In this talk we will introduce quadratic forms and explain their connection to symmetric bilinear forms.
Reference: pages 31-34 Lorenz - Lineare Algebra II
-Christmas -
9. 10th January - Eugen Makarov

In this talk we will discuss isometries of quadratic spaces, orthogonal bases and diagonalisation of quadratic forms over fields not of characteristic 2.
Reference: pages 35-39 (up to end of point (3)) Lorenz - Lineare Algebra II
10. 17th January - Alessa Kupferschmid

In this talk we will prove a theorem of Witt (Witt'sche Kürzungssatz) and Sylvester's theorem for quadratic forms over \mathbb{R}.
Reference: pages 42-45 (up to end of section 2) plus Satz 5 page 63 Lorenz - Lineare Algebra II
11. 24th January - Tanja Rohweder und Lucas Heitele

This talk will discuss when diophantine equations of the form

$$
a X^{2}+b Y^{2}+c Z^{2}=0
$$

have non-trivial integer solutions.
Reference: pages 273-275 plus exercises 25 and 26 Ireland Rosen - A classical introduction to modern number theory
12. 31st January - Anna-Lena Trautwein und Andreas Jüttler

In this talk we will discuss the continued fraction expansion of a square free natural number N and its relationship to the solution of the Pell
equation

$$
x^{2}-N y^{2}=1 .
$$

Reference: Chapter 8 section 1 and necessary background material on continued fractions from chapter 6 Baker - A concise introduction to number theory or a German reference from Merlin
13. 7th February - Patrick Michalski

In this talk we will show that every integer is a sum of 4 squares.
Reference: Either Baker - A concise introduction to number theory or a German reference from Merlin.
14. 14th February - Sina Schmitt

In this talk we will show that a prime number is the sum of 2 squares if and only if it is of the form $4 k+1$ where k is an integer.
Reference: Either Baker - A concise introduction to number theory or a German reference from Merlin.

