
Notation: Throughout, let Nn := {1, ..., n}.

Definition 0.1. Let n ∈ N. A permutation of Nn is a bijection
Nn → Nn. We write Sn for the set of permutations of Nn. The set Sn
together the function

Sn × Sn → Sn
that maps (α, β) to the composition of functions α ◦ β is a group. We
call this group the symmetric group on n elements.

Why is Sn a group?

(i) If α, β ∈ Sn then α ◦ β is bijective and thus α ◦ β ∈ Sn.
(ii) The identity map ε : Nn → Nn, defined by ε(i) := i for all

i ∈ Nn, is the identity element for Sn.
(iii) Bijective maps have inverses. If α ∈ Sn then there exists β ∈ Sn

such that α ◦ β = ε.
(iv) Multiplication is associative since function composition is al-

ways associative.

Notation: From now on, for α, β ∈ Sn we will write αβ to mean α◦β.
For a permutation σ of Nn, we write:(

1 2 . . . . . . n
σ(1) σ(2) . . . . . . σ(n)

)
.

Example: The permutation σ ∈ S5 with σ(1) = 3, σ(2) = 5, σ(3) =
4, σ(4) = 1, σ(5) = 2 is written(

1 2 3 4 5
3 5 4 1 2

)
.

Definition 0.2. If σ ∈ Sn has the property that there exist a1, ..., am ∈
Nn such that

σ(ai) = ai+1, for 1 ≤ i ≤ m− 1;
σ(am) = a1,
and σ(x) = x, for x /∈ {a1, ..., am}.

we say σ is an m-cycle and write σ in cycle notation as (a1a2....am).
A transposition is a 2-cycle.

Example: The permutation

σ :=

(
1 2 3 4
4 1 3 2

)
is a 3-cycle. We write σ in cycle notation as (142).

Definition 0.3. We say α, β ∈ Sn are disjoint if,

{x | α(x) 6= x} ∩ {x | β(x) 6= x} = ∅.
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Example: Let

σ :=

(
1 2 3 4
2 1 3 4

)
,

τ :=

(
1 2 3 4
1 2 4 3

)
and

γ :=

(
1 2 3 4
1 3 2 4

)
.

The permutations σ and τ are disjoint but σ and γ are not disjoint.

Lemma 0.4. Let α1, ..., αm ∈ Sn be pairwise disjoint permutations and
let τ ∈ Sn. The permutations α1α2...αm and τ are disjoint if and only
if αi and τ are disjoint for all 0 < i ≤ m.

Proof. See exercise sheet. �

Proposition 0.5. Every σ ∈ Sn can be written as a product of disjoint
cycles.

Proof. Fix n ∈ N. We shall prove the statement by induction on

Γ(σ) := |{a ∈ Nn | σ(a) 6= a}|.
If Γ(σ) = 0 then σ is the identity map on Nn so σ = (1)(2)...(n).

Let σ ∈ Sn. Suppose k = Γ(σ) > 0 and suppose the assertion is true
for all permutations τ with Γ(τ) < k.
Let i0 ∈ Nn be such that σ(i0) 6= i0. Let is := σs(i0). Since Nn is finite,
there exists p, q ∈ N with p < q such that σp(i0) = σq(i0). Since σ is
bijective, σp−q(i0) = i0. Take r ∈ N least such that σr+1(i0) = i0. Let
τ be the r + 1-cycle, (i0i1...ir).
Now

{a ∈ Nn | (τ−1σ)(a) = a} = {a ∈ Nn | σ(a) = a} ∪ {i0, ..., ir}.
So Γ(τ−1σ) < k = Γ(σ).
So, by the induction hypothesis, τ−1σ can be written as a product of
pairwise disjoint cycles, say τ−1σ = α1α2...αm. So σ = τα1α2...αm.
Since α1α2...αm(ij) = τ−1σ(ij) = ij for 0 ≤ j ≤ m, the permutations
α1α2...αm and τ are disjoint. By the lemma, this means τ and αi are
disjoint for 0 < i ≤ m. So σ is a product of disjoint cycles.

�

Example: The permutation(
1 2 3 4 5
3 5 4 1 2

)



written as a product of disjoint cycles is

(134)(25).

Notation:

Proposition 0.6. Every permutation on Nn can be written as a product
of transpositions.

Proof. The identity is (12)(21).
Since every permutation can be written as a product of cycles, it is
enough to show that every cycle can be written as a product of trans-
positions. Let (i1...ir) ∈ Sn be an r-cycle. Then

(i1i2...ir) = (i1ir)(i1ir−1)...(i1i3)(i1i2).

For i1,

(i1ir)(i1ir−1)...(i1i3)(i1i2)i1 = (i1ir)(i1ir−1)...(i1i3)i2 = i2.

For s > 1,

(i1ir)(i1ir−1)...(i1i3)(i1i2)is = (i1ir)(i1ir−1)...(i1is+1)(i1is)is

= (i1ir)(i1ir−1)...(i1is+2)(i1is+1)i1

= (i1ir)(i1ir−1)...(i1is+2)is+1

= is+1

�

Example: The permutation (123) ∈ S4 can be written as both

(13)(12)

and
(13)(42)(12)(14).

So factorisation into transpositions is not unique, even more, the num-
ber of transpositions used in a factorisation is not unique. So, what is
unique?
In order to answer this question we first need to define the action
of a permutation σ ∈ Sn on a function from Zn to Z. (Reminder
Zn := Z× ...× Z︸ ︷︷ ︸

n−times

).

Let σ ∈ Sn and f : Zn → Z be a function. We define σf to be the
function from Zn → Z defined by

(σf)(x1, ..., xn) := f(xσ(1), ..., xσ(n)).

Example: Let f : Z3 → Z be the function defined by f(x1, x2, x3) :=
x1x2 + x3 and σ := (123) ∈ S3. The function

(σf)(x1, x2, x3) = f(x2, x3, x1) = x2x3 + x1.



Lemma 0.7. Let σ, τ ∈ Sn and f, g : Zn → Z. Then
(i) σ(τf) = (στ)f
(ii) σ(fg) = (σf)(σg)

Proof. See exercise sheet.
�

Theorem 0.8. There is a map sign : Sn → {1,−1} such that:

(a) For every transposition τ ∈ Sn, sign(τ) = −1.
(b) For permutations σ, σ′

sign(σσ′) = sign(σ)sign(σ′).

This function is unique with these properties. For σ ∈ Sn, we call
sign(σ) the signature of σ.

Proof. Fix n ∈ N. Let ∆ : Zn → Z be the function defined by

∆(x1, ..., xn) :=
∏

1≤i<j≤n

(xj − xi).

Claim: For a transposition τ ∈ Sn, τ∆ = −∆.
Let τ = (rs) with r < s.
By lemma 0.7(i)

τ∆(x1, ..., xn) =
∏

1≤i<j≤n

τ(xj − xi).

Clearly, if i, j /∈ {r, s} then τ(xj − xi) = (xj − xi).
For the factor (xs − xr), we have that τ(xs − xr) = −(xr − xs).
The remaining factors can be put into pairs as follows:

(xk − xs)(xk − xr), if k > s;
(xs − xk)(xk − xr), if r < k < s;
(xs − xk)(xr − xk), if k < r.

Each pair is unaffected by τ .
Therefore τ∆ = −∆. So we have proved the claim.

Now suppose σ ∈ Sn. We can write σ = τ1...τm where τ1, ..., τm are
transpositions. By lemma 0.7(ii),

σ∆ = τ1(τ2(...(τm∆)...))

and by the claim

τ1(τ2(...(τm∆)...)) = (−1)m∆.

So σ∆ = ∆ or σ∆ = −∆.

For σ ∈ Sn, let sign(σ) = +1 if σ∆ = ∆ and let sign(σ) = −1 if
σ∆ = −∆. This map is well-defined since ∆(1, 2, ..., n) 6= 0.



Let σ, τ ∈ Sn. By lemma 0.7(i),

(στ)∆ = σ(τ∆).

So
sign(στ) = sign(σ)sign(τ).

The function sign : Sn → {1,−1} is unique with properties (a) and (b)
since every permutation is a product of transpositions.

�

Remark: Let σ ∈ Sn and let τ1, ..., τm ∈ Sn be transpositions such
that σ = τ1...τm. Then

sign(σ) = (−1)m.

Definition 0.9. We call a permutation even if it can be written as a
product of an even number of transpositions.
We call a permutation odd if it can be written as a product of an odd
number of transpositions.

Corollary 0.10. A permutation σ is even if and only if sign(σ) = 1
and is odd if and only if sign(σ) = −1. Thus, a permutation can not
be written as both a product of an even number transpositions and an
odd number of transpositions.


