Notation: Throughout, let N,, :== {1, ...,n}.

Definition 0.1. Let n € N. A permutation of N,, is a bijection
N, = N,,. We write S,, for the set of permutations of N,,. The set S,
together the function

S, X S, — S,
that maps («, B) to the composition of functions ao (3 is a group. We
call this group the symmetric group on n elements.

Why is S, a group?
(i) If o, B € S,, then a0 3 is bijective and thus ao 8 € S,,.

(ii) The identity map € : N, — N,,, defined by €(i) := ¢ for all
1 € N,,, is the identity element for S,,.

(iii) Bijective maps have inverses. If a € S,, then there exists § € S,
such that ao f =e.

(iv) Multiplication is associative since function composition is al-
ways associative.

Notation: From now on, for «, 8 € S,, we will write a8 to mean a0 5.
For a permutation o of N,,, we write:

1 2 ... ...0n
o(1) o(2) ... ... oln) )°
Example: The permutation o € S5 with o(1) = 3,0(2) = 5,0(3) =
4,0(4) =1,0(5) = 2 is written

1 2 3 45

3 541 2 )
Definition 0.2. If 0 € S,, has the property that there exist aq, ..., a,, €
N,, such that

o(a;) = ajr1, forl<i<m-—1;
olam) = a,
and o(x) =z, forx ¢ {ai,..,an}.

we say o is an m-cycle and write o in cycle notation as (ayas....apy,).
A transposition is a 2-cycle.

Example: The permutation

(1234
=141 3 2

is a 3-cycle. We write ¢ in cycle notation as (142).
Definition 0.3. We say o, 5 € S,, are disjoint if,
{z | az) #xp0{z | Bla) # 2} = 0.
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Example: Let

Q
Il

12 3 4

13 4 )
(1234
=\1 2 3
(1234
T=\1324)

The permutations o and 7 are disjoint but ¢ and v are not disjoint.

W wWw

and

Lemma 0.4. Let aq, ..., a,, € S, be pairwise disjoint permutations and
let T € S,. The permutations ayQs...q, and T are disjoint if and only
if a; and T are disjoint for all 0 < i < m.

Proof. See exercise sheet. O

Proposition 0.5. Every o € S,, can be written as a product of disjoint
cycles.

Proof. Fix n € N. We shall prove the statement by induction on

[(o) := {a € N | o(a) # a}].
If I'(¢) = 0 then o is the identity map on N,, so o = (1)(2)...(n).
Let o0 € S,,. Suppose k = I'(0) > 0 and suppose the assertion is true
for all permutations 7 with I'(7) < k.
Let ip € N,, be such that o(ig) # ip. Let is := 0°(ip). Since N,, is finite,
there exists p,q € N with p < ¢ such that o?(ig) = 0%(ip). Since o is
bijective, 0?7 4(ig) = ig. Take r € N least such that "1 (ig) = ip. Let
T be the r + 1-cycle, (igiy...7,).
Now

{aeN, | (r7'0)(a)=a} ={a €N, | o(a) =a} U {ig, ..., }.

SoI(r7'o) <k =T(0).

So, by the induction hypothesis, 77!o can be written as a product of
pairwise disjoint cycles, say 7710 = ajan...ap,. S0 0 = Ta1...00p,.
Since ay...ap,(i;) = 7o (i;) = i; for 0 < j < m, the permutations
a1Qs...u, and 7 are disjoint. By the lemma, this means 7 and «; are

disjoint for 0 <7 < m. So o is a product of disjoint cycles.
O

Example: The permutation

1 2345
3041 2



written as a product of disjoint cycles is
(134)(25).
Notation:

Proposition 0.6. Every permutation on N,, can be written as a product
of transpositions.

Proof. The identity is (12)(21).
Since every permutation can be written as a product of cycles, it is
enough to show that every cycle can be written as a product of trans-
positions. Let (i1...i,) € S, be an r-cycle. Then
(1109...3,) = (i1iy)(010p—1)...(1173) (i172).
For il,
(il’l'r)(lll’llrfl)...(ilig)(ilig)il == (lellr)@'ﬂ'r,l)...(’iﬂg)ig = ?;2.
For s > 1,
(118, ) (18p—1)...(1193) (11d2)1s = (i10y)(2105—1)-.-(10511) (4115) s
(inir) (inir—1)--(i18s42) (I19541) 01

(ilir) (ilir—l)‘--(ilis—&—Q)is—i-l

= ’is+1
O
Example: The permutation (123) € S, can be written as both
(13)(12)
and
(13)(42)(12)(14).

So factorisation into transpositions is not unique, even more, the num-
ber of transpositions used in a factorisation is not unique. So, what is
unique?
In order to answer this question we first need to define the action
of a permutation ¢ € S, on a function from Z" to Z. (Reminder
7" =7 % ... X 7).

——

n—times

Let 0 € S,, and f : Z™ — Z be a function. We define o f to be the
function from Z" — 7Z defined by

() @1,y 20) = (o), s Tam))-
Example: Let f: Z*> — Z be the function defined by f(zy,xs,13) :=
129 + x3 and o = (123) € S3. The function

(Uf)<33'1a 952,553) = f(xza :1;3,3;1) = T2T3 + T1.



Lemma 0.7. Let o,7 € S, and f,g: Z" — Z. Then

(1) o(rf) = (o7)f
(i) o(fg) = (o f)(og)

Proof. See exercise sheet.

Theorem 0.8. There is a map sign : S, — {1,—1} such that:
(a) For every transposition T € S, sign(t) = —1.
(b) For permutations o, 0’
sign(ca’) = sign(a)sign(c’).
This function is unique with these properties. For o € S,, we call

sign(o) the signature of o.

Proof. Fix n € N. Let A : Z™ — Z be the function defined by
A(Zﬁl,...,l'n) S H ([L'J—$7,)
1<i<j<n

Claim: For a transposition 7 € S,,, TA = —A.
Let 7 = (rs) with r < s.

By lemma [0.7](1)
TA(xq, .y ) = H T(x; — x;).

1<i<j<n
Clearly, if 4,5 ¢ {r, s} then 7(z; — ;) = (z; — x;).
For the factor (x5 — x,), we have that 7(z; — x,.) = —(x, — z5).

The remaining factors can be put into pairs as follows:

(2 — xs) () — ), ik >s;
(s —xp) () — ), ifr <k <s;
(s — xp) (2, — ), k<.

Each pair is unaffected by 7.
Therefore TA = —A. So we have proved the claim.

Now suppose o € S,,. We can write ¢ = 7...7;, where 71, ..., 7, are
transpositions. By lemma [0.7ii),

oA =1 (7e(...(TA)...))
and by the claim
T (T2 (...(TnA)...)) = (=1)™A.
So oA =AorcA=-A.

For o € S,, let sign(o) = +1 if cA = A and let sign(o) = —1 if
oA = —A. This map is well-defined since A(1,2,...,n) # 0.



Let 0,7 € S,,. By lemma [0.7(i),
(c7)A = o(TA).
So
sign(or) = sign(o)sign(7).
The function sign : S,, — {1, —1} is unique with properties (a) and (b)
since every permutation is a product of transpositions.
O

Remark: Let o € S,, and let 7,...,7,, € S, be transpositions such
that ¢ = 74...7,,,. Then

sign(o) = (—1)™.

Definition 0.9. We call a permutation even if it can be written as a
product of an even number of transpositions.

We call a permutation odd if it can be written as a product of an odd
number of transpositions.

Corollary 0.10. A permutation o is even if and only if sign(c) = 1
and is odd if and only if sign(c) = —1. Thus, a permutation can not
be written as both a product of an even number transpositions and an
odd number of transpositions.



