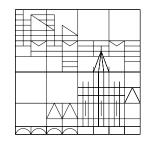
Universität Konstanz

Fachbereich Mathematik und Statistik

Prof. Dr. Salma Kuhlmann

Dr. Lorna Gregory Katharina Dupont



Lineare Algebra II Übungsblatt 0

Keine Abgabe. Ausarbeitung in den Übungsgruppen.

Aufgabe 0.1 Endliche Integritätsbereiche

Es sei R ein Integritätsbereich.

(a) Zeigen Sie, für alle $r\in R\backslash\{0\}$, dass die Abbildung $\varphi_r:R\to R$ definiert durch

$$\varphi_r(a) := ar$$

injektiv ist.

- (b) Sei R jetzt endlich. Erklären Sie, warum φ_r surjektiv sein muss.
- (c) Folgern Sie, dass jeder endliche Integritätsbereich ein Körper ist.

Aufgabe 0.2 Endliche Körper

Sei K ein endliche Körper. Für alle $r \in K$, sei $\varphi_r : K \to K$ die Abbildung definiert durch $\varphi_r(k) := kr$.

(a) Zeigen Sie, dass für alle $r \in K \setminus \{0\}$,

$$\prod_{k \in K \setminus \{0\}} \varphi_r(k) = \prod_{k \in K \setminus \{0\}} k$$

gilt.

(b) Folgern Sie, dass für alle $k \in K$,

$$k^n = k$$
,

wobei n := |K|.

Aufgabe 0.3 Dualraum

Sei K ein Körper.

- (a) Sei $\mathcal{B}:=((1,0,1),(-1,-1,-1),(3,3,0))$. Zeigen Sie, dass \mathcal{B} eine Basis des \mathbb{C}^3 ist. Berechnen Sie, die Dualbasis zu \mathcal{B} .
- (b) Zeigen Sie, dass $\mathcal{C}^* := (f_1, f_2, f_3)$, definiert durch

$$f_1(x_1, x_2, x_3) := x_1 + 2x_2$$

$$f_2(x_1, x_2, x_3) := x_1 + x_2 + x_3$$

$$f_3(x_1, x_2, x_3) := 2x_1 + x_2,$$

eine Basis des $(\mathbb{C}^3)^*$ ist.

(c) Finden Sie eine Basis $\mathcal C$ des $\mathbb C^3$, so dass $\mathcal C^*$ (definiert wie in Teil (ii)) eine Dualbasis zu $\mathcal C$ ist.

Aufgabe 0.4

Sei K ein Körper.

- (a) Seien V ein endlich dimensionaler K-Vektorraum und $T:V\to V$ ein lineare Operator. Beweisen Sie, dass die folgenden Aussagen äquivalent sind.
 - (i) T ist injektiv.
 - (ii) T ist surjektiv.
 - (iii) T ist bijektiv.
- (b) Geben Sie eine lineare Abbildung $T:K^{\mathbb{N}_0}\to K^{\mathbb{N}_0}$ an, die injektiv, aber nicht surjektiv ist.
- (c) Geben Sie eine lineare Abbildung $T:K^{\mathbb{N}_0}\to K^{\mathbb{N}_0}$ an, die surjektiv, aber nicht injektiv ist.

http://www.math.uni-konstanz.de/~ gregory/linearealgebra2.html