LINEARE ALGEBRA II: SOLUTIONS TO SHEET 12

Question 1:

(a) Let V be a complex inner product space (hermitescher Raum). From UB11 question 11.4(a)(iv), we know that if \mathcal{B} is an orthonormal basis for V then

$$
\left[T^{*}\right]_{\mathcal{B}}:=\overline{\left([T]_{\mathcal{B}}\right)^{t}} .
$$

(i) \Rightarrow (iii): Suppose that T is unitary (unitär). Since $T T^{*}=I$,

$$
\begin{aligned}
{[T]_{\mathcal{B}}\left[T^{*}\right]_{\mathcal{B}} } & =\left[T T^{*}\right]_{\mathcal{B}} \\
& =[I]_{\mathcal{B}} \\
& =I
\end{aligned}
$$

Thus $[T]_{\mathcal{B}} \overline{\left([T]_{\mathcal{B}}\right)^{t}}=I$. So $[T]_{\mathcal{B}}$ is a unitary matrix.
(iii) \Rightarrow (ii) is clear.
(ii) \Rightarrow (i) Suppose that \mathcal{B} is an orthonormal basis such that $[T]_{\mathcal{B}} \overline{[T]_{\mathcal{B}}^{t}}=I$. Thus $\left[T T^{*}\right]_{\mathcal{B}}=[T]_{\mathcal{B}}\left[T^{*}\right]_{\mathcal{B}}=[T]_{\mathcal{B}} \overline{[T]_{\mathcal{B}}^{t}}=I$. Thus $\left[T T^{*}\right]_{\mathcal{B}}=I$. So $T T^{*}=I$.
(b) The proof is identical to the one above except that if \mathcal{B} is an orthonormal basis for V then $\left[T^{*}\right]_{\mathcal{B}}=[T]_{\mathcal{B}}^{t}$.

Question 2: Since T is normal, there exists an orthonormal basis for V consisting of eigenvectors of T. Let $\left\{b_{1}, \ldots, b_{n}\right\}$ be such a basis and let $T b_{i}=\lambda_{i} b_{i}$ for $1 \leq i \leq n$.
(a) Suppose T is a normal operator on V, a complex inner product space, such that all eigenvalues of T are real and positive. By korollar 4 vorlesung 23, T is hermitian. So it remains to show that T is positive.

Take $x \in V$ and suppose that $r_{1}, \ldots, r_{n} \in \mathbb{C}$ are such that $x=\sum_{i=1}^{n} r_{i} b_{i}$. Thus

$$
\begin{aligned}
(T x \mid x) & =\left(T\left(\sum_{i=1}^{n} r_{i} b_{i}\right) \mid \sum_{j=1}^{n} r_{j} b_{j}\right) \\
& =\left(\sum_{i=1}^{n} r_{i} T b_{i} \mid \sum_{j=1}^{n} r_{j} b_{j}\right) \\
& =\left(\sum_{i=1}^{n} r_{i} \lambda_{i} b_{i} \mid \sum_{j=1}^{n} r_{j} b_{j}\right) \\
& =\sum_{i=1}^{n} r_{i} \lambda_{i}\left(b_{i} \mid \sum_{j=1}^{n} r_{j} b_{j}\right) \\
& =\sum_{i=1}^{n} r_{i} \lambda_{i}\left(\sum_{j=1}^{n} \overline{r_{j}}\left(b_{i} \mid b_{j}\right)\right) .
\end{aligned}
$$

Since $\left(b_{i} \mid b_{j}\right)=\delta_{i j}$,

$$
\begin{aligned}
\sum_{i=1}^{n} r_{i} \lambda_{i}\left(\sum_{j=1}^{n} \overline{r_{j}}\left(b_{i} \mid b_{j}\right)\right) & =\sum_{i=1}^{n} r_{i} \overline{r_{i}} \lambda_{i}\left(b_{i} \mid b_{i}\right) \\
& =\sum_{i=1}^{n} r_{i} \overline{r_{i}} \lambda_{i}
\end{aligned}
$$

which is greater than or equal to zero since $r_{i} \overline{r_{i}} \geq 0$ and $\lambda_{i} \geq 0$ for all $1 \leq i \leq n$. Thus T is positive.

For the other direction: Since T is hermitian, all eigenvalues are real. Suppose that $T v=\lambda v$ and $v \neq 0$. Then $\lambda(v \mid v)=$ $(T v \mid v) \geq 0$. Since $v \neq 0,(v \mid v) \neq 0$. Thus $\lambda \geq 0$.
(b) Again by korollar 4 vorlesung $23, T$ is hermitian. Take nonzero $x \in V$ and suppose that $r_{1}, \ldots, r_{n} \in \mathbb{C}$ are such that $x=$ $\sum_{i=1}^{n} r_{i} b_{i}$. Thus

$$
(T x, x)=\sum_{i=1}^{n} r_{i} \overline{r_{i}} \lambda_{i}
$$

Since x is non-zero and b_{1}, \ldots, b_{n} is a basis for V, at $r_{i} \neq 0$ for some $1 \leq i \leq n$. Thus $r_{i} \overline{r_{i}}>0$ for some $1 \leq i \leq n$. Thus $\lambda_{i} r_{i} \bar{r}_{i}>0$. Thus $(T x \mid x)>0$.

For the other direction: Since T is hermitian, all eigenvalues are real. Suppose that $T v=\lambda v$ and $v \neq 0$. Then $\lambda(v, v)=$ $(T v, v)>0$. Since $v \neq 0,(v \mid v) \neq 0$. Thus $\lambda>0$.
(c) This statement holds more generally. Let V be a finite dimensional vector space over a field K. Since V is finite dimensional, T is invertible if and only if $\operatorname{ker} T=\{0\}$ if and only if for all $v \in V, T v=0$ implies $v=0$ if and only if zero is not an eigenvalue of T.
(d) Suppose that T is idempotent $v \in V$ is non-zero and that $T v=$ λv. Then $T^{2} v=\lambda^{2} v$ and $\lambda v=T v=T^{2} v$. Thus $\lambda^{2} v=\lambda v$. So $\left(\lambda^{2}-\lambda\right) v=0$. Thus $\lambda^{2}-\lambda=0$. So $\lambda(\lambda-1)=0$. Thus $\lambda=0$ or $\lambda=1$.

Suppose T is a normal operator and all eigenvalues of T are either zero or one. If $T b_{i}=0$ then $T^{2} b_{i}=0$ and if $T b_{i}=b_{i}$ then $T^{2} b_{i}=b_{i}$. Thus, for all $1 \leq i \leq n, T b_{i}=T^{2} b_{i}$. Thus, for all $1 \leq i \leq n,\left(T-T^{2}\right) b_{i}=0$. So $T-T^{2}=0$, since $T-T^{2}$ is linear and a linear map which is zero on a basis is zero.

Question 3:

(a) Let V be a complex inner product space. Suppose T is normal. Let

$$
T_{1}:=\frac{T+T^{*}}{2}
$$

and

$$
T_{2}:=\frac{i T^{*}-i T}{2}
$$

Then

$$
T_{1}^{*}=\frac{\left(T+T^{*}\right)^{*}}{2}=\frac{T^{*}+T}{2}=T_{1}
$$

and

$$
T_{2}^{*}=\frac{\left(i T^{*}-i T\right)^{*}}{2}=\frac{-i T+i T^{*}}{2}=T_{2}
$$

Since $T T^{*}=T^{*} T$,

$$
\begin{aligned}
T_{1} T_{2} & =\left(\frac{T+T^{*}}{2}\right)\left(\frac{i T^{*}-i T}{2}\right) \\
& =\frac{i T T^{*}-i T T+i T^{*} T^{*}-i T^{*} T}{4} \\
& =\frac{i T^{*} T-i T T+i T^{*} T^{*}-i T T^{*}}{4} \\
& =\left(\frac{i T^{*}-i T}{2}\right)\left(\frac{T+T^{*}}{2}\right) \\
& =T_{2} T_{1} .
\end{aligned}
$$

Suppose $T=T_{1}+i T_{2}, T_{1}, T_{2}$ are hermitian and $T_{1} T_{2}=T_{2} T_{1}$. Then $T^{*}=T_{1}^{*}-i T_{2}^{*}$ and since T_{1}, T_{2} are hermitian $T_{1}^{*}-i T_{2}^{*}=$ $T_{1}-i T_{2}$. A simple computation now show that $T T^{*}=T^{*} T$.
(b) Example 1: Let T have matrix representation

$$
\left(\begin{array}{ll}
i & 0 \\
0 & 2
\end{array}\right)
$$

with respect to an orthonormal basis \mathcal{B}. Then

$$
\left[T^{*}\right]_{\mathcal{B}}=\left(\begin{array}{cc}
-i & 0 \\
0 & 2
\end{array}\right)
$$

Since $[T]_{\mathcal{B}} \neq\left[T^{*}\right]_{\mathcal{B}}, T$ is not hermitian. Since $[T]_{\mathcal{B}} \neq\left[-T^{*}\right]_{\mathcal{B}}$, T is not skew-hermitian. Since

$$
\left[T T^{*}\right]_{\mathcal{B}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right)
$$

T is not unitary.
Example 2: Let $T_{1}=I$ and $T_{2}=I$. Then $T=T_{1}+i T_{2}$ is normal and $T^{*}=T_{1}-i T_{2}$. So $T \neq T^{*}, T^{*} \neq-T$ and $T T^{*}=2$.

Question 4: Since T is normal, there exists an orthonormal basis \mathcal{B} of V such that

$$
[T]_{\mathcal{B}}=\left(\begin{array}{ccccc}
\alpha_{1} & 0 & & & \\
0 & \alpha_{2} & & & \\
& & \ddots & & \\
& & & \alpha_{n-1} & 0 \\
& & & 0 & \alpha_{n}
\end{array}\right)
$$

for some $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$.
Thus

$$
\left[T^{*}\right]_{\mathcal{B}}=\left(\begin{array}{ccccc}
\overline{\alpha_{1}} & 0 & & & \\
0 & \overline{\alpha_{2}} & & & \\
& & \ddots & & \\
& & & \overline{\alpha_{n-1}} & 0 \\
& & & 0 & \overline{\alpha_{n}}
\end{array}\right)
$$

Note that $\alpha_{i}=\alpha_{j}$ implies $\overline{\alpha_{i}}=\overline{\alpha_{j}}$. Thus, using the Lagrange interpolation formula, there exists a polynomial $f \in \mathbb{C}[x]$ such that

$$
f\left(\alpha_{i}\right)=\overline{\alpha_{i}}
$$

for all $1 \leq i \leq n$.

Hence
$f\left([T]_{\mathcal{B}}\right)=\left(\begin{array}{cccccc}f\left(\alpha_{1}\right) & 0 & & & \\ 0 & f\left(\alpha_{2}\right) & & & \\ & & \ddots & & \\ & & & f\left(\alpha_{n-1}\right) & 0 \\ & & & 0 & f\left(\alpha_{n}\right)\end{array}\right)=\left(\begin{array}{ccccc}\overline{\alpha_{1}} & 0 & & & \\ 0 & \overline{\alpha_{2}} & & & \\ & & \ddots & & \\ & & & \overline{\alpha_{n-1}} & 0 \\ & & & 0 & \overline{\alpha_{n}}\end{array}\right)=\left[T^{*}\right]_{\mathcal{B}}$.
So $[f(T)]_{\mathcal{B}}=f\left([T]_{\mathcal{B}}\right)=\left[T^{*}\right]_{\mathcal{B}}$. So $f(T)=T^{*}$.

