Übungen zur Linearen Algebra 1

- **Aufgabe 1**: Entscheiden Sie (mit Beweis!) die folgenden Aussagen. Achten Sie auf die Form des Beweises machen Sie insbesondere deutlich, was Voraussetzung, Behauptung und Folgerung ist. Wie üblich bezeichnet K einen Körper, $Mat_{m\times n}(K)$ den Vektorraum der $m\times n$ -Matrizen über K, $Fkt(\mathbb{R},\mathbb{R})$ den \mathbb{R} -Vektorraum der Funktionen von \mathbb{R} nach \mathbb{R} .
- a) Sei INV_n die Menge der invertierbaren $n \times n$ -Matrizen über K. Dann ist INV_n Unterraum von $Mat_{n\times n}(K)$.
- b) Sei $NINV_n$ die Menge der nicht-invertierbaren $n \times n$ -Matrizen über K. Dann ist $NINV_n$ Unterraum von $Mat_{n\times n}(K)$.
- c) Sei $A \in Mat_{n \times n}(K)$. Dann ist $\{B \in Mat_{n \times n}(K) | AB = BA\}$ Unterraum von $Mat_{n \times n}(K)$.
- d) $\{(a_1,...,a_n) \in \mathbb{R}^n | a_1 > 0\}$ ist Unterraum von \mathbb{R}^n .
- e) $\{(a_1,...,a_n) \in \mathbb{R}^n | a_1 + 3a_2 = a_3\}$ ist für $n \geq 3$ Unterraum von \mathbb{R}^n .
- f) $\{(a_1, ..., a_n) \in \mathbb{R}^n | a_2 = a_1^2\}$ ist Unterraum \mathbb{R}^n .
- g) $\{f|f(x^2)=(f(x))^2\}$ ist Unterraum von $Fkt(\mathbb{R},\mathbb{R})$.
- h) $\{f|f(-1)=0\}$ ist Unterraum von $Fkt(\mathbb{R},\mathbb{R})$.
- i) $\{f|f(-1)=1\}$ ist Unterraum von $Fkt(\mathbb{R},\mathbb{R})$.
- j) $(3, -1, 0, -1) \in \mathbb{R}^4$ ist Element von $span(\{(2, -1, 3, 2), (-1, 1, 1, -3), (1, 1, 9, -5)\}).$

Aufgabe 2:

- a) Zeigen Sie: $X_1 := \{ f : \mathbb{R} \to \mathbb{R} | f(x) = f(-x) \}$ und $X_2 := \{ f : \mathbb{R} \to \mathbb{R} | f(x) = -f(-x) \}$ sind Unterräume von $Fkt(\mathbb{R}, \mathbb{R})$.
- b) Bestimmen Sie $X_1 + X_2$ und $X_1 \cap X_2$.

Aufgabe 3: Es sei $J \subseteq Mat_{n \times n}(K)$ eine Menge mit mindestens zwei Elementen von $n \times n$ -Matrizen über einem Körper K, die unter Matrixaddition abgeschlossen ist, so dass für alle $A \in J$ und **alle** $n \times n$ -Matrizen X gilt, dass $XA \in J$ und $AX \in J$. Zeige: $J = Mat_{n \times n}(K)$.

Aufgabe 4: Es seien W_1 und W_2 Unterräume eines Vektorraumes V über einem Körper K so, dass $W_1 + W_2 = V$ und $W_1 \cap W_2 = \{0\}$. Zeigen Sie: Zu jedem $v \in V$ existieren eindeutig bestimmte $v_1 \in W_1$, $v_2 \in W_2$, so dass $v = v_1 + v_2$.

Zusatzaufgabe für Interessierte: Ist M eine Menge, $\cdot: M \times M \to M$ eine Verknüpfung auf M, so heißt

 $Z := \{x \in M \mid \forall g \in M(x \cdot g = g \cdot x)\}$ das Zentrum von (M, \cdot) .

- a) Zeigen Sie: Ist (G, \cdot) eine Gruppe und Z ihr Zentrum, so ist (Z, \cdot) eine abelsche Gruppe.
- b) Sei K ein Körper. Finden Sie das Zentrum von $(Mat_{n\times n}(K),\cdot)$.

Bei jeder Aufgabe sind bis zu 10 Punkte zu erreichen. Abgabe bis zum 06.12.2011, 12.30. Bitte werfen Sie Ihre Bearbeitungen in das Postfach Ihres Tutors im Gang F, 4. Etage.