SEMINAR: P-ADISCHE ZAHLEN

Prof. Dr. Salma KuhlmannMitarbeiter: Dr. Lorna Gregory2-stündig, Mo 11.45-13.15 Uhr, Raum M628

In the references below Serre will refer to Serre's book "A course in Arithmetic". The roman numerals refer to the chapter.

0. Topology, valuations and \mathbb{Z}_p - Lorna 29th April

In this talk we will introduce basic notions from topology and construct \mathbb{Z}_p .

1. Hensel's Lemma - Niklas Müller 6th May

In this talk we will discuss lifting zeros in $\mathbb{Z}/p^n\mathbb{Z}$ of polynomials (with coefficients in \mathbb{Z}_p) to zeros in \mathbb{Z}_p . Ref: Serre II §2

2. The multiplication group of \mathbb{Q}_p and squares in \mathbb{Q}_p - Arve Gengelbach 13th May

We will investigate the group of units of \mathbb{Z}_p , give a decomposition of \mathbb{Q}_p as a multiplicative group and investigate squares in \mathbb{Q}_p . Ref: Serre II §3

3. The Hilbert symbol I - Carmen Widera 3rd June

Let K be either \mathbb{R} or \mathbb{Q}_p . The Hilbert symbol is the function from $K^{\times} \times K^{\times}$ to $\{1, -1\}$ defined as follows:

 $(a,b) := \begin{cases} 1, & \text{if the equations } z^2 = ax^2 + by^2 \text{ has a non-trivial solution in } K^3; \\ -1, & \text{Otherwise.} \end{cases}$

We investigate the basic properties of this symbol.

Ref: Serre III §1

Knowledge of the Legendre Symbol/quadratic reciprocity will be required.

4. The Hilbert symbol II - Magdalena Körber 10th June

We prove the product formula for Hilbert symbols, show that \mathbb{Q} is dense in $\prod_{p \in S} \mathbb{Q}_p$ for any finite set of primes S and use Dirichlet's theorem to show the existence of rational numbers with particular Hilbert symbols in \mathbb{Q}_p .

Ref: Serre III §2

Knowledge of the Legendre Symbol/quadratic reciprocity will be required.

5. Quadratic forms I - Charu Goel 17th June

We review basic notions for quadratic forms over fields. Ref: Serre IV $\S1$

6. Quadratic forms II - 24th June We study quadratic forms over \mathbb{Q}_p . Ref: Serre IV §2

7. Hasse-Minkowski - 1st July

We prove that a quadratic form with coefficients in \mathbb{Q} has a non-trivial zero in \mathbb{Q} if and only if it has a non-trivial zero in \mathbb{R} and in \mathbb{Q}_p for all primes p.

Ref: Serre IV $\S{3}$