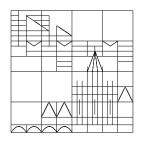
Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. A. Prestel WS 2008/2009



ALGEBRAISCHE GEOMETRIE

8. Übungsblatt

Abgabe am Freitag, den 19. Dezember 2008 in der Vorlesung

8.1. Zeigen Sie, dass $X := \mathbb{A}^2 \setminus \{0\}$ nicht isomorph zu einer affinen Varietät ist.

Lösung. Wir können dies z.B. zeigen, indem wir uns den Ring der globalen regulären Funktionen anschauen $\mathcal{O}_X(X)$.

Zunächst einmal ist klar, dass $K[X,Y] \subseteq \mathcal{O}_X X$. Sei nun $r \in \mathcal{O}_X(X) = \mathcal{O}_{\mathbb{A}^2}(\mathbb{A}^2 \setminus \{0\})$, dann lässt sich r lokal schreiben als $\frac{f_i}{g_i}$ für gewisse Polynome $f_i, g_i \in K[X,Y]$ auf endlich vielen offenen Überdeckungsmengen U_i des $\mathbb{A}^2 \setminus \{0\}$. Daraus folgt, dass die Polynome g_i höchstens den Punkt (0,0) als gemeinsame Nullstelle haben. Aus Hilberts Nullstellensatz folgt die Idealinklusion $(X,Y) \subset \sqrt{(g_1,\cdots,g_r)}$, insbesondere $X^n = \sum h_i^{(1)} g_i$ und $Y^m = \sum h_i^{(2)} g_i$. Daraus folgt, dass $rX^n = \sum h_i^{(1)} f_i = F_1 \in K[X,Y]$ als Funktion auf der offenen Teilmenge $\cap U_i$, sowie $rY^m = \sum h_i^{(2)} g_i = F_2 \in K[X,Y]$ auf der selben offenen Teilmenge (die ja ausserdem auch dicht in \mathbb{A}^2 ist). Daraus folgt (da K unendlich), dass $F_1Y^m = F_2X^n$ als Polynome. Da K[X,Y] ein faktorieller Ring ist, folgt $X^n|F_1$ und $Y^m|F_2$. Deshalb lässt sich r als Polynomfunktion zunächst auf $\cap U_i$ darstellen, dann aber aufgrund der Dichtheit auf $\mathbb{A}^2 \setminus \{0\}$. Somit haben wir gezeigt, dass sogar $\mathcal{O}_X(X) = K[X,Y]$. Genauer haben wir gezeigt, dass der Einbettungsmorphismus $\varphi: \mathbb{A}^2 \setminus \{0\} \hookrightarrow \mathbb{A}^2$ einen Isomorphismus $\varphi: K[X,Y] \cong \mathcal{O}_{\mathbb{A}^2}(A^2) \to \mathcal{O}_{\mathbb{A}\setminus\{0\}}(\mathbb{A}) \setminus \{0\}$) induziert. Wäre $\mathbb{A} \setminus \{0\}$ eine affine Varietäten gilt $\varphi: V \to W$ ist Isomorphismus genau dann wenn $\varphi^*: \mathcal{O}_W(W) \to \mathcal{O}_V(V)$ ist ein Isomorphismus). Dies ist aber offensichtlich nicht der Fall.

8.2. Bezeichne H_i die Hyperebene des \mathbb{P}^n gegeben durch $x_i = 0$. Zeigen Sie für $i \neq j$ und $n \geq 2$, dass $\mathcal{O}_{\mathbb{P}^n}(\mathbb{P}^n \setminus (H_i \cap H_j))$ nur aus den konstanten Funktionen besteht.

Lösung. Seien U_0, \ldots, U_{n+1} die kanonische affine Überdeckung des \mathcal{P}^n , d.h. $U_k = \mathcal{P}^n \setminus H_k$. Wir haben Isomprphismen $\varphi_k : U_k \to \mathcal{A}^n$ gegeben durch dehomogenisieren in der k-ten Komponente. Dies liefert eine offene Überdeckung $\tilde{U}_k := \mathbb{P}^n \setminus (H_i \cap H_j) \cap U_k = \tilde{U}_k := U_k \setminus (H_i \cap H_j)$ des $\mathbb{P}^n(\mathbb{P}^n \setminus (H_i \cap H_j))$. Somit ist $\varphi_k(\tilde{U}_k) = \mathbb{A}^n \setminus E_k$, wobei E_k eine n-2-dimensionale (bitte intuitiv verstehen!!!!) Koordinatenebene E_k im \mathbb{A}^n ist falls $k \neq i, j$, und $E_k = \emptyset$ falls k = i oder k = j. Sei r eine reguläre Funktion auf $\mathcal{O}_{\mathbb{P}^n}(\mathbb{P}^n \setminus (H_i \cap H_j))$. Dann sind auch $r|_{\tilde{U}_k}$ regulär, und somit auch $r \circ \varphi_k^{-1}|_{\mathbb{A}^n \setminus E_k}$ regulär auf $\mathbb{A}^n \setminus E_k$. Wir zeigen nachher, dass reguläre Funktionen

auf $\mathbb{A}^n \setminus E_k$ schon Polynome sein müssen. Dann aber können wir $r|_{\tilde{U}_k} \circ \varphi_k^{-1}|_{\mathbb{A}^n \setminus E_k}$ zu einer regulären Funktion auf \mathbb{A}^n fortsetzen, und mit φ zurückziehen auf eine reguläre Funktion r'_k von U_k , welche auf \tilde{U}_k mit $r|_{\tilde{U}_k}$ übereinstimmt. Dann gibt es eine reguläre Funktion r' auf \mathbb{P}^n , sobald wir gezeigt haben, dass die r'_k auf den entsprechenden Schnitten übereinstimmen (Garbeneigenschaft!!). Sei also $\ell \neq k$ und betrachte r'_ℓ und r'_k auf $U_k \cap U_\ell$. Dort müssen sie aber über einstimmen, da sie ja nach Konstruktion mit r auf der dichten Teilmenge $\tilde{U}_\ell \cap \tilde{U}_k$ übereinstimmen. Wir wissen, dass r' als global reguläre Funktion konstant sein muss, andererseits stimmt nach Konstruktion r' mit r auf $\mathbb{P}^n \setminus (H_i \cap H_j)$ überein.

Bleibt also noch nachzutragen, dass die regulären Funktionen auf $\mathbb{A}^n \setminus E_k$ bereits Polynomfunktionen sind. Sei also $E_k \neq \emptyset$, also $k \neq i, j$. Wenn wir die Elemente im \mathbb{A}^n passend indizieren $((x_0,...,x_{k-1},x_{k+1},...,x_n))$, so ist E_k durch die Gleichung $x_i = 0$ und $x_j = 0$ definiert. Sei r eine reguläre Funktion auf $\mathbb{A}^n \setminus E_k$. Sei U_ℓ dazu eine endliche offene Überdeckung und $\frac{f_\ell}{g_\ell}$ entsprechend lokale Darstellungen. Da die g_ℓ gemeinsame Nullstellen höchstens in E_k haben können, ist das Verschwindungsideal (X_i, X_j) von E_k in $K[X_0, ..., X_{k-1}, X_{k+1}, ..., X_n]$ enthalten in $\sqrt{(g_\ell)_\ell}$, d.h. $X_i^n \in ((g_\ell)_\ell)$ und $X_j^m \in ((g_\ell)_\ell)$. Also $X_i^n = h_1^{(i)}g_1 + \cdots + h_s^{(i)}g_s$ und $X_j^n = h_1^{(j)}g_1 + \cdots + h_s^{(j)}g_s$. Multiplizieren wir r mit beiden Gleichungen, so erhalten wir als Funktionen auf dem Schnitt über alle U_ℓ , dass $X_i^n r = h_1^{(i)}f_1 + \cdots + h_s^{(i)}f_s = \tilde{f}_1$ und $X_j^m r = h_1^{(j)}f_1 + \cdots + h_s^{(j)}f_s = \tilde{f}_2$. Also gilt $\tilde{f}_1X_j^m = \tilde{f}_2X_i^n$ (erstmal nur als Funktionen auf dem Schnitt der U_ℓ , aber da der dicht in \mathbb{A}^n ist, im Endeffekt dann auch im Polynomring). So sieht man, dass $X_j^m | \tilde{f}_2$, also dass r als Polynom geschrieben werden kann (lokal, aber dann auch global, weil lokaler Teil ist dicht).

- **8.3.** Sei Y eine Prävarietät mit einer der folgenden beiden Eigenschaften:
 - 1.) Für jede Prävarietät X und jeden Morphismus $\varphi: X \to Y$ ist der Graph von φ abgeschlossen in $X \times Y$,
 - 2.) Für jede Prävarietät X und jedes Paar $\varphi, \psi: X \to Y$ von auf einer dichten Teilmenge von X übereinstimmenden Morphismen ist $\varphi = \psi$.

Zeigen Sie, dass Y eine Varietät ist.

Lösung. Wir kümmern uns um die zweite Voraussetzung, weil die erste sehr einfach geht: Wir betrachten als Prävarietät X den Abschluss der Diagonale $\Delta(Y)$ in $Y \times Y$. Als φ setzen wir die Projektion π_1 eingeschränkt auf $\overline{\Delta(Y)}$, sowie als ψ die Einschränkung der anderen Projektion π_2 . Wir sind fertig, sobal wir gezeigt haben, dass die Projektionen Morphismen von Prävarietäten auf $\overline{\Delta(Y)}$ sind, denn da $\Delta(Y)$ dicht in $\overline{\Delta(Y)}$ ist und $\varphi = \psi$ auf $\Delta(Y)$ ist, folgt sofort, dass $\overline{\Delta(Y)} = \Delta(Y)$.

Um zu zeigen, dass π_i ein Morphismus ist, muss man nur noch die Garbenverträglichkeit prüfen, denn Stetigkeit ist klar. Sei nun U eine offene Teilmenge in Y und f eine reguläre Funktion darauf. Wir wissen bereits,dass $f \circ \pi_i$ eine reguläre Funktion auf $\pi_i^{-1}(U) \subset Y \times Y$ ist. Dann ist aber auch $f \circ \pi_i$ regulär auf $\pi_i^{-1}(U) \cap \overline{\Delta(Y)}$.

8.4. Sei $\varphi: X \to Y$ ein Morphismus von Varietäten. Beweisen Sie, dass die Projektion $\pi_1: X \times Y \to X$ einen Isomorphismus zwischen dem Graphen $\Gamma_\varphi \subseteq X \times Y$ und X induziert.