
FUNCTION FIELDS IN ONE VARIABLE
WITH PYTHAGORAS NUMBER TWO

DAVID GRIMM

Abstract. We consider function fields in one variable that do not contain√
−1 and investigate necessary conditions for them to have Pythagoras number

two. For function fields of genus zero, we show that the field of constants needs

to be hereditarily pythagorean. We apply refined observations on the splitting

behavior of quadrics to obtain this result. Using a more technical approach,
we can extend our result to a slightly larger class of function fields.

1. Introduction

Let K be a field. We denote by K× the multiplicative group, by K×2 the subgroup
of nonzero squares in K×, and by

∑
K2 the subgroup of nonzero sums of squares

in K. For x ∈ K we set

`K(x) = inf
{
n ∈ N | x = x2

1 + · · ·+ x2
n for some x1, . . . , xn ∈ K

}
∈ N ∪ {∞}

and call this the length of x in K. Two interesting field invariants related to
sums of squares in K are the level s(K) = `K(−1) and the Pythagoras number
p(K) = sup

{
`K(x) | x ∈

∑
K2
}

. For general information on these two invariants
we refer to [9, Chap. 3] and [7, Chap. XI].
Recall that K admits a field ordering if and only if s(K) = ∞ [7, Chap. VIII,
(1.10)]; in this case we say that K is real, otherwise nonreal. The field K is said to
be pythagorean if

∑
K2 = K×2, i.e. if p(K) = 1.

Let K be a real base field and F/K a function field. Pfister [9, (6.3.4)] showed that,
if K is real closed, then p(F ) ≤ 2n where n is the transcendence degree of F/K.
The challenge to find weaker conditions on the base field K such that for arbitrary
extensions F/K one has a bound on p(F ) in terms of p(K) and the transcendence
degree arises naturally. Note that it is not known whether p(K) <∞ implies that
p(K(X)) <∞.
We say that a field is hereditarily pythagorean if it is real and if all its finite real
field extensions are pythagorean. The following result [2, Chap. III, Thm. 4] is in
a certain sense an improvement of Pfister’s result for the special case of rational
function fields in one variable.

1.1. Theorem (Becker). Let K be a real field. Then K is hereditarily pythagorean
if and only if p(K(X)) = 2.

Note that the hypothesis of K being real can be weakened to
√
−1 /∈ K, since if K

were nonreal and s(K) ≥ 2, the element −1 +X2 would be a sum of three but not
of two squares in K(X), by [7, IX.2.1].
In [12], one implication of (1.1) was generalized to function fields F of smooth conics
over K, i.e. it was shown that if K is hereditarily pythagorean then p(F ) = 2 if F
is real or if K is uniquely ordered, and p(F ) = 3 otherwise.
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The other implication of (1.1) will be generalized in (4.2). We show for function
fields F of smooth conics over K that p(F ) = 2 implies that

√
−1 ∈ K or that

K is hereditarily pythagorean, using our observation (2.6) on splitting behavior of
varieties like conics.
In fact, using more involved methods, we later generalize this in (5.6) further to
function fields F/K of integral affine plane curves 1 = aXn+ bY m where a, b ∈ K×
and n,m ∈ N are not divisible by char(K). We say that such function fields are of
generalized Fermat type. Their genus is 1

2 ((n− 1)(m− 1) + 1− gcd(n,m)). In the
literature, the function fields in the case n = m are called of Fermat type, see [10,
VI.3.4]. The function fields of smooth conics correspond to the case n = m = 2 in
the case of char(K) 6= 2.
The fact that function fields of generalized Fermat type can have arbitrary genus
is evidence that the following question raised in [1, 4.4] has a positive answer.

1.2. Question. Let F/K be a function field in one variable not containing
√
−1.

Then p(F ) = 2 only if the field of constants of F is hereditarily pythagorean.

The methods we apply in this work, however, seem not sufficient to decide this
question in its full generality. The central idea to prove (4.2 & 5.6), is to show that
if K is not hereditarily pythagorean, then it allows a finite nonreal extension M in
which −1 is not a square, and which is the residue field of a smooth point on the
curve. Then it follows with (3.2) that p(F ) ≥ 3.

My initial proof of existence of such extension fields M/K was rather technical.
Jan Van Geel and Adrian Wadsworth gave me ideas how to make this much more
conceptual (at least in the case of conics). The following section developed out
of discussions with them. Its main result is the observation that a geomertrically
unirational K-variety that is split by a finite separable extension M/K, contains
a regular point whose residue field is M . Adrian Wadsworth also simplified many
proofs in the following section, in particular getting rid of Galois theoretic argu-
ments where they were not needed.

2. Splitting fields of geometrically unirational varieties

We prove in (2.6) that every finite separable field extension of an infinite field K
that splits a geometrically unirational K-prevariety, is the residue field of a point
on the variety. In the case of a smooth conic over an infinite field K, this result
yields that, if a finite separable extension L/K is the residue field of a point on the
conic, then so is every separable finite field extension of L.

Let K be a field and V a K-vector space of dimension n <∞. We call a mapping
V to K a K-polynomial function if it is given by evaluating a K-polynomial in n
variables, after identifying V with Kn via choosing any basis for V . Endowing K
with the cofinite topology, that is, the topology where the closed subsets are the
finite sets and the set K, we define the K-topology on V to be the initial topology
of the K-polynomial functions.
A K-rational function on V is a partially defined map V 99K K that is defined on
a nonempty K-open subset of V and that is given by a fraction of K-polynomial
functions.
If V,W are two finite dimensional K-vector spaces, we call a map ϕ : V → W a
K-polynomial map if, for each basis element wi of a fixed K-basis w1, . . . , wm of
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W , the function πi ◦ ϕ : V → K is a polynomial function, where πi : W −→ K is
the projection

(α1w1 + · · ·+ αiwi + · · ·+ αmwm) 7→ αi.

More generally, a partially defined map ϕ : V 99K W map defined on a nonempty
K-open subset of V , is called a K-rational map if the corresponding ϕ ◦ πwi

are
K-rational functions.
Note that if V ′ is a K-linear subspace of V and ϕ is a K-rational map on V that
is defined on some P ∈ V ′, then ϕ|V ′ is a K-rational map.

2.1. Lemma. Let L/K be a finite field extension. For every f ∈ L(t) there exist
g ∈ L[t] and h ∈ K[t] such that f = g

h .

Proof. Choosing α1, . . . , αn ∈ L such that L = K[α1, . . . , αn], we have that L(t) =
K[α1, . . . , αn](t) = K(t)[α1, . . . , αn]. �

2.2. Proposition. Let L/K be a finite field extension. Then

mult : L× L→ L, (x, y) 7→ xy

is a K-morphism and

inv : L 99K L, x 7→ 1
x

is a K-rational map.

Proof. We identify L with a K-subalgebra of EndK(L), via the algebra homomor-
phism that asigns to a ∈ L the left-multiplication map x 7→ ax. The multiplication
on EndK(L) is a K-polynomial map

EndK(L)× EndK(L)→ EndK(L),

as can be seen by identifying EndK(L) with a matrix algebra over K. Hence,
its restriction mult : L× L → L to L is also a K-polynomial map. The nonempty
subset of invertible elements of EndK(L) is a K-open subset, as it can be defined by
the nonvanishing of the determinant function, which is a K-polynomial function.
Finally, the inversion map is a K-rational map on EndK(L) by Cramer’s rule,
defined on the invertible elements. Hence, its restriction inv : L 99K L to L is also
a K-polynomial map. �

2.3. Lemma. Let L/K be a finite extension and f ∈ L(t). Then the L-rational
map f : L 99K L is a K-rational map, i.e. after fixing a K-basis of L the map is
given by [L : K] fractions of polynomials in [L : K] variables over K.

Proof. First, we show this in the case f ∈ L[t]. Write s = [L : K]. Let us fix an
arbitrary K-basis (`1, . . . , `s) of L. Write f = f0+f1t+· · ·+fdtd with f0, . . . , fd ∈ L
and d ∈ N. For z ∈ L write z = r1`1 + · · ·+ rs`s with r1, . . . rs ∈ K. One has

f(z) =f(r1`1 + · · ·+ rs`s)

=
d∑
i=0

fi · (r1`1 + · · ·+ rs`s)i

=
d∑
i=0

∑
µ1+···+µs=i

(
i!

µ1! · · ·µs!

)
`µ1
1 · · · `µs

s fi rµ1
1 · · · rµs

s .
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We can consider this as a polynomial function over L in s variables evaluated at
(r1, . . . , rs). We can choose f̃1, . . . , f̃s ∈ K[X1, . . . , Xs] such that

f(r1`1 + · · ·+ rs`s) = f̃1(r1, . . . , rs)`1 + · · ·+ f̃s(r1, . . . , rs)`s.

Hence the map f : L→ L is given by the polynomials f̃1, . . . , f̃s over K.
Now assume that f ∈ L(t). Let g, h ∈ L[t] be relatively prime such that f = g

h .
Then f : L 99K L is defined on L \ h−1({0}) and factors into

f : L
(f,g)−→ L× L id×inv

99K L× L mult
99K L,

where (g, h) : L→ L×L, x 7→ (g(x), h(x)) and id× inv : L×L 99K L×L, (x, y) 7→
(x, y−1). Since it is a composition of K-rational maps, we conclude that f is a
K-rational map. �

2.4. Proposition. Let K be an infinite field and L/K a proper finite field extension
that is not purely inseparable. Let f ∈ L(t) be a rational function. If f(z) ∈ K for
every z ∈ L where f is defined, then f ∈ K.

Proof. First, we show that f ∈ K(t). By (2.1) there exists g ∈ L[t] and h ∈ K[t]
such that f = g

h .
Write g = (g0, g1, . . . , gd) · (1, t, . . . , td)

t
with g0, . . . , gd ∈ L for some d ∈ N. Eval-

uation of this polynomial in distinct elements α0, . . . , αd ∈ K \ h−1({0}) yields a
system of linear equations over k for the indeterminants g0, . . . , gd.

1 α0 · · · αd0
1 α1 · · · αd1
...

...
...

1 αd · · · αdd

 ·


g0
g1
...
gd

 =


f(α0)
f(α1)

...
f(αd)

 ∈ Kd+1

The Vandermonde matrix (αji )0≤i,j≤d is invertible and defined over K. Therefore
g0, . . . , gd ∈ K.
Now we are going to show that g

h ∈ K. Let β ∈ L be a separable element over K and
let σ be an automorphism of Ksep/K such that σ(β) 6= β. For any (r0, r1) ∈ K×K
we have g(r0 + r1β)σ(h(r0 + r1β)) = σ(g(r0 + r1β))h(r0 + r1β) by the assumption
that f(z) ∈ K for all z ∈ L \ h−1({0}). Thus g(r0 + r1β)h(r0 + r1σ(β)) = g(r0 +
r1σ(β))h(r0 + r1β). Since K ×K is Zariski dense in Kalg ×Kalg, the polynomial
identity g(X + Y β)h(X + Y σ(β)) = g(X + Y σ(β))h(X + Y β) follows. We obtain
that g(X)h(Y ) = g(Y )h(X) and consequently that f = g

h ∈ K, by showing that
X+Y σ(β) and X+Y β are algebraically independent over K. Assume there exists
a polynomial P ∈ K[T1, T2] over K such that P (X +Y β,X +Y σ(β)) = 0. For any
a, b ∈ Kalg there are x, y ∈ Kalg such that(

a
b

)
=
(

1 β
1 σ(β)

)(
x
y

)
as the determinant of the 2 × 2 matrix does not vanish. Hence P (a, b) = 0 for all
(a, b) ∈ Kalg ×Kalg and thus P (T1, T2) = 0. �

2.5. Proposition. Let L/K be a finite separable extension of infinite fields. Let
f ∈ L(t) be a nonconstant rational function. Let W ⊂ L be any nonempty K-open
subset on which f is defined. Then there exists α ∈W such that f(α) is a primitive
element of L/K.
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Proof. By (2.3), f : L 99K L defines a K-rational map. Note that the K-open
subset W is dense in L, and thus irreducible with respect to its subspace topology.
As f is continuous with respect to the subspace topology, the topological subspace
f(W ) ⊂ L is irreducible. Assume that f(α) is not a primitive element of L/K for
any α ∈ W . Then the image of f lies in the finite union of the maximal proper
subfields of L containing K, i.e. in the union of finitely many vector subspaces of
L. None of those maximal proper subfields is contained in the union of the others.
Thus the image of f is contained in one maximal proper subfield F of L containing
K, as otherwise, we could write the irreducible image of f as the nontrivial finite
union of the relatively closed subsets consisting of the intersections of the image of
f with each of the maximal proper subfields.
By (2.4), we obtain the contradiction that f ∈ F , i.e. that f is a constant function.

�

2.6. Theorem. Let L/K be a separable finite extension of infinite field and V a
K-variety such that VL is unirational. Then there exists a nonsingular point P ∈ V
such that K(P ) = L.

Proof. We can assume that V is affine. Let V reg denote the K-open quasiaffine
subprevariety of V that consists of the nonsingular points of V ([4, I.5.3.]). Then
V reg
L is unirational. Let

ϕ : AnL 99KV
reg
L

(t1, . . . , tn) 7→(ϕ1(t1, . . . , tn), . . . , ϕm(t1, . . . , tn))

be a dominant L-rational map. Let U ⊆ AnL an L-open subset on which ϕ is defined.
We can assume that ϕ1 is nonconstant. As Ln ∩U is dense in An, we can find two
L-rational points P1, P2 ∈ U , such that ϕ1(P1) 6= ϕ1(P2). Let ρ : A1

L → AnL denote
an morphism whose image contains P1, P2. Then ϕ1◦ρ : A1

L 99K A1
L is an L-rational

function, i.e. given by a fraction of two polynomials in one variable over L. Thus it
restricts to a K-rational function L 99K L. Let W ⊂ L denote a nonempty K-open
subset of L such that W ⊂ ρ−1(U). By (2.5) then there exists α ∈ W such that
ϕ1(ρ(α)) is a primitive element for L/K. Thus L = K(ϕ1(ρ(α)), . . . , ϕ1(ρ(α))). �

2.7. Corollary. Let L/K be a finite separable extension of infinite fields, and V a
quadric over K. Then the following are equivalent:

i) VL is rational.
ii) VL contains a rational point.

iii) There exists a K-valuation v on K(V ) with residue field κv ↪→ L.
iv) There exists a K-valuation v on K(V ) with residue field κv ∼= L.

Proof. The equivalences (i) ⇔ (ii) ⇔ (iii) are long known, even without the as-
sumption that K is infinite and without placing any restriction on the extension
L/K, see e.g. [6, 3.3]. (iv) ⇒ (iii) is obvious, and (i) ⇒ (iv) follows from (2.6)
as, for any regular point P ∈ V , its residue field K(P ) is the residue field of a
K-valuation on K(V ). �

2.8. Remark. Note that refinement (2.7) also holds for other kind of varieties, such
as for Severi-Braur varieties.



6 DAVID GRIMM

3. valuations, smooth points and sums of squares

Before we can apply the geometric observation of the previous section to conics,
we prove a valuation theoretic result that will allow us to say something about the
Pythagoras number of the function field of a curve from knowing the level of a
nonreal residue field of one of its points.
Given a valuation v on a field K, we denote its valuation ring by Ov, its maximal
ideal by mv, its residue field by κv. We say that v is discrete if the ordered value
group v(K×) is discrete.

3.1. Proposition. Let v be a discrete valuation on K with nonreal residue field κv
of characteristic different from 2. Then p(K) > s(κv).

Proof. Let s = s(κv). Then there exist x0, . . . , xs ∈ O ×v with x̄2
0 + . . .+ x̄2

s = 0. We
may assume that v(x2

0+. . .+x2
s) /∈ 2v(K×); in fact, if v(x2

0+. . .+x2
s) ∈ 2v(K×), we

simply replace xs by (xs + t), where t ∈ K is such that v(t) is the minimal positive
element in v(K×). Hence, v(x2

0 + . . .+(xs+ t)2) = v((x2
0 + · · ·+x2

s)+(2xst+ t2)) =
v(t) /∈ 2v(K×). We claim that x2

0 + . . .+x2
s is not a sum of s squares in K. Suppose

otherwise. Then there are y1, . . . , ys ∈ K with y2
1 + . . . + y2

s = x2
0 + . . . + x2

s. We
can assume that v(y1) ≤ v(yi) for 1 ≤ i ≤ s. Denote zi = yi

y1
, then zi ∈ Ov for

2 ≤ i ≤ s. Since v(y2
1 + . . .+ y2

s) /∈ 2v(K×), it follows that v(1 + z2
2 + . . .+ z2

s) > 0.
We obtain that −1 = z2

2 + . . .+ z2
s in κv, contradicting s = s(κv). �

Let K denote a field and C a curve over K. If P ∈ C is a smooth point, then OP
is a discrete valuation ring of rank one.

3.2. Corollary. Let C be an irreducible algebraic curve over a real field K that
is not hereditarily pythagorean. Then p(K(C)) ≥ 3 if there exists a smooth point
P ∈ C such that K(P ) is nonreal and

√
−1 /∈ K(P ).

4. Function fields of conics

4.1. Remark. If C is a smooth projective conic over a field K with char(K) 6= 2, then
the conic can be assumed to be given by a homogeneous equation Z2 = aX2 + bY 2

for some a, b ∈ K×. Furthermore, given an ordering on K, one can assume that
a, b are either both positive or both negative with respect to the ordering.
A conic, like any quadric, has the property that it is rational if and only if it has a
rational point. ([7, X.4.1.])

4.2. Theorem. Let K be a field. If there exists a function field F of a smooth conic
over K with p(F ) = 2 then K is hereditarily pythagorean or

√
−1 ∈ K.

Proof. Suppose
√
−1 /∈ K, in particularly char(K) 6= 2. The conic C is given by

Z2 = aX2 + bY 2 where a, b ∈ K×. First assume that K is finite. Then every
quadratic form of dimension at least 3 over K is isotropic, hence the conic has a
rational point and thus F/K is the rational function field K(X). It follows that
−1 + X2 is a sum of 3 but not 2 squares by the second representation theorem
([7, IX.2.1.]). Suppose K is infinite and nonreal. Then at least one of the four
biquadratic extensions L = K(

√
±a,
√
±b) does not contain

√
−1 and thus p(L) ≥

s(L) ≥ 2. Let y ∈ L be such that `L(1 + y2) = 2. Then M = L(
√
−(1 + y2)) has

level 2. M/K is a separable field extension. If
√
a ∈ M , then (1 : 0 :

√
a) ∈ C

is an M -rational point. If
√
b ∈ M , then (0 : 1 :

√
b) ∈ C is an M -rational point.

If
√
−a,
√
−b ∈ M , then (

√
−b : y

√
−a
√
−(1 + y2)ab) ∈ C is an M -rational point.



FUNCTION FIELDS IN ONE VARIABLE WITH PYTHAGORAS NUMBER TWO 7

In any case, C has an M -rational point and we recall that since C is a conic, this
implies that C is M -rational. Thus C has a point P with K(P ) = M by (2.6). Since√
−1 /∈M it follows that p(F ) ≥ 3 by (3.2).

Finally, assume that K is a real field but not hereditarily pythagorean. Let L be
a finite real extension of K that is not pythagorean. F is the function field of a
smooth projective conic C over K. The conic C is given by Z2 = aX2 + bY 2 where
a, b ∈ K× such that ab is positive at a given ordering on L. This ordering extends
either to L(

√
a,
√
b) or to L(

√
−a,
√
−b). At least one of these field extensions is real

and by the Diller-Dress Theorem ([7, VIII.5.7]) not pythagorean. We can therefore
assume without loss of generality that either a, b ∈ L×2 or −a,−b ∈ L×2.
Choose y ∈ L such that 1 + y2 /∈ L×2 and consider M = L(

√
−(1 + y2)). If

a, b ∈ L×2 then (
√
a : 0 : a) is an M -rational point of C. If a, b ∈ −L×2 then

(
√
−b : y

√
−a :

√
ab
√
−(1 + y2)) is an M -rational point of C. In any case, C has an

M -rational point and thus is M -rational. By (2.6) C has a point P with K(P ) = M .
Since

√
−1 /∈M it follows that p(F ) ≥ 3 by (3.2). �

The following result on the Pythagoras number of function fields of conics over
hereditarily pythagorean base fields was obtained in [12, Thm.1, Thm. 2 & Thm.
3].

4.3. Theorem (Tikhonov, Yanchevskĭı). Let K be a hereditarily pythagorean field
and let F be the function field of a smooth conic over K. Then p(F ) = 2 if F is
real. If F is nonreal, then 2 ≤ p(F ) ≤ 3 and p(F ) = 2 if and only if K is euclidean1.

A field K is called euclidean if it is pythagorean and admits a unique ordering (i.e.
if the set of squares are an ordering). It is called hereditarily euclidean if every finite
real field extension of K is euclidean. One can show that a field that is hereditarily
pythagorean and euclidean is already hereditarily euclidean. Together with our
result (4.2) this yields the following two straight forward generalizations of (1.1).

4.4. Corollary. Let K be a field with
√
−1 /∈ k. Then the following are equivalent.

(i) There exists a smooth conic C/K with p(K(C)) = 2.
(ii) K is hereditarily pythagorean.

(iii) K is real and for every conic C/K, we have p(K(C)) = 2 if K(C) is real.

Proof. (i) ⇒ (ii) follows from (4.2), (ii) ⇒ (iii) is (4.3) and for (iii) ⇒ (i) we
simply choose a split irreducible conic C/K. Then K(C) is the rational function
field over K and thus K(C) is real. �

The condition in (4.3) when the nonreal function fields of conics have Pythago-
ras numer 2 was described in [12] by |Br(K(

√
−1)/K)| = 2. Note that if K is

pythagorean, then this condition is equivalent to K being euclidean, as the quater-
nion algebras (−1, a)K for a ∈ K× are exactly the ones that split over K(

√
−1)

and there is a unique nonsplit such quaternion algebra if and only if K is euclidean.
And since K was assumed to be hereditarily pythagorean, this is thus equivalent
to the fact that K is hereditarily euclidean.
This part of the result has been strengthened in [1, (4.5)] where it was shown that
if the Pythagoras number of the function field of Y 2 = −(X2 + 1) over some field
K is 2, then either

√
−1 ∈ K or K is hereditarily euclidean, and in [1, (4.6)] it

was observed as a consequence of a result of Elman and Wadsworth, that if K is

1in [12], the euclidean property is stated in a not immediately obvious way.
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hereditarily euclidean then in fact every function field in one variable over K has
Pythagoras number two. This yields the following characterization of hereditarily
euclidean fields.

4.5. Corollary. Let K be a field with
√
−1 /∈ K. Then the following are equivalent.

(i) There is a nonreal function field F of a smooth conic over K with p(F ) = 2.
(ii) K is hereditarily euclidean.

(iii) p(F ) = 2 for every function field F/K in one variable.

Proof. (i)⇒ (ii) follows again from (4.2) together with (4.3) which says that p(F ) =
3 for all nonreal function fields of smooth conics over a hereditarily pythagorean
field that is not euclidean.
(ii) ⇒ (iii) was observed in [1, (4.6)], and for (iii) ⇒ (i) it is enough to see that
Y 2 = −(X2 + 1) defines a smooth conic C such that K(C) is nonreal. �

5. Function fields of generalized Fermat Type

In the following, we extend (4.2) and show for function fields F/K of generalized
Fermat type, that p(F ) = 2 implies that K is hereditarily pythagorean or that√
−1 ∈ K. As in the proof for the special case of conics, the idea is to assume

that either K is nonreal and
√
−1 /∈ K, or that there exists a finite real extension

of K that is not pythagorean, and to use these assumptions to construct a finite
nonreal field extension M/K not containing

√
−1, that is the residue field of a

point on an underlying regular curve. Unlike in the situation of a conic, it is not
enough to make sure in the construction of M that the underlying curve contains
an M -rational point, since this does not automatically imply that M is the residue
residue field of some (possibly different) point on the curve.

5.1. Proposition. Let K be an infinite field and L/K be a finite separable extension
such that L is not pythagorean. Then there exists ξ ∈ L such that L = K(ξ2) and
ξ2 + 1 /∈ L×2. Moreover, there exists σ ∈

∑
L2 \ L×2 such that L = K(σ) and

σ + 1 /∈ L×2.

Proof. Fix z ∈ L with z2 + 1 /∈ L×2. For arbitrary ν ∈ L×, consider the terms
α = ν2

z2 , β = ν2 + z2, γ = (z2+1)2

ν2 + z2, δ = (z2+1)2

z2ν2 and ε = z2+1
ν2 .

These terms are rational functions in ν over L. Let G = {x ∈ L | K(x) = L}. This is
a K-Zariski open subset of L as it is the complement of the finitely many subspaces
of L that correspond to the finitely many intermediate extensions of L/K. By (2.5)
the preimage of G under any nonconstant K-rational function on L is nonempty.
Moreover it is K-open in L. As the intersection of finitely many nonempty K-open
subsets of L is nonempty, there exists ν ∈ L×, such that α, β, γ, δ, ε ∈ G.
Note that ε, 1

ε ∈
∑
L2 \ L×2. If ε + 1 /∈ L×2 we set σ = ε. Otherwise we have

1+ε
ε = 1

ε + 1 /∈ L×2 and set σ = 1
ε .

Note that α ∈ L×2 and if α+1 /∈ L×2, choose ξ = ν
z . Assume now that α+1 ∈ L×2.

Then β ∈ L×2. If β + 1 /∈ L×2 choose ξ ∈ L such that ξ2 = β. Assume now that
β + 1 ∈ L×2. Then ν2 + z2 + 1 ∈ L×2 and ν2 + z2 ∈ L×2. It follows that
(z2+1)2

ν2 + z2 + 1 /∈ L×2 since z2 + 1 /∈ L×2. Remember that δ = (z2+1)2

z2ν2 . If
δ + 1 /∈ L×2, choose ξ = z2+1

zν . Otherwise, if δ + 1 ∈ L×2, then γ ∈ L×2 and
γ + 1 /∈ L×2 and we choose ξ ∈ L such that ξ2 = γ in this last case. �

For a field K, we write ±K×2 for K×2 ∪ −K×2.
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5.2. Lemma. Let u ∈ K× \ ±K×2 and n ∈ N. Let γ ∈ Kalg be such that γn = u
and M = K(γ). Then K× ∩M×2 = K×2 ∪ uK×2.

Proof. The statement needs to be shown only for n = 2r with r ≥ 1. As −u /∈ K×2

and thus −u /∈ 4K×4, the polynomial T 2r− u is irreducible by [8, Chap. VI, (9.1)].
Write d = γ2 and L = K(d). Note that M/L is a quadratic extension. As T 2r−1− u
is the minimal polynomial of d over K, the norm of d with respect to L/K is −u.
As −u /∈ K×2, it follows that K× ∩ dL×2 = ∅. As L× ∩M×2 = L×2 ∪ dL×2, we
have that

K× ∩M×2 = K× ∩ (L×2 ∪ dL×2) = K× ∩ L×2.

The statement thus follows by induction on r. �

5.3. Corollary. Suppose −1 /∈ K×2. Let v ∈ K× \−K×2 and m ∈ N. There exists
y ∈ Kalg such that ym = v and −1 /∈ K(y)×2.

Proof. Let r ∈ N be maximal such that 2r divides m and v ∈ K×2r

. Let u ∈ K
such that u2r

= v. Set n = m
2r

If n is even then u /∈ K×2 by the maximality of r. Furthermore, we claim that
u /∈ −K×2. If r = 0 we have that u = v /∈ ±−K×2. If r > 0 then u /∈ −K×2 since
−u /∈ K×2 by the maximality of r and the fact that (−u)2

r

= v.
Let y ∈ Kalg such that yn = u and thus ym = v. In the case where n is even it
follows by (5.2) that −1 /∈ K(y)×2, since u ∈ ±K×2. If n is odd, then K(y) is an
odd degree extension of K and it follows trivially that −1 /∈ K(y)×2. �

5.4. Proposition. Let K be a field with −1 /∈ K×2. Let u ∈ K× \ ±K×2 and
v ∈ K× \ (−K×2 ∪ −uK×2). Let n,m ≥ 1. Then there exists a finite extension
M/K with −1 /∈M×2 and x, y ∈M such that M = K(x, y), xn = u and ym = v.

Proof. Fix x ∈ Kalg such that xn = u. Then −1,−v /∈ K(x)×2 by (5.2), as
−1,−v /∈ K×2 ∪ uK×2. Then by (5.3) there exists y ∈ Kalg such that ym = v and
−1 /∈M×2, where M = K(x, y). �

5.5. Corollary. Let L/K be a finite field extension such that L is real and not
pythagorean. Let a, b ∈ K such that a, b ∈ L×2 ∪ −L×2. For any two integers
n,m ≥ 1 there exists a finite extension M/L with −1 /∈ M×2 and x, y ∈ M such
that 1 = axn + bym and M = K(x, y). If moreover n or m is even, we can choose
M nonreal.

Proof. By (5.1) there exists ξ ∈ L with ξ2 + 1 ∈
∑
L2 \ L×2 and L = K(ξ2), and

further σ ∈
∑
L2 \ L×2 with L = K(σ) and σ + 1 ∈

∑
L2 \ L×2.

In the case where a, b ∈ L×2, set u = − 1
aσ and v = 1

b (1 + 1
σ ). Then −u, u /∈ L×2,

−v /∈ L×2 and −uv = 1
ab
σ+1
σ2 /∈ L×2. Moreover 1 = au+ bv.

In the case where −a,−b ∈ L×2, set u = ξ2+1
a and v = −ξ2

b . Then u,−u /∈ L×2,
−v /∈ L×2 and −uv /∈ L×2 and 1 = au+ bv.
In the case where −a, b ∈ L×2 set u = σ+1

a and v = −σ
b . Then u,−u /∈ L×2,

−v /∈ L×2 and −uv /∈ L×2 and 1 = au+ bv.
In the case where a,−b ∈ L×2 set u = −σ

a and v = σ+1
b . Then u,−u /∈ L×2,

−v /∈ L×2 and −uv /∈ L×2 and 1 = au+ bv.
In each case, by (5.4) there exist x, y ∈ Lalg such that xn = u and ym = v
and

√
−1 /∈ L(x, y). Moreover, since u ∈ L(x, y) and K(u) = L, it follows that

L(x, y) = K(x, y). Obviously 1 = ax2r

+ by2s

as 1 = au+ bv. Set M = L(x, y).
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Now suppose n or m is even. By symmetry we can assume that n is even. Then
xn = u is a square in M but also - by the choices of u in each case - a negative sum
of squares in M . Thus M is nonreal in this case. �

5.6. Theorem. Let K be field with
√
−1 /∈ K and F/K a function field of gener-

alized Fermat type. Then p(F ) = 2 only if K is hereditarily pythagorean.

Proof. The function field F/K if is the function field of a smooth affine curve
1 = aXn + bY m for some a, b ∈ K× and n,m ∈ N not divisible by char(K).
Let us first consider the case where n and m are odd. Then F is clearly an odd
degree extension of the rational function field K(X). Then p(K(X)) ≤ p(F ) ≤ 2
by Springer’s theorem [7, VII.2.7] applied to all quadratic forms 〈−1,−1, σ〉 with
σ ∈

∑
K(X)×2. Thus p(K(X)) = 2, and the claim follows from (1.1). Thus assume

that n or m are even.
We first show that K is real. Assume that K is nonreal. If −a /∈ K×2, choose
x ∈ Kalg such that xn = 1

a and
√
−1 /∈ K(x) as in (5.3). Then (x, 0) is a point of

the curve. If −b /∈ K×2 we can proceed analogous, so we consider the case where
−a,−b ∈ K×2. Choose z ∈ K such that z2 + 1 /∈ K×2. Choose again x ∈ Kalg

such that xn = z2

−a and
√
−1 /∈ K(x). Then 1

b /∈ K(x)×2 and we also find some
y ∈ Kalg such that ym = −1

b and
√
−1 /∈ K(x, y) as in (5.4). Note that P = (x, y)

is a point on C. Then p(F ) > s(K(P )) ≥ 2 by (3.2).Contradiction.
Hence K is real. Suppose there exists a finite real extension L/K that is not
pythagorean. We can assume that a, b ∈ L×2 ∪−L×2 since at least one of the four
biquadratic extensions L(

√
±a)(

√
±b) is real and nonpythagorean by the Diller-

Dress Theorem [7, VIII.5.7]. By (5.5) there exists a point P ∈ C such
√
−1 /∈ K(P )

and K(P ) is nonreal. Thus p(F̃ ) > s(K(P )) ≥ 2 by (3.2). Contradiction. �
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