Criterion of total positivity of generalized Hurwitz matrices

Mikhail Tyaglov

For a given set of real numbers $a_{0}, a_{1}, \ldots, a_{n}$, and an integer $M, 2 \leqslant M \leqslant n$, the following infinite matrix

$$
H_{M}=\left(\begin{array}{cccc}
a_{M-1} & a_{2 M-1} & a_{3 M-1} & \ldots \\
a_{M-2} & a_{2 M-2} & a_{3 M-2} & \ldots \\
\vdots & \vdots & \vdots & \\
a_{0} & a_{M} & a_{2 M} & \ldots \\
0 & a_{M-1} & a_{2 M-1} & \ldots \\
0 & a_{M-2} & a_{2 M-2} & \ldots \\
\vdots & \vdots & \vdots & \\
0 & a_{0} & a_{M} & \ldots \\
0 & 0 & a_{M-1} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is called generalized Hurwitz matrix, and for $M=2$ the matrix H_{2} is a standard infinite Hurwitz matrix. It is known [1, 5, 4, 2] that the total positivity of the matrix H_{2} is equivalent to the positivity of the leading principal minors of H_{2}. In [3] (see also [6]), there were found finitely many sufficient conditions for the matrix H_{M} to be totally positive. In this talk, we show that positivity of finitely many certain minors of the generalized Hurwitz matrix $H_{M}, 2 \leqslant M \leqslant n$, is necessary and sufficient for total positivity of the matrix H_{M}.

We also present some applications of totally positive generalized Hurwitz matrices to the root location of polynomials.

References

[1] B.A. Asner, On the total nonnegativity of the Hurwitz matrix. SIAM J. Appl. Math., 18, 1970, pp. 407-414.
[2] A. Dyachenko, Total nonnegativity of infinite Hurwitz matrices of entire and meromorphic functions, Complex Anal. Oper. Theory, 8, 2014, pp. 1097-1127.
[3] T.N.T. Goodman, Q. Sun, Total positivity and refinable functions with general dilation, Applied and Computational Harmonic Analysis, 16, 2004, pp. 69-89.
[4] O. Holtz, M. Tyaglov, Structured matrices, continued fractions, and root localization of polynomials, SIAM Rev., 54, no. 3, 2012, pp. 421-509.
[5] J.H.B. Kemperman, A Hurwitz matrix is totally positive, SIAM J. Math. Anal., 13, 1982, pp. 331-341.
[6] A. Pinkus, Totally positive matrices, Cambridge University Press, 2010.

