Fourier Analysis of Boolean Functions - Exercise Sheet 1

Exercise 1. Compute the Fourier expansions of the following functions:
(a) the logical "or" function on 3 bits OR_{3}
(b) the logical "and" function on 3 bits AND_{3}
(c) the majority function on 5 bits $\mathrm{Maj}_{5}:\{-1,1\}^{5} \rightarrow\{-1,1\}$ that outputs the bit occurring more frequently in its input
(d) the sortedness function Sort $_{4}:\{-1,1\}^{4} \rightarrow\{-1,1\}$, defined by $\operatorname{Sort}_{4}(x)=-1$ if and only if $x_{1} \leq x_{2} \leq x_{3} \leq x_{4}$ or $x_{1} \geq x_{2} \geq x_{3} \geq x_{4}$

Exercise 2. Prove that any $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ has at most one Fourier coefficient with absolute value bigger than $\frac{1}{2}$. Is this also true for any $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ with $\|f\|_{2}=1$?

Exercise 3. Given $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$, define $F: \mathbb{R}^{n} \rightarrow \mathbb{R}, x \mapsto \sum_{S \subseteq[n]} \widehat{f}(S) x^{S}$. Show that if $x \in[-1,1]^{n}$, then

$$
F(x)=\mathbf{E}_{\mathbf{y}}[f(\mathbf{y})]
$$

where $\mathbf{y} \in\{-1,1\}^{n}$ is a random variable such each \mathbf{y}_{i} is chosen independently with $\mathrm{E}\left[\mathbf{y}_{i}\right]=x_{i}$.

Due Wednesday, November 2, 2016, 11:44 Uhr. Post it in the right box near room F411.

