Fourier Analysis of Boolean Functions – Exercise Sheet 1

Exercise 1. Compute the Fourier expansions of the following functions:

- (a) the logical "or" function on 3 bits OR_3
- (b) the logical "and" function on 3 bits AND₃
- (c) the majority function on 5 bits $Maj_5: \{-1,1\}^5 \rightarrow \{-1,1\}$ that outputs the bit occurring more frequently in its input
- (d) the sortedness function Sort₄: $\{-1,1\}^4 \rightarrow \{-1,1\}$, defined by Sort₄(x) = -1 if and only if $x_1 \le x_2 \le x_3 \le x_4$ or $x_1 \ge x_2 \ge x_3 \ge x_4$

Exercise 2. Prove that any $f: \{-1,1\}^n \to \{-1,1\}$ has at most one Fourier coefficient with absolute value bigger than $\frac{1}{2}$. Is this also true for any $f: \{-1,1\}^n \to \mathbb{R}$ with $||f||_2 = 1$?

Exercise 3. Given $f: \{-1,1\}^n \to \mathbb{R}$, define $F: \mathbb{R}^n \to \mathbb{R}$, $x \mapsto \sum_{S \subseteq [n]} \widehat{f}(S) x^S$. Show that if $x \in [-1,1]^n$, then

$$\mathbf{F}(\mathbf{x}) = \mathbf{E}_{\mathbf{y}}[f(\mathbf{y})]$$

where $\mathbf{y} \in \{-1, 1\}^n$ is a random variable such each \mathbf{y}_i is chosen independently with $\mathbf{E}[\mathbf{y}_i] = x_i$.

Due Wednesday, November 2, 2016, 11:44 Uhr. Post it in the right box near room F411.