Fourier Analysis of Boolean Functions - Exercise Sheet 2

Exercise 1. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$.
(a) Prove that f can not have exactly 2 nonzero Fourier coefficients. What about exactly 3 nonzero Fourier coefficients?
(b) Suppose $\left\|f_{\leq 1}\right\|_{2}^{2}=1$. How can f look like?
(c) Suppose $\left\|f_{\leq 2}\right\|_{2}^{2}=1$. Must f depend on at most 2 input coordinates? At most 3 input coordinates? What if we assume $\left\|f_{=2}\right\|_{2}^{2}=1$?

Exercise 2. Let $f:\{0,1\}^{n} \rightarrow \mathbb{R}$.
(a) Show that there exists a unique function $F: \mathscr{P}([n]) \rightarrow \mathbb{R}$ such that

$$
f(x)=\sum_{S \subseteq[n]} F(S) x^{S}
$$

for all $x \in\{0,1\}^{n}$.
(b) Show that F takes only integer values if f does so.

Exercise 3. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be of degree $d \geq 1$.
(a) Show that each Fourier coefficient of f is an integer multiple of 2^{1-d}.
(b) Show that $\sum_{S \subseteq[n]}|\widehat{f}(S)| \leq 2^{d-1}$.

Hint: Use Exercise 2.
Due Wednesday, November 16, 2016, 11:44 Uhr. Post it in box 18 near room F411.

