Fourier Analysis of Boolean Functions – Exercise Sheet 2

Exercise 1. Let $f: \{-1, 1\}^n \to \{-1, 1\}$.

- (a) Prove that *f* can not have exactly 2 nonzero Fourier coefficients. What about exactly 3 nonzero Fourier coefficients?
- (b) Suppose $||f_{<1}||_2^2 = 1$. How can f look like?
- (c) Suppose $||f_{\leq 2}||_2^2 = 1$. Must *f* depend on at most 2 input coordinates? At most 3 input coordinates? What if we assume $||f_{=2}||_2^2 = 1$?

Exercise 2. Let $f: \{0, 1\}^n \to \mathbb{R}$.

(a) Show that there exists a unique function $F: \mathscr{P}([n]) \to \mathbb{R}$ such that

$$f(x) = \sum_{S \subseteq [n]} F(S) x^S$$

for all $x \in \{0, 1\}^n$.

(b) Show that F takes only integer values if f does so.

Exercise 3. Let $f: \{-1,1\}^n \rightarrow \{-1,1\}$ be of degree $d \ge 1$.

- (a) Show that each Fourier coefficient of f is an integer multiple of 2^{1-d} .
- (b) Show that $\sum_{S\subseteq [n]} |\widehat{f}(S)| \le 2^{d-1}$.
- Hint: Use Exercise 2.

Due Wednesday, November 16, 2016, 11:44 Uhr. Post it in box 18 near room F411.