Fourier Analysis of Boolean Functions - Exercise Sheet 3

Exercise 1. Fast Walsh-Hadamard Transform

Define matrices $H_{n} \in\{-1,1\}^{2^{n} \times 2^{n}}$ for $n \in \mathbb{N}_{0}$ inductively by $H_{0}:=(1)$ and

$$
H_{n}:=\left(\begin{array}{cc}
H_{n-1} & H_{n-1} \\
H_{n-1} & -H_{n-1}
\end{array}\right)
$$

for $n \in \mathbb{N}$.
(a) Let us index the rows and columns of H_{n} by the integers $\left\{0,1, \ldots, 2^{n}-1\right\}$ rather than $\left[2^{n}\right]$. Further, let us identify such an integer $i \in\left\{0,1, \ldots, 2^{n}-1\right\}$ with its binary expansion $\left(i_{0}, i_{1}, \ldots, i_{n-1}\right) \in\{0,1\}^{n}$, i.e., $i=\sum_{k=0}^{n-1} i_{k} 2^{k}$. Show that for $\alpha, \beta \in$ $\left\{0,1, \ldots, 2^{n}-1\right\}$ the (α, β) entry of H_{n} is $(-1)^{\sum_{k=0}^{n-1} \alpha_{k} \beta_{k}}$.
(b) Show that if $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$ is represented as a column vector in $\mathbb{R}^{2^{n}}$ (according to the indexing scheme from part (a)), then $H_{n} f=2^{n} \widehat{f}$. Here we think of \widehat{f} as also being a function $\mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$, identifying subsets $S \subseteq[n]$ with their indicator vectors.
(c) Show how to compute $H_{n} v$ for a vector $v \in \mathbb{R}^{2^{n}}$ using just $n 2^{n}$ additions and subtractions (rather than $2^{2 n}$ additions and subtractions as the usual matrix-vector multiplication algorithm would require).

Exercise 2. Let $A \subseteq\{-1,1\}^{n}$ have "volume" δ, meaning $\mathbf{E}\left[1_{A}\right]=\delta$, where

$$
1_{A}:\{-1,1\}^{n} \rightarrow\{0,1\}, x \mapsto \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

Suppose φ is a probability density function on $\{-1,1\}^{n}$ which is supported on A, i.e., $\varphi(x)=0$ when $x \in\{-1,1\}^{n} \backslash A$. Show that $\|\varphi\|_{2}^{2} \geq \frac{1}{\delta}$ with equality if and only $\varphi=\varphi_{A}$.

Exercise 3. Let φ and ψ be probability density functions on $\{-1,1\}^{n}$.
(a) Show that the total variation distance between φ and ψ defined by

$$
d_{\mathrm{TV}}(\varphi, \psi):=\max _{A \subseteq\{-1,1\}^{n}}\left\{\left|\operatorname{Pr}_{\mathbf{x} \sim \varphi}[\mathbf{x} \in A]-\operatorname{Pr}_{\mathbf{x} \sim \psi}[\mathbf{x} \in A]\right|\right\}
$$

is equal to $\frac{1}{2}\|\varphi-\psi\|_{1}$ where $\|f\|_{1}:=\mathbf{E}_{\mathbf{x}}[|f(x)|]$ for all $f \in \mathbb{R}^{\{-1,1\}^{n}}$.
(b) Show that the total variation distance of φ from (the probability density function of) the uniform distribution is at most $\frac{1}{2} \sqrt{\operatorname{Var}[\varphi]}$.
(c) The χ^{2}-distance of φ from ψ is defined by

$$
d_{\chi^{2}}(\varphi, \psi):=\underset{\mathbf{x} \sim \psi}{\mathbf{E}}\left[\left(\frac{\varphi(\mathbf{x})}{\psi(\mathbf{x})}-1\right)^{2}\right] .
$$

Show that the χ^{2}-distance of φ from uniform is equal to $\operatorname{Var}[\varphi]$.
(d) Show that the collision probability of φ defined by

$$
\underset{\substack{x, y \sim \\ \text { ndependently }}}{\operatorname{Pr}_{y}}[\mathbf{x}=\mathbf{y}] \text {, }
$$

is equal to $\frac{\|\varphi\|^{2}}{2^{n}}$.

Due Wednesday, November 30, 2016, 11:44 Uhr. Post it in box 18 near room F411.

