Fourier Analysis of Boolean Functions – Exercise Sheet 6

Exercise 1. Let $f: \{-1,1\}^n \to \{-1,1\}$ be unbiased and let $\operatorname{MaxInf}[f] := \max_{i \in [n]} \operatorname{Inf}_i[f]$. Show $\operatorname{MaxInf}[f] \ge 1/n$.

Exercise 2. Let $f: \{-1, 1\}^n \to \{-1, 1\}$.

- (a) Give an accurate proof of Remark 2.2.13 and deduce also very accurate $\mathbf{E}_{\mathbf{x}}[\operatorname{sens}_{f}(\mathbf{x})] = \mathbf{E}_{S \sim \hat{f}^{2}}[\#S].$
- (b) Show that also $\mathbf{E}_{\mathbf{x}}[\operatorname{sens}_{f}(\mathbf{x})^{2}] = \mathbf{E}_{S \sim \hat{f}^{2}}[(\#S)^{2}]$ holds.
- (c) Is $\mathbf{E}_{\mathbf{x}}[\operatorname{sens}_{f}(\mathbf{x})^{3}] = \mathbf{E}_{S \sim \hat{f}^{2}}[(\#S)^{3}]$ also true?

Exercise 3. Let $f: \{-1,1\}^n \to \{-1,1\}$ a boolean function with the property f(x) = f(-x) for all $x \in \{-1,1\}^n$.

- (a) Show $\operatorname{Var}[f] \leq \frac{1}{2} \mathbf{I}[f]$.
- (b) Show $\operatorname{Stab}_{\rho}[f] = \operatorname{Stab}_{-\rho}[f]$ for all $\rho \in [-1, 1]$.

Exercise 4. Compute the precise probability of a Condorcet winner in a 3-candidate Condorcet election with 5 voters using $f = \text{Maj}_5$ as voting rule and under the assumption that each of the 5 voters chooses uniformly and independently one of the 6 candidate rankings.

Due Friday, Januar 27, 2017, 11:44 Uhr. Post it in box 18 near room F411.