Universität Konstanz Fachbereich Mathematik und Statistik Jun.-Prof. Dr. Arno Fehm Christoph Hanselka WS 2013/14

Übungen zur Vorlesung Arithmetische Geometrie I

Blatt 3

Aufgabe 8

Sei v ein ultrametrischer Absolutbetrag auf einem Körper F.

- (a) Zeigen Sie: Durch $|f|_w = \max_i |a_i|_v$ für $f = \sum_i a_i t^i \in F[t]$ wird ein Absolutbetrag w auf dem rationalen Funktionenkörper F(t) definiert, der v fortsetzt (die $Gau\beta fortsetzung$).
- (b) Beweisen Sie den Satz von Chevalley: Ist E|F eine Körpererweiterung, so lässt sich v zu einem Absolutbetrag auf E fortsetzen.
- (c) Gilt (b) auch ohne die Voraussetzung, dass v ultrametrisch ist?

Aufgabe 9

Sei \mathbb{Q}_p der Körper der p-adischen Zahlen, und $n \in \mathbb{N}$ teilerfremd zu p. Zeigen Sie:

- (a) Die Einseinheiten $U_1 = 1 + p\mathbb{Z}_p$ bilden eine Untergruppe von \mathbb{Q}_p^{\times} .
- (b) Es ist $U_1 \subseteq (\mathbb{Q}_p^{\times})^n$.
- (c) Der Quotient $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^n$ ist endlich.
- (d) *Gelten (b) und (c) auch ohne die Voraussetzung der Teilerfremdheit?

Aufgabe 10

Sei K ein Körper, und F = K(t) der rationale Funktionenkörper. Für $f \in K[t]$ normiert irreduzibel sei v_f die zugehörige normierte diskrete Bewertung und $|x|_{v_f} = e^{-v_f(x)\deg(f)}$. Sei \mathcal{S}_F^0 die Menge all dieser v_f , und sei $\mathcal{S}_F = \mathcal{S}_F^0 \cup \{v_\infty\}$ (aus (a)), und $|x|_{v_\infty} = e^{-v_\infty(x)}$. Zeigen Sie:

- (a) Durch $v_{\infty}(f) = -\deg(f)$ für $f \in K[t]$ wird eine diskrete Bewertung v_{∞} auf F definiert.
- (b) Jeder nichttriviale Absolutbetrag auf F, der eingeschränkt auf K trivial ist, ist abhängig von einem $v \in \mathcal{S}_F$.
- (c) Für $x \in F^{\times}$ ist $|x|_v = 1$ für fast alle $v \in \mathcal{S}_F$, und $\prod_{v \in \mathcal{S}_F} |x|_v = 1$.

Abgabe: bis Dienstag 19.11.2013, 10 Uhr, in den Briefkasten auf F4.