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Abstract: For a fixed number of n + 1 (n ≥ 1) variables and even degree 2d (d ≥ 1),
the SOS cone Σn+1,2d of all real forms representable as finite sums of squares (SOS) of half
degree d real forms is included in the PSD cone of all positive semidefinite (PSD) real forms
Pn+1,2d. Hilbert (1888) states that both cones coincide if and only if n + 1 = 2, d = 1 or
(n + 1, 2d) = (3, 4). In this talk, we discuss necessary or sufficient conditions to extend local
positive semidefiniteness of real quadratic forms along projective varieties generated by s (s ≥ 0)
real quadratic forms. Those conditions allow us to construct an explicit filtration of intermediate
cones Σn+1,2d = C0 ⊆ C1 ⊆ . . . ⊆ Cs−1 ⊆ Cs = Pn+1,2d (between the SOS and PSD cone)
along the Veronese variety. Indeed, the latter is known to be a projective variety finitely induced
by real quadratic forms. We analyze this filtration for proper inclusions. In fact, after applying
an inductive argument, it suffices to investigate the situation for a truncated subfiltration of
the former. A result of Blekherman et al. (2016) on projective varieties of minimal degree
permits us to handle the inclusion C0 ⊆ C1. Generalizing this observation, we are able to
show Σn+1,2d = C0 = . . . = Cn. Finally, we lay out the situation in the basic non Hilbert
case of quaternary quartics by identify exactly two strictly separating intermediate cones in the
particular filtration of Σ4,4 and P4,4 via considerations of real forms based on techniques due to
Robinson (1969) and Choi and Lam (1977a,b). This is a work in progress with Salma Kuhlmann
and Charu Goel.
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1. INTRODUCTION

For n ≥ 0, let R[X] be the polynomial ring in n + 1
variables with coefficients in R. If all monomials appearing
in f ∈ R[X] are of the same total degree d (d ≥ 1), then
f is a (real) form (of total degree d). The set of all real
forms of total degree d in R[X] is Fn+1,d. In particular,
f ∈ Fn+1,2 is a (real) quadratic form. Moreover, if for
f ∈ Fn+1,2d there exist some t ≥ 1 and g1, . . . , gt ∈ Fn+1,d

such that f =
t∑
i=1

g2i , then f is a sum of squares (SOS).

The cone of all SOS forms in Fn+1,2d is Σn+1,2d. Moreover,
f ∈ Fn+1,2d is locally positive semidefinite on W ⊆ Rn+1

if f(x) ≥ 0 holds for all x ∈ W . In this case we write
f |

W
≥ 0, respectively, f ≥ 0 for W = Rn+1. In the

latter case, f is (globally) positive semidefinite (PSD). The
cone of all PSD forms in Fn+1,2d is Pn+1,2d. It is clear
that Σn+1,2d ⊆ Pn+1,2d always holds true and, especially,
Σ1,2d = P1,2d in the univariate case (see Marshall (2008)).
However, the situation is more evolved in the multivariate
cases. Hence, from now on we assume n ≥ 1.

Theorem 1. (Hilbert (1888)) Let n and d be positive
integers. Then Σn+1,2d = Pn+1,2d if and only if n+ 1 = 2
or d = 1 or (n+ 1, 2d) = (3, 4).

All cases in which the SOS and PSD cone coincide are
called Hilbert cases, whereas all others are refered to as

non Hilbert cases. The two simplest non Hilbert cases (3, 6)
and (4, 4) are the basic non Hilbert cases.

Let (n + 1, 2d) from now on denote a non Hilbert case
and {m0(X), . . . ,mk(X)} be an ordered monomial basis
of Fn+1,d with k := dim(Fn+1,d) − 1. For l ∈ {n, k}, let
Pl be the l-dimensional projective space of the complex
numbers and the set of all real points of W is denoted by
W (R) for any W ⊆ Pl. Implicitly x ∈ Rl+1 is assumed
for any [x] ∈ W (R). A form f ∈ Fl+1,2d is locally positive
semidefinite on W (R) ⊆ Pn(R) if f(x0, . . . , xl) ≥ 0 holds
for any [x0 : . . . : xl] ∈ W (R) and we write f |

W (R)) ≥ 0.
This is a well defined expression due to the homogeneity
of f in even degree. In particular, the cone of all forms in
Fl+1,2d which are locally positive semidefinite on Pn(R) is
the former PSD cone Pl+1,2d.
In a Gram matrix approach (see Choi et al. (1995), Powers
and Wörmann (1998)), we consider the isomorphism

Q : Symk+1(R)→Fk+1,2

A 7→ qA,

where qA(Z0, . . . , Zk) := (Z0 . . . Zk)A(Z0 . . . Zk)t, and the
surjective linear Gram map

G : Symk+1(R)→Fn+1,2d

A 7→ fA,



where fA(X) := (m0(X) . . .mk(X))A(m0(X) . . .mk(X))t

for the indeterminantes X = (X0, . . . , Xn), over the R-
vector space Symk+1(R) of real symmetric (k+1)×(k+1)
matrices. Then a generic Af ∈ G−1(f) for any f ∈ Fn+1,2d

can be fixed. In fact, any A ∈ G−1(f) is a Gram matrix
associated to f and for any such, qA := Q(A) ∈ Fk+1,2 is
a (real) quadratic form associated to f .

Proposition 2. A form f ∈ Fn+1,2d is SOS if and only if
there exists a real quadratic form associated to f which is
locally positive semidefinite on Pk(R).

Under the consideration of the (projective) Veronese em-
bedding

V : Pn→ Pk

[x] 7→ [m0(x) : . . . : mk(x)]

and its image the (projective) Veronese variety V (Pn), the
PSD forms in Fn+1,2d can be characterized.

Proposition 3. A form f ∈ Fn+1,2d is PSD if and only if
there exists a real quadratic form associated to f which is
locally positive semidefinite on V (Pn)(R).

2. THE MAIN QUESTIONS

The previous two propositions reveal that the question of
whether or not a given PSD form is SOS is equivalent
to asking whether or not a given locally on V (Pn)(R)
positive semidefinite real quadratic form can be extended
to a real quadratic form locally positive semidefinite on
Pk(R) over the set of real points of the Veronese variety.
Indeed, the latter is a projective variety finitely generated
by real quadratic forms of a specific structure imposed by
the Gram map (see Plaumann (2020)). More precisely, the
projective variety V (Pn) is induced by

S := {q(Z0, . . . , Zk) := ZiZj − ZsZt | LE(mi) + LE(mj)

= LE(ms) + LE(mt)} ⊆ R[Z0, . . . , Zk],

where LE denotes the (leading) exponent of the indicated
monomial. In general, the following question has to be
answered.

Question 1. Let W0 ⊆ W1 be projective varieties finitely
induced by real quadratic forms with non-empty sets of
real points. Assume that a real quadratic form q is locally
positive semidefinite on W0(R). When exactly does there
exist a real quadratic form q0 vanishing on W0(R) such
that q + q0 is locally positive semidefinite on W1(R)?

Under the assumption of W0 being an irreducible projec-
tive variety with Zariski dense set of real points W0(R) and
W1 being the projective space Pk, Blekherman et al. (2016)
give an answer to the above question. They establish
that any real quadratic form q which is locally positive
semidefinite on W0(R) is already SOS in the respective
real homogeneous coordinate ring if and only if W0 is a
projective variety of minimal degree, i.e. a nondegenerate
(not contained in any hyperplane of Pk) irreducible pro-
jective variety with deg(W0) = 1+codim(W0). This result
provides an alternative proof of Hilbert’s 1888 Theorem
by setting W0 to be the Veronese variety and observing it
being a projective variety of minimal degree exactly in the
Hilbert cases.

Any subset S ′ of S naturally induces a supvariety W of
the Veronese variety, which is consequently again finitely
induced by real quadratic forms of the specific structure
imposed by the Gram map. The kernel of the Gram map
can be described via the set of real points of the Veronese
variety. Indeed, the set Q(G−1(f)) of all quadratic forms
associated to f ∈ Fn+1,2d is completely determined by

G−1(f) = {A ∈ Symk+1(R) | qA = qAf
on V (Pn)(R)}.

Hence, given a quadratic form locally positive semidefinite
on W (R), we can ask under exactly what conditions
this form extends to a quadratic form locally positive
semidefinite on Pk(R) over the set of real points of the
Veronese variety. Set

CW := {f ∈ Fn+1,2d | ∃A ∈ G−1(f) : qA|W (R) ≥ 0}
= {f ∈ Fn+1,2d | ∃A ∈ G−1(f) : qA|W (R) ≥ 0

∧ qA = qAf
on V (Pn)(R)}.

Then by Proposition 2 and Proposition 3, it is clear that
CW is an intermediate cone of the SOS and PSD cone. We
especially investigate the inclusions in

Σn+1,2d ⊆ CW ⊆ Pn+1,2d

for strictness. Indeed, at least one of these inclusions has
to be strict because (n + 1, 2d) is assumed to be a non
Hilbert case. The following question has to be answered.

Question 2. Let W0 ⊆ W1 ⊆ W2 be projective varieties
finitely induced by real quadratic forms with non-empty
sets of real points. Assume that a real quadratic form q is
locally positive semidefinite on W1(R). When exactly does
there exist a real quadratic form q0 vanishing on W0(R)
such that q+ q0 is locally positive semidefinite on W2(R)?

3. A FILTRATION OF INTERMEDIATE CONES

We algorithmically construct a particular S ′ ⊆ S with a
fixed numeration S ′ = {p1, . . . , ps} (s := #S ′) such that
the zero set of S ′ is the Veronese Variety and

V (Pn) = Ws (Ws−1 ( . . . (W1 (W0 = Pk

for Wi := V(p1, . . . , pi) (i ∈ {1, . . . , s}) and W0 := Pk.
This leads to a corresponding strict filtration of sets of
real points

V (Pn)(R) = Ws(R) ( . . . (W0(R) = Pk(R).

Setting Ci := CWi
we thus obtain a filtration of interme-

diate cones of the SOS and PSD cone, namely

Σn+1,2d = C0 ⊆ C1 ⊆ . . . ⊆ Cs−1 ⊆ Cs = Pn+1,2d (1)

(see Goel (2020)). Since (n + 1, 2d) is a non Hilbert case
by choice, at least one inclusion in (1) has to be strict.
An answer to Question 2 in particularly provides a tool
for identifying all strict inclusions in (1). Yet, it is not
compulsory to investigate each inclusion in (1).

In the explicit construction of S ′, we determine

s = #S ′ =

n∑
m=1

2(k(m)−m)− (k(m− 1) + 1)

with

k : Z≥0→Z≥0

m 7→
(
m+ d

m

)
− 1.



Setting τ := 2(k(n) − n) − (k(n − 1) + 1), we are able to
identify the filtration of the last s− τ + 1 cones

Cτ ⊆ . . . ⊆ Cs = Pn+1,2d (2)

with the (n, 2d) case. This ensures the elimination of
one variable in an inductive argument. Repeating that
consideration, we at last arrive in the base case (2, 2d).
This is a Hilbert case and therefore fully understood. It
thus remains to investigate the situation of the first τ + 1
cones

Σn+1,2d = C0 ⊆ . . . ⊆ Cτ . (3)

Indeed, putting (2) and (3) together recovers the initial
filtration (1).

In (3), an immediate application of the main result from
Blekherman et al. (2016) allows us to conclude that the
SOS cone always coincides with C1. Furthermore, a slight
variation of this result ensures Σn+1,2d = Ci for any
i ∈ {1, . . . , n}. Thus,

Σn+1,2d = C0 = . . . = Cn. (4)

After that, for inclusions of the type Ci ⊆ Ci+1 with
i ∈ {n, . . . , τ − 1}, the situation is more evolved and other
methods have to be applied.

For example, in the basic non Hilbert case (4, 4), exactly
two strictly separating intermediate cone in (3) are iden-
tifiable. Indeed, the famous Robinson form

R(X0, X1, X2, X3) :=X2
0 (X0 −X3)2 +X2

1 (X1 −X3)2

+X2
2 (X2 −X3)2 + 2X0X1X2(X0 +X1 +X2 − 2X3)

and the Choi-Lam form

W (X0, X1, X2, X3) :=X2
0X

2
1 +X2

0X
2
2 +X2

1X
2
2 +X4

3

−4X0X1X2X3

both certify the proper containment Σ4,4 ( P4,4 (see
Robinson (1969) and Choi and Lam (1977a,b)). In par-
ticular, the Robinson form was alongside the Motzkin
form (see Motzkin (1967)) one of the first forms found
separating the SOS and PSD cone in a basic non Hilbert
case. Both were firstly mentioned roughly nine decades
after Hilbert’s original abstract proof from 1888 in the late
1960’s. The Choi-Lam form followed in 1977.
Now, a deeper reaching investigation of the Robinson form,
the Choi-Lam form and a variation of the Choi-Lam form
under permuation of variables reveals

C3 ( C4 ( C5 ( C6 (5)

in the basic non Hilbert case of quaternary quartics.
Furthermore,

Σ4,4 = C0 = C1 = C2 = C3

by (4) and C6 ⊆ . . . ⊆ C10 = P4,4 corresponds to (2) and
with that to the (3, 4) case by our inductive argument. The
ternary quartics describe a Hilbert case and, consequently,
the latter subfiltration collapses to

C6 = . . . = C10 = P4,4.

Putting it all together, we thus fully understand the
situation in the basic non Hilbert case of quaternary
quartics.
In particular, we strengthen Hilbert’s original observation
from 1888 in the quaternary quartics case by testifying the
existence of two distinct strictly separating intermediate
cones between the SOS and the PSD cone.
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