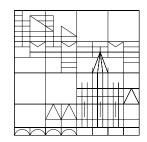
Universität Konstanz

Fachbereich Mathematik und Statistik

Prof. Dr. Dieter Hoffmann Dr. Lorna Gregory Katharina Dupont



Lineare Algebra I Übungsblatt 12

Aufgabe 12.1 Die Vandermonde-Determinante

Es seien $x_1, \ldots, x_n \in \mathbb{K}$ mit $n \geq 2$ und

$$V_n := \det \begin{pmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \dots & \vdots \\ 1 & x_n & \dots & x_n^{n-1} \end{pmatrix}.$$

Zeige mit Induktion über n, dass $V_n = \prod_{1 \le i < j \le n} (x_j - x_i)$ gilt.

Hinweis: Zeige für den Induktionsschritt: $V_n = (x_n - x_1) \cdots (x_n - x_{n-1}) V_{n-1}$

Aufgabe 12.2

- (a) Wir sagen, dass eine Matrix $A=(a^i_j)\in\mathbb{K}^{n\times n}$ eine *obere Dreiecksmatrix* ist, wenn $a^i_j=0$ für alle $i,\,j\in\{1,\dots,n\}$ mit i>j gilt. Zeige, dass die Determinante einer oberen Dreiecksmatrix das Produkt der Einträge auf der Diagonalen ist, also $\det(A)=\prod_{i=1}^n a^i_i$.
- (b) Sei $a \in \mathbb{K}$. Berechne die Determinante der folgenden $n \times n$ -Matrix:

$$\begin{pmatrix} a & 1 & \dots & 1 & 1 \\ 1 & a & \dots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \dots & a & 1 \\ 1 & 1 & \dots & 1 & a \end{pmatrix}.$$

Aufgabe 12.3 Cramersche Regel

In der nächsten Vorlesung zeigen wir die Cramersche Regel:

Für $n \in \mathbb{N}, A \in \mathrm{GL}(n,\mathbb{R})$ und $b \in \mathbb{R}^n$ ist die eindeutig bestimmte Lösung des linearen Gleichungssystems Ax=b gegeben durch: $x_j=\frac{\det(A_1,\dots,A_{j-1},b,A_{j+1},\dots,A_n)}{\det(A)}$

$$x_j = \frac{\det(A_1, \dots, A_{j-1}, b, A_{j+1}, \dots, A_n)}{\det(A)}$$

für $1 \le j \le n$.

Benutze diese Regel, um das folgende lineare Gleichungssystem zu lösen:

$$x_1 + x_2 + x_3 = 1$$

 $3x_1 + 2x_2 + x_3 = 2$
 $9x_1 + 4x_2 + x_3 = 3$

Aufgabe 12.4

Wir schließen an Aufgabe 11.4 — mit dem Standard-Skalarprodukt $\langle \; , \; \rangle$ auf dem \mathbb{R}^3 — an. Zeige für $v, w, z \in \mathbb{R}^3$:

- (j) (i) $||v \times w||^2 = ||v||^2 ||w||^2 \langle v, w \rangle^2$, und damit
 - (ii) $|\langle v, w \rangle| \leq ||v|| ||w||$ und
 - (iii) $|\langle v,w \rangle| = \|v\| \, \|w\| \,$ genau dann, wenn v,w linear abhängig sind.
- $(k) \ \|v \times w\| = \|v\| \, \|w\| \cdot \sin \angle (v,w)$ (v, w linear unabhängig)
- (1) Das Volumen des Spats, auch Parallelepiped oder Parallelotop genannt,

$$\left\{\lambda \, v + \mu \, w + \varrho \, z \mid 0 \le \lambda, \mu, \varrho \le 1\right\}$$

ist gerade durch $|\langle v \times w, z \rangle|$ gegeben. Die Größe

$$[v, w, z] := \langle v \times w, z \rangle$$

heißt Spatprodukt.