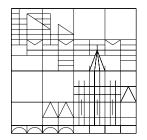
Universität Konstanz

Fachbereich Mathematik und Statistik

Prof. Dr. Dieter Hoffmann Dr. Lorna Gregory

Katharina Dupont



Lineare Algebra I Übungsblatt 8

Aufgabe 8.1 Transformationsabbildung

Sei $\mathcal{A}=(e_1,e_2,e_3)$ die Standardbasis des \mathbb{R}^3 und

$$\mathcal{B} = \left(b_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, b_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}\right)$$

eine weitere Basis des \mathbb{R}^3 .

- (a) Schreibe die Elemente der Basis \mathcal{A} als Linearkombination der Elemente von \mathcal{B} und die Elemente der Basis \mathcal{B} als Linearkombination der Elemente von \mathcal{A} .
- (b) Berechne die Transformationsabbildungen $T_{\mathcal{A}}^{\mathcal{B}}$ und $T_{\mathcal{B}}^{\mathcal{A}}$.
- (c) Was ist das Inverse der Matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$?

Aufgabe 8.2 Basiswechsel

Seien φ, ψ lineare Abbildungen von \mathbb{R}^2 nach \mathbb{R}^2 . Bezüglich der Basis $\mathcal{A} = \left(\left(\begin{array}{c} 1 \\ 2 \end{array} \right), \left(\begin{array}{c} 2 \\ 1 \end{array} \right) \right)$ habe φ die Darstellungsmatrix $\left(\begin{array}{c} 1 & 2 \\ 2 & 3 \end{array} \right)$, und bezüglich der Basis $\mathcal{B} = \left(\left(\begin{array}{c} 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \right)$ habe ψ die Darstellungsmatrix $\left(\begin{array}{c} 3 & 3 \\ 2 & 4 \end{array} \right)$.

- (a) Berechne die Darstellungsmatrix von $\varphi + \psi$ bezüglich der Basis \mathcal{B} .
- (b) Berechne die Darstellungsmatrix von $\varphi \circ \psi$ bezüglich der Basis \mathcal{A} .

Aufgabe 8.3 Skalarprodukte

- (a) Sei V ein $\mathbb R$ Vektorraum. Welche der definierenden Eigenschaften für ein Skalarprodukt sind für die folgenden Funktionen $\langle \cdot, \cdot \rangle : V \times V \to \mathbb R$ erfüllt? Bei welchen Funktionen handelt es sich um Skalarprodukte?
 - (i) Sei $V=\mathbb{R}^3$ und sei $\langle x,y\rangle=3x_1y_1+2x_2y_2+4x_3y_3$, wobei $x=(x_1,x_2,x_3)$ und $y=(y_1,y_2,y_3)$.
 - (ii) Sei $V=\mathbb{R}^3$ und sei $\langle x,y\rangle=2x_1y_1+6x_2y_2-6x_3y_3$, wobei $x=(x_1,x_2,x_3)$ und $y=(y_1,y_2,y_3)$.
 - (iii) Sei $V=\mathbb{R}^2$ und sei $\langle x,y\rangle=x_1x_2y_1y_2$, wobei $x=(x_1,x_2)$ und $y=(y_1,y_2).$
- (b) Zeige, dass ein Skalarprodukt auf einem C-Vektorraum nicht in beiden Komponenten linear sein kann.

Aufgabe 8.4

Sei V ein \mathbb{K} -Vektorraum (wobei $\mathbb{K}=\mathbb{R}$ oder $\mathbb{K}=\mathbb{C}$ ist), $\langle\cdot,\cdot\rangle$ ein Skalarprodukt auf V und $T:V\to V$ eine lineare Abbildung.

- (a) Für alle $x \in V$ sei ||T(x)|| = ||x||. Zeige, dass $\langle Tx, Ty \rangle + \langle Ty, Tx \rangle = \langle x, y \rangle + \langle y, x \rangle$ für alle $x, y \in V$ gilt. **Hinweis:** Füge an geeigneter Stelle ||T(x-y)|| ein.
- (b) Zeige, dass genau dann ||T(x)|| = ||x|| für alle $x \in V$ gilt, wenn $\langle T(x), T(y) \rangle = \langle x, y \rangle$ für alle $x, y \in V$ ist.

Hinweis: Ist z=a+ib eine komplexe Zahl, wobei $a,b\in\mathbb{R}$, so schreiben wir $\Re(z):=a$ für den Realteil von z und $\Im(z):=b$ für den Imaginärteil von z. Benutze die Formeln $\Re(z)=\frac{z+\bar{z}}{2}$ und $\Im(z)=\frac{z-\bar{z}}{2i}$ und die Gleichung aus (a) um zu zeigen, dass $\Re\langle Tx,Ty\rangle=\Re\langle x,y\rangle$. Zeige dann, indem du y durch iy ersetzt, dass $\Im\langle Tx,Ty\rangle=\Im\langle x,y\rangle$.

Abgabe Montag, 19.12.2011 bis 14.00 Uhr in die Briefkästen bei F 411.