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2.0 Introduction

In this chapter we will focus on necessary and sufficient optimality conditions
for constrained problems.

As an introduction let us remind ourselves of the optimality conditions for
unconstrained and equality constrained problems, which are commonly dealt
with in basic Mathematics lectures.

We consider a real-valued function f : D −→ R with domain D ⊂ Rn and
define, as usual, for a point x0 ∈ D:

1) f has a local minimum in x0

: ⇐⇒ ∃ U ∈ Ux0 ∀ x ∈ U ∩D f(x) ≥ f(x0)
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36 Optimality Conditions

2) f has a strict local minimum in x0

: ⇐⇒ ∃ U ∈ Ux0 ∀ x ∈ U ∩D \ {x0} f(x) > f(x0)

3) f has a global minimum in x0

: ⇐⇒ ∀ x ∈ D f(x) ≥ f(x0)

4) f has a strict global minimum in x0

: ⇐⇒ ∀ x ∈ D \ {x0} f(x) > f(x0)

Here, Ux0 denotes the neighborhood system of x0 .

We often say “x0 is a local minimizer of f” or “x0 is a local minimum point
of f” instead of “f has a local minimum in x0” and so on. The minimizer is
a point x0 ∈ D, the minimum is the corresponding value f(x0).

Necessary Condition

Suppose that the function f has a local minimum in x0 ∈
◦

D, that is, in an
interior point of D. Then:

a) If f is differentiable in x0, then ∇f(x0) = 0 holds.

b) If f is twice continuously differentiable in a neighborhood of x0, then the

Hessian Hf (x0) = ∇2f(x0) =
(

∂2f
∂xν∂xµ

(x0)
)

is positive semidefinite.

We will use the notation f ′(x0) (to denote the derivative of f at x0; as we know,
this is a linear map from R

n to R, read as a row vector) as well as the corresponding
transposed vector ∇f(x0) (gradient, column vector).

Points x ∈
◦

D with ∇f(x) = 0 are called stationary points. At a stationary
point there can be a local minimum, a local maximum or a saddlepoint. To
determine that there is a local minimum at a stationary point, we use the
following:

Sufficient Condition

Suppose that the function f is twice continuously differentiable in a neigh-
borhood of x0 ∈ D ; also suppose that the necessary optimality condition
∇f(x0) = 0 holds and that the Hessian ∇2f(x0) is positive definite. Then
f has a strict local minimum in x0.

The proof of this proposition is based on the Taylor theorem and we regard
it as known from Calculus. Let us recall that a symmetric (n, n)-matrix A is
positive definite if and only if all principal subdeterminants

det



a11 . . . a1k

...
...

ak1 . . . akk


 (k = 1, . . . , n)
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are positive (cf. exercise 3).

Now let f be a real-valued function with domain D ⊂ Rn which we want to
minimize subject to the equality constraints

hj(x) = 0 (j = 1, . . . , p)

for p < n ; here, let h1, . . . , hp also be defined on D . We are looking for local
minimizers of f, that is, points x0 ∈ D which belong to the feasible region

F :=
{
x ∈ D | hj(x) = 0 (j = 1, . . . , p)

}

and to which a neighborhood U exists with f(x) ≥ f(x0) for all x ∈ U ∩ F .

Intuitively, it seems reasonable to solve the constraints for p of the n vari-
ables, and to eliminate these by inserting them into the objective function.
For the reduced objective function we thereby get a nonrestricted problem for
which under suitable assumptions the above necessary optimality condition
holds.

After these preliminary remarks, we are now able to formulate the following
necessary optimality condition: Lagrange Multiplier Rule

Let D ⊂ Rn be open and f, h1, . . . , hp continuously differentiable in D. Sup-
pose that f has a local minimum in x0 ∈ F subject to the constraints

hj(x) = 0 (j = 1, . . . , p).

Let also the Jacobian
(

∂hj

∂xk
(x0)

)
p,n

have rank p. Then there exist real numbers

µ1, . . . , µp — the so-called Lagrange multipliers — with

∇f(x0) +

p∑

j=1

µj ∇hj(x0) = 0. (1)

Corresponding to our preliminary remarks, a main tool in a proof would
be the Implicit Function Theorem. We assume that interested readers are
familiar with a proof from multidimensional analysis. In addition, the results
will be generalized in theorem 2.2.5. Therefore we do not give a proof here,
but instead illustrate the matter with the following simple problem, which
was already introduced in chapter 1 (as example 5):

Example 1

With f(x) := x1x
2
2 and h(x) := h1(x) := x2

1 + x2
2 − 2 for x = (x1, x2)

T ∈
D := R2 we consider the problem:



C
ha

pt
er

 2

38 Optimality Conditions

f(x) −→ min subject to the constraint h(x) = 0 .

We hence have n = 2 and p = 1.

Before we start, however, note that this problem can of course be solved very easily
straight away: One inserts x2

2 from the constraint x2

1 + x2

2 − 2 = 0 into f(x) and
thus gets a one-dimensional problem.

Points x meeting the constraint are different from 0 and thus also meet the
rank condition. With µ := µ1 the equation ∇f(x) + µ∇h(x) = 0 translates
into

x2
2 + µ2x1 = 0 and 2x1x2 + µ2x2 = 0 .

Multiplication of the first equation by x2 and the second by x1 gives

x3
2 + 2µx1x2 = 0 and 2x2

1x2 + 2µx1x2 = 0

and thus
x3

2 = 2x2
1x2 .

For x2 = 0 the constraint yields x1 = ±
√

2. Of these two evidently only
x1 =

√
2 remains as a potential minimizer. If x2 6= 0, we have x2

2 = 2x2
1 and

hence with the constraint 3x2
1 = 2, thus x1 = ±

√
2/3 and then x2 = ±2/

√
3.

In this case the distribution of the zeros and signs of f gives that only
x = (−

√
2/3,±2/

√
3)T remain as potential minimizers. Since f is contin-

uous on the compact set {x ∈ R2 | h(x) = 0} , we know that there exists
a global minimizer. Altogether, we get: f attains its global minimum at
(−
√

2/3,±2/
√

3)T , the point (
√

2, 0)T yields a local minimum. The following
picture illustrates the gradient condition very well:

h = 0

f > 0f < 0

f > 0f < 0

–2

–1

0

1

2

3

4

 

–3 –2 –1 0 1 2 ⊳

The aim of our further investigations will be to generalize the Lagrange
Multiplier Rule to minimization problems with inequality constraints:
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(P )

f(x) −→ min subject to the constraints

gi(x) ≤ 0 for i ∈ I := {1, . . . ,m}
hj(x) = 0 for j ∈ E := {1, . . . , p} .

With m, p ∈ N0 (hence, E = ∅ or I = ∅ are allowed), the functions
f, g1, . . . , gm, h1, . . . , hp are supposed to be continuously differentiable on an
open subset D in Rn and p ≤ n . The set

F :=
{
x ∈ D | gi(x) ≤ 0 for i ∈ I, hj(x) = 0 for j ∈ E

}

— in analogy to the above — is called the feasible region or set of feasible
points of (P ).

In most cases we state the problem in the slightly shortened form

(P )





f(x) −→ min

gi(x) ≤ 0 for i ∈ I
hj(x) = 0 for j ∈ E .

The optimal value v(P ) to problem (P ) is defined as

v(P ) := inf {f(x) : x ∈ F} .

We allow v(P ) to attain the extended values +∞ and −∞ . We follow the standard
convention that the infimum of the empty set is ∞ . If there are feasible points xk

with f(xk) −→ −∞ (k −→ ∞), then v(P ) = −∞ and we say problem (P ) — or
the function f on F — is unbounded from below.

We say x0 is a minimal point or a minimizer if x0 is feasible and f(x0) = v(P ) .

In order to formulate optimality conditions for (P ), we will need some simple
tools from Convex Analysis. These will be provided in the following section.

2.1 Convex Sets, Inequalities

In the following consider the space R
n for n ∈ N with the euclidean norm

and let C be a nonempty subset of Rn. The standard inner product or scalar
product on Rn is given by 〈x, y 〉 := xT y =

∑n
ν=1 xν yν for x, y ∈ Rn. The

euclidean norm of a vector x ∈ Rn is defined by ‖x‖ := ‖x‖2 :=
√
〈x, x〉.

Definition

a) C is called convex : ⇐⇒ ∀ x1, x2 ∈ C ∀ λ ∈ (0, 1) (1 − λ)x1 + λx2 ∈ C

b) C is called a cone (with apex 0) : ⇐⇒ ∀ x ∈ C ∀ λ > 0 λx ∈ C
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Remark

C is a convex cone if and only if:

∀ x1, x2 ∈ C ∀ λ1, λ2 > 0 λ1x1 + λ2x2 ∈ C

Proposition 2.1.1 (Separating Hyperplane Theorem)

Let C be closed and convex, and b ∈ Rn \C . Then there exist p ∈ Rn \ {0}
and α ∈ R such that 〈p, x〉 ≥ α > 〈p, b〉 for all x ∈ C, that is, the hyper-

plane defined by H := {x ∈ Rn | 〈p, x〉 = α} strictly separates C and b.

If furthermore C is a cone, we can choose α = 0 .

The following two little pictures show that none of the two assumptions that C is
convex and closed can be dropped. The set C on the left is convex but not closed;
on the right it is closed but not convex.

C
b

C

b

Proof: Since C is closed,

δ := δ(b, C) = inf
{
‖x− b‖ : x ∈ C

}

is positive, and there exists a sequence (xk) in C such that ‖xk − b‖ −→ δ .
wlog let xk → q for a q ∈ Rn (otherwise use a suitable subsequence). Then
q is in C with ‖p‖ = δ > 0 for p := q − b .

For x ∈ C and 0 < τ < 1 it holds that

‖p‖2 = δ2 ≤ ‖(1 − τ)q + τ x− b‖2 = ‖q − b+ τ (x − q)‖2

= ‖p‖2 + 2τ 〈x− q , p〉 + τ2 ‖x− q‖2.

From this we obtain

0 ≤ 2 〈x− q , p〉 + τ ‖x− q‖2

and after passage to the limit τ → 0

0 ≤ 〈x− q , p〉 .

With α := δ2 + 〈b, p〉 the first assertion 〈p, x〉 ≥ α > 〈p, b〉 follows. If C is
a cone, then for all λ > 0 and x ∈ C the vectors 1

λ
x and λx are also in C.
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Therefore 〈p, x〉 = λ
〈
p, 1

λ
x
〉
≥ λα holds and consequently 〈p, x〉 ≥ 0.

λ 〈p, x〉 = 〈p, λx〉 ≥ α shows 0 ≥ α , hence, 〈p, b〉 < α ≤ 0. �

Definition

C∗ :=
{
y ∈ Rn | ∀ x ∈ C 〈y , x〉 ≥ 0

}

is called the dual cone of C.

C

C*

Remark C∗ is a closed, convex cone.

We omit a proof. The statement is an immediate consequence of the definition
of the dual cone.

As an important application let us now consider the following situation: Let
A = (a1, . . . , an) ∈ Rm×n be an (m,n)-matrix with columns a1, . . . , an ∈ Rm.

Definition

cone(A) := cone (a1, . . . , an) := AR
n
+ = {Aw | w ∈ R

n
+}

is called the (positive) conic hull of a1, . . . , an .

Lemma 2.1.2

1) cone(A) is a closed, convex cone.

2)
(
cone(A)

)∗
=
{
y ∈ Rm | AT y ≥ 0

}

Proof:

1) It is obvious that Cn := cone (a1, . . . , an) is a convex cone. We will prove
that it is closed by means of induction over n:

For n = 1 the cone C1 = {ξ1a1 | ξ1 ≥ 0} is — in the nontrivial case —
a closed half line. For the induction step from n to n+ 1 we assume that
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every conic hull generated by not more than n vectors is closed.

Firstly, consider the case that

−aj ∈ cone (a1, . . . , aj−1, aj+1, . . . , an+1) for all j = 1, . . . , n+ 1 .

It follows that Cn+1 = span{a1, . . . , an+1} and therefore obviously that
Cn+1 is closed:

The inclusion from left to right is trivial, and the other one follows, with
ξ1, . . . , ξn+1 ∈ R from

n+1∑

j=1

ξj aj =

n+1∑

j=1

|ξj | sign(ξj)aj .

Otherwise, assume wlog −an+1 /∈ cone (a1, . . . , an) = Cn ; because of
the induction hypothesis, Cn is closed and therefore δ := δ(−an+1, Cn)

is positive. Every x ∈ Cn+1 can be written in the form x =
∑n+1

j=1 ξj aj

with ξ1, . . . , ξn+1 ∈ R+ . Then

ξn+1 ≤ ‖x‖
δ

holds because in the nontrivial case ξn+1 > 0 this follows directly from

‖x‖ = ξn+1

∥∥∥− an+1 −
n∑

j=1

ξj
ξn+1

aj

︸ ︷︷ ︸
∈Cn

∥∥∥ ≥ ξn+1 δ .

Let (x(k)) be a sequence in Cn+1 and x ∈ R
m with x(k) → x for k → ∞ .

We want to show x ∈ Cn+1 : For k ∈ N there exist ξ
(k)
1 , . . . , ξ

(k)
n+1 ∈ R+

such that

x(k) =

n+1∑

j=1

ξ
(k)
j aj .

As (x(k)) is a convergent sequence, there exists an M > 0 such that
‖x(k)‖ ≤M for all k ∈ N , and we get

0 ≤ ξ
(k)
n+1 ≤ M

δ
.

wlog let the sequence
(
ξ
(k)
n+1

)
be convergent (otherwise, consider a suit-

able subsequence), and set ξn+1 := lim ξ
(k)
n+1 . So we have

Cn ∋ x(k) − ξ
(k)
n+1an+1 −→ x− ξn+1an+1 .

By induction, Cn is closed, thus x − ξn+1an+1 is an element of Cn and
consequently x is in Cn+1 .
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2) The definitions of cone(A) and of the dual cone give immediately:

(
cone(A)

)∗
=
{
y ∈ Rm | ∀ v ∈ cone (A) 〈v , y 〉 ≥ 0

}

=
{
y ∈ Rm | ∀ w ∈ Rn

+ 〈Aw, y 〉 ≥ 0
}

=
{
y ∈ Rm | ∀ w ∈ Rn

+

〈
w,AT y

〉
≥ 0

}

X
=
{
y ∈ R

m | AT y ≥ 0
}

�

A crucial tool for the following considerations is the

Theorem of the Alternative (Farkas (1902))

For A ∈ Rm×n and b ∈ Rm the following are strong alternatives:

1) ∃ x ∈ R
n
+ Ax = b

2) ∃ y ∈ Rm AT y ≥ 0 ∧ bTy < 0

Proof: 1) =⇒ ¬ 2): For x ∈ Rn
+ with Ax = b and y ∈ Rm with AT y ≥ 0

we have bT y = xTAT y ≥ 0.

¬ 1) ⇐= 2): C := cone(A) is a closed convex cone which does not contain
the vector b: Following the addendum in the Separating Hyperplane Theorem
there exists a y ∈ Rm with 〈y , x〉 ≥ 0 > 〈y , b〉 for all x ∈ C, in particular
aT

ν y = 〈y , aν 〉 ≥ 0, that is, AT y ≥ 0. �

If we illustrate the assertion, the theorem can be memorized easily: 1) means
nothing but b ∈ cone(A). With the open ‘half space’

Hb :=
{
y ∈ R

m | 〈y , b〉 < 0
}

the condition 2) states that
(
cone(A)

)∗
and Hb have a common point.

In the two-dimensional case, for example, we can illustrate the theorem with
the following picture, which shows case 1):

a1

a2

b

cone(A)

Hb

(
cone(A)

)∗

If you rotate the vector b out of cone(A), you get case 2).
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2.2 Local First-Order Optimality Conditions

We want to take up the minimization problem (P ) from page 39 again and
use the notation introduced there. For x0 ∈ F , the index set

A(x0) :=
{
i ∈ I | gi(x0) = 0

}

describes the inequality restrictions which are active at x0.

The active constraints have a special significance: They restrict feasible corrections
around a feasible point. If a constraint is inactive (gi(x0) < 0) at the feasible point
x0, it is possible to move from x0 a bit in any direction without violating this
constraint.

Definition

Let d ∈ Rn and x0 ∈ F . Then d is called the feasible direction of F at x0

: ⇐⇒ ∃ δ > 0 ∀ τ ∈ [0 , δ ] x0 + τ d ∈ F .

A ‘small’ movement from x0 along such a direction gives feasible points.

The set of all feasible directions of F at x0 is a cone, denoted by

Cfd (x0) .

Let d be a feasible direction of F at x0 . If we choose a δ according to the
definition, then we have

gi(x0 + τ d)︸ ︷︷ ︸
≤ 0

= gi(x0)︸ ︷︷ ︸
=0

+ τ g ′
i (x0)d + o(τ)

for i ∈ A(x0) and 0 < τ ≤ δ . Dividing by τ and passing to the limit as τ → 0
gives g ′

i (x0)d ≤ 0. In the same way we get h ′
j(x0)d = 0 for all j ∈ E .

Definition

For any x0 ∈ F

Cℓ (P, x0) :=
{
d ∈ Rn | ∀ i ∈ A(x0) g

′
i (x0)d ≤ 0 , ∀ j ∈ E h ′

j(x0)d = 0
}

is called the linearizing cone of (P ) at x0. Hence, Cℓ(x0) := Cℓ (P, x0) contains
at least all feasible directions of F at x0 :

Cfd (x0) ⊂ Cℓ(x0)

The linearizing cone is not only dependent on the set of feasible points F but also
on the representation of F (compare Example 4). We therefore write more precisely
Cℓ (P, x0) .
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Definition

For any x0 ∈ D

Cdd (x0) :=
{
d ∈ Rn | f ′(x0)d < 0

}

is called the cone of descent directions of f at x0 .

Note that 0 is not in Cdd (x0); also, for all d ∈ Cdd (x0)

f(x0 + τ d) = f(x0) + τ f ′(x0)d︸ ︷︷ ︸
< 0

+ o(τ)

holds and therefore, f(x0 + τ d) < f(x0) for sufficiently small τ > 0.

Thus, d ∈ Cdd (x0) guarantees that the objective function f can be reduced along
this direction. Hence, for a local minimizer x0 of (P ) it necessarily holds that
Cdd (x0) ∩ Cfd (x0) = ∅ .

We will illustrate the above definitions with the following

Example 1

Let

F :=
{
x = (x1, x2)

T ∈ R
2 | x2

1 + x2
2 − 1 ≤ 0, −x1 ≤ 0, −x2 ≤ 0

}
,

and f be defined by f(x) := x1 + x2 . Hence, F is the part of the unit disk
which lies in the first quadrant. The objective function f evidently attains a
(strict, global) minimum at (0, 0)T .

In both of the following pictures F is colored in dark blue.

x0 := (0, 0)T x0 := (1, 0)T

–0.5

0.5

1

–1 1

∇f(x0)

d

0

0.5

1

1 2

∇f(x0)

d

a) Let x0 := (0, 0)T . g1(x) := x2
1 +x2

2 − 1, g2(x) := −x1 and g3(x) := −x2

give A(x0) = {2, 3} . A vector d := (d1, d2)
T ∈ R2 is a feasible direction
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of F at x0 if and only if d1 ≥ 0 and d2 ≥ 0 hold. Hence, the set Cfd (x0)
of feasible directions is a convex cone, namely, the first quadrant, and it
is represented in the left picture by the gray angular domain. g′2(x0) =
(−1, 0) and g′3(x0) = (0,−1) produce

Cℓ(x0) =
{
d ∈ R

2 | −d1 ≤ 0, −d2 ≤ 0
}
.

Hence, in this example, the linearizing cone and the cone of feasible direc-
tions are the same. Moreover, the cone of descent directions Cdd (x0) —
colored in light blue in the picture — is, because of f ′(x0)d = (1, 1)d =
d1 + d2 , an open half space and disjoint to Cℓ(x0).

b) If x0 := (1, 0)T , we have A(x0) = {1, 3} and d := (d1, d2)
T ∈ R2 is a

feasible direction of F at x0 if and only if d = (0, 0)T or d1 < 0 and
d2 ≥ 0 hold. The set of feasible directions is again a convex cone. In the
right picture it is depicted by the shifted gray angular domain. Because
of g′1(x0) = (2, 0) and g′3(x0) = (0,−1), we get

Cℓ(x0) =
{
d ∈ R

2 | d1 ≤ 0, d2 ≥ 0
}
.

As we can see, in this case the linearizing cone includes the cone of fea-
sible directions properly as a subset. In the picture the cone of descent
directions has also been moved to x0. We can see that it contains feasible
directions of F at x0 . Consequently, f does not have a local minimum
in x0. ⊳

Proposition 2.2.1

For x0 ∈ F it holds that Cℓ(x0) ∩ Cdd (x0) = ∅ if and only if there exist

λ ∈ Rm
+ and µ ∈ Rp such that

∇f(x0) +

m∑

i=1

λi∇gi(x0) +

p∑

j=1

µj ∇hj(x0) = 0 (2)

and

λi gi(x0) = 0 for all i ∈ I. (3)

Together, these conditions — x0 ∈ F , λ ≥ 0 , (2) and (3) — are called
Karush–Kuhn–Tucker conditions, or KKT conditions. (3) is called the
complementary slackness condition or complementarity condition. This con-
dition of course means λi = 0 or (in the nonexclusive sense) gi(x0) = 0 for all
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i ∈ I. A corresponding pair (λ, µ) or the scalars λ1, . . . , λm, µ1, . . . , µp are
called Lagrange multipliers. The function L defined by

L(x, λ, µ) := f(x) +

m∑

i=1

λi gi(x) +

p∑

j=1

µj hj(x) = f(x) + λT g(x) + µTh(x)

for x ∈ D, λ ∈ R
m
+ and µ ∈ R

p is called the Lagrange function or Lagrangian
of (P ). Here we have combined the m functions gi to a vector-valued function
g and respectively the p functions hj to a vector-valued function h .

Points x0 ∈ F fulfilling (2) and (3) with a suitable λ ∈ R
m
+ and µ ∈ R

p play
an important role. They are called Karush–Kuhn–Tucker points, or KKT
points.

Owing to the complementarity condition (3), the multipliers λi corresponding
to inactive restrictions at x0 must be zero. So we can omit the terms for
i ∈ I \ A(x0) from (2) and rewrite this condition as

∇f(x0)+
∑

i∈A(x0)

λi∇gi(x0)+

p∑

j=1

µj ∇hj(x0) = 0 . (2′)

Proof: By definition of Cℓ(x0) and Cdd (x0) it holds that:

d ∈ Cℓ(x0) ∩ Cdd (x0) ⇐⇒





f ′(x0)d < 0

∀ i ∈ A(x0) g ′
i (x0)d ≤ 0

∀ j ∈ E h ′
j(x0)d = 0

⇐⇒





f ′(x0)d < 0

∀ i ∈ A(x0) − g ′
i (x0)d ≥ 0

∀ j ∈ E − h ′
j(x0)d ≥ 0

∀ j ∈ E h ′
j(x0)d ≥ 0

With that the Theorem of the Alternative from section 2.1 directly provides
the following equivalence:

Cℓ(x0) ∩ Cdd (x0) = ∅ if and only if there exist λi ≥ 0 for i ∈ A(x0) and
µ′

j ≥ 0 , µ′′
j ≥ 0 for j ∈ E such that

∇f(x0) =
∑

i∈A(x0)

λi (−∇gi(x0)) +

p∑

j=1

µ′
j (−∇hj(x0)) +

p∑

j=1

µ′′
j ∇hj(x0).

If we now set λi := 0 for i ∈ I \ A(x0) and µj := µ′
j − µ′′

j for j ∈ E , the
above is equivalent to: There exist λi ≥ 0 for i ∈ I and µj ∈ R for j ∈ E
with

∇f(x0) +
m∑

i=1

λi∇gi(x0) +

p∑

j=1

µj ∇hj(x0) = 0
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and

λi gi(x0) = 0 for all i ∈ I . �

So now the question arises whether not just Cfd (x0)∩ Cdd (x0) = ∅ , but even

Cℓ(x0) ∩ Cdd (x0) = ∅ is true for any local minimizer x0 ∈ F . The following
simple example gives a negative answer to this question:

Example 2 (Kuhn–Tucker (1951))

For n = 2 and x = (x1, x2)
T ∈ R2 =: D let

f(x) := −x1 , g1(x) := x2 + (x1 − 1)3 , g2(x) := −x1 and g3(x) := −x2 .

For x0 := (1, 0)T , m = 3 and p = 0 we have:

∇f(x0) = (−1, 0)T , ∇g1(x0) = (0, 1)T , ∇g2(x0) = (−1, 0)T and
∇g3(x0) = (0,−1)T .

Since A(x0) = {1, 3} , we get Cℓ(x0) =
{
(d1, d2)

T ∈ R
2 | d2 = 0

}
, as

well as Cdd (x0) =
{
(d1, d2)

T ∈ R2 | d1 > 0
}

; evidently, Cℓ(x0) ∩ Cdd (x0)
is nonempty. However, the function f has a minimum at x0 subject to the
given constraints.

0

1

0 0.5 1

x

x

2

1

F

•
⊳

Lemma 2.2.2

For x0 ∈ F it holds that: Cℓ(x0) ∩ Cdd (x0) = ∅ ⇐⇒ ∇f(x0) ∈ Cℓ(x0)
∗

Proof:

Cℓ(x0) ∩ Cdd (x0) = ∅ ⇐⇒ ∀ d ∈ Cℓ(x0) 〈∇f(x0) , d〉 = f ′(x0)d ≥ 0

⇐⇒ ∇f(x0) ∈ Cℓ(x0)
∗

�

The cone Cfd (x0) of all feasible directions is too small to ensure general optimality

conditions. Difficulties may occur due to the fact that the boundary of F is curved.
Therefore, we have to consider a set which is less intuitive but bigger and with more
suitable properties. To attain this goal, it is useful to state the concept of being
tangent to a set more precisely:

Definition

A sequence (xk) converges in direction d to x0

: ⇐⇒ xk = x0 + αk(d+ rk) with αk ↓ 0 and rk → 0.
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We will use the following notation: xk
d−→ x0

xk
d−→ x0 simply means: There exists a sequence of positive numbers (αk)

such that αk ↓ 0 and

1

αk

(xk − x0) −→ d for k −→ ∞ .

Definition

Let M be a nonempty subset of Rn and x0 ∈M . Then

Ct (M,x0) :=
{
d ∈ Rn | ∃ (xk) ∈MN xk

d−→ x0

}

is called the tangent cone of M at x0 . The vectors of Ct (M,x0) are called
tangents or tangent directions of M at x0 .

Of main interest is the special case

Ct (x0) := Ct (F , x0) .

Example 3

a) The following two figures illustrate the cone of tangents for

F :=
{
x = (x1, x2)

T ∈ R
2 | x1 ≥ 0, x2

1 ≥ x2 ≥ x2
1 (x1 − 1)

}

and the points x0 ∈
{
(0, 0)T , (2, 4)T , (1, 0)T

}
. For convenience the origin

is translated to x0 . The reader is invited to verify this:

x0 = (0, 0)T and x0 = (2, 4)T x0 = (1, 0)T

0

2

4

2 0

2

4

1

b) F :=
{
x ∈ Rn | ‖x‖2 = 1

}
: Ct (x0) =

{
d ∈ Rn | 〈d, x0 〉 = 0

}

c) F :=
{
x ∈ Rn | ‖x‖2 ≤ 1

}
: Then Ct (x0) = Rn if ‖x0‖2 < 1 holds, and

Ct (x0) =
{
d ∈ Rn | 〈d, x0 〉 ≤ 0

}
if ‖x0‖2 = 1.

These assertions have to be proven in exercise 10. ⊳
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Lemma 2.2.3

1) Ct (x0) is a closed cone, 0 ∈ Ct (x0) .

2) Cfd (x0) ⊂ Ct (x0) ⊂ Cℓ(x0)

Proof: The proof of 1) is to be done in exercise 9.

2) First inclusion: As the tangent cone Ct (x0) is closed, it is sufficient to
show the inclusion Cfd (x0) ⊂ Ct (x0). For d ∈ Cfd (x0) and ‘large’ integers

k it holds that x0 + 1
k
d ∈ F . With αk := 1

k
and rk := 0 this shows

d ∈ Ct (x0).

Second inclusion: Let d ∈ Ct (x0) and (xk) ∈ FN be a sequence with
xk = x0 + αk (d+ rk), αk ↓ 0 and rk → 0. For i ∈ A(x0)

gi(xk)︸ ︷︷ ︸
≤0

= gi(x0)︸ ︷︷ ︸
=0

+αk g
′
i (x0)(d + rk) + o(αk)

produces the inequality g ′
i (x0)d ≤ 0. In the same way we get h ′

j(x0)d = 0
for j ∈ E . �

Now the question arises whether Ct (x0) = Cℓ(x0) always holds. The following
example gives a negative answer:

Example 4

a) Consider F :=
{
x ∈ R

2 | −x3
1 + x2 ≤ 0 , −x2 ≤ 0

}
and x0 := (0, 0)T .

In this case A(x0) = {1, 2} . This gives

Cℓ(x0) =
{
d ∈ R2 | d2 = 0

}
and Ct (x0) =

{
d ∈ R2 | d1 ≥ 0 , d2 = 0

}
.

The last statement has to be shown in exercise 10.

b) Now let F :=
{
x ∈ R

2 | −x3
1 + x2 ≤ 0 , −x1 ≤ 0 , −x2 ≤ 0

}
and

x0 := (0, 0)T . Then A(x0) = {1, 2, 3} and therefore
Cℓ(x0) =

{
d ∈ R2 | d1 ≥ 0 , d2 = 0

}
= Ct (x0).

Hence, the linearizing cone is dependent on the representation of the set
of feasible points F which is the same in both cases!

0

0.5

1

1.5

1

x

x

2

1
x0

F

• ⊳
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Lemma 2.2.4

For a local minimizer x0 of (P ) it holds that ∇f(x0) ∈ Ct (x0)
∗, hence

Cdd (x0) ∩ Ct (x0) = ∅ .

Geometrically this condition states that for a local minimizer x0 of (P ) the angle
between the gradient and any tangent direction, especially any feasible direction,
does not exceed 90◦.

Proof: Let d ∈ Ct (x0). Then there exists a sequence (xk) ∈ FN such that
xk = x0 + αk(d+ rk), αk ↓ 0 and rk −→ 0.

0 ≤ f(xk) − f(x0) = αkf
′(x0)(d+ rk) + o(αk)

gives the result f ′(x0)d ≥ 0. �

The principal result in this section is the following:

Theorem 2.2.5 (Karush–Kuhn–Tucker)

Suppose that x0 is a local minimizer of (P ) , and the constraint qualifica-

tion1 Cℓ(x0)
∗ = Ct (x0)

∗ is fulfilled. Then there exist vectors λ ∈ R
m
+ and

µ ∈ Rp such that

∇f(x0) +
m∑

i=1

λi∇gi(x0) +
p∑

j=1

µj ∇hj(x0) = 0 and

λi gi(x0) = 0 for i = 1, . . . ,m .

Proof: If x0 is a local minimizer of (P ), it follows from lemma 2.2.4 with the
help of the presupposed constraint qualification that

∇f(x0) ∈ Ct (x0)
∗ = Cℓ(x0)

∗ ;

lemma 2.2.2 yields Cℓ(x0) ∩ Cdd (x0) = ∅ and the latter together with propo-
sition 2.2.1 gives the result. �

In the presence of the presupposed constraint qualification Ct (x0)
∗ = Cℓ(x0)

∗ the
condition ∇f(x0) ∈ Ct (x0)

∗ of lemma 2.2.4 transforms to ∇f(x0) ∈ Cℓ(x0)
∗. This

claim can be confirmed with the aid of a simple linear optimization problem:

Example 5 (Kleinmichel (1975))

For x = (x1, x2)
T ∈ R2 we consider the problem

f(x) := x1 + x2 −→ min

−x3
1 + x2 ≤ 1

x1 ≤ 1 , −x2 ≤ 0

1 Guignard (1969)
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0

1

2

–1 1

x

x

2

1

F
•

•

and ask whether the feasible points x0 := (−1, 0)T and x̃0 := (0, 1)T are local
minimizers. (The examination of the picture shows immediately that this is
not the case for x̃0, and that the objective function f attains a (strict, global)
minimum at x0. But we try to forget this for a while.) We have A(x0) =
{1, 3}. In order to show that ∇f(x0) ∈ Cℓ(x0)

∗, hence, f ′(x0)d ≥ 0 for
all d ∈ Cℓ(x0), we compute min

d∈Cℓ(x0)
f ′(x0)d. So we have the following linear

problem:
d1 + d2 −→ min

−3d1 + d2 ≤ 0

−d2 ≤ 0

Evidently it has the minimal value 0; lemma 2.2.2 gives that Cℓ(x0) ∩ Cdd (x0)
is empty. Following proposition 2.2.1 there exist λ1, λ3 ≥ 0 for x0 satisfying

(
1

1

)
+ λ1

(
−3

1

)
+ λ3

(
0

−1

)
=

(
0

0

)
.

The above yields λ1 = 1
3 , λ3 = 4

3 .

For x̃0 we have A(x̃0) = {1} . In the same way as the above this leads to the
subproblem

d1 + d2 −→ min

d2 ≤ 0

whose objective function is unbounded; therefore Cℓ(x̃0) ∩ Cdd (x̃0) 6= ∅.
So x̃0 is not a local minimizer, but the point x0 remains as a candidate. ⊳

Convex Functions

Convexity plays a central role in optimization. We already had some simple results
from Convex Analysis in section 2.1. Convex optimization problems — the functions
f and gi are supposed to be convex and the funcions hj affinely linear — are by far
easier to solve than general nonlinear problems. These assumptions ensure that the
problems are well-behaved. They have two significant properties: A local minimizer
is always a global one. The KKT conditions are sufficient for optimality. A special
feature of strictly convex functions is that they have at most one minimal point.
But convex functions also play an important role in problems that are not convex.
Therefore a simple and short treatment of convex functions is given here:



C
hapter 2

2.2 Local First-Order Optimality Conditions 53

Definition

Let D ⊂ Rn be nonempty and convex. A real-valued function f defined on
at least D is called convex on D if and only if

f
(
(1 − τ)x + τ y

)
≤ (1 − τ)f(x) + τ f(y)

holds for all x, y ∈ D and τ ∈ (0, 1). f is called strictly convex on D if and
only if

f
(
(1 − τ)x + τy

)
< (1 − τ)f(x) + τ f(y)

for all x, y ∈ D with x 6= y and τ ∈ (0, 1). The addition “on D” will be
omitted, if D is the domain of definition. We say f is concave (on D) iff −f
is convex, and strictly concave (on D) iff −f is strictly convex.

For a concave function the line segment joining two points on the graph is never
above the graph.

Let D ⊂ Rn be nonempty and convex and f : D −→ R a convex function.

Properties

1) If f attains a local minimum at a point x∗ ∈ D, then f(x∗) is the global
minimum.

2) f is continuous in
◦

D .

3) The function ϕ defined by ϕ(τ) := f(x+τh)−f(x)
τ

for x ∈
◦

D , h ∈ Rn and
sufficiently small, positive τ is isotone, that is, order-preserving.

4) For D open and a differentiable f it holds that f(y)−f(x) ≥ f ′(x)(y−x)
for all x, y ∈ D .

With the function f defined by f(x) := 0 for x ∈ [0, 1) and f(1) := 1 we
can see that assertion 2) cannot be extended to the whole of D .

Proof:

1) If there existed an x ∈ D such that f(x) < f(x∗), then we would have

f((1 − τ)x∗ + τ x) ≤ (1 − τ)f(x∗) + τ f(x) < f(x∗)

for 0 < τ ≤ 1 and consequently a contradiction to the fact that f attains
a local minimum at x∗.

2) For x0 ∈
◦

D consider the function ψ defined by ψ(h) := f(x0 +h)−f(x0)
for h ∈ Rn with a sufficiently small norm ‖h‖∞ : It is clear that the
function ψ is convex. Let ̺ > 0 such that for

K := {h ∈ R
n | ‖h‖∞ ≤ ̺}
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it holds that x0+K⊂
◦

D. Evidently, there existm ∈ N and a1, . . . , am ∈ Rn

with K = conv(a1, . . . , am) (convex hull). Every h ∈ K may be repre-
sented as h =

∑m
µ=1 γµaµ with γµ ≥ 0 satisfying

∑m
µ=1 γµ = 1. With

α :=

{
max{|ψ(aµ)| | µ = 1, . . . ,m}, if positive

1 , otherwise

we have ψ(h) ≤∑m
µ=1 γµψ(aµ) ≤ α . Now let ε ∈ (0, α ] . Then firstly for

all h ∈ R
n with ‖h‖∞ ≤ ε̺/α we have

ψ(h) = ψ
((

1 − ε
α

)
0 + ε

α

(α
ε
h
))

≤ ε
α
ψ
(α
ε
h
)
≤ ε

and therefore with

0 = ψ(0) = ψ
(

1
2
h− 1

2
h
)
≤ 1

2
ψ(h) + 1

2
ψ(−h)

ψ(h) ≥ −ψ(−h) ≥ −ε , hence, all together |ψ(h)| ≤ ε .

3) Since f is convex, we have

f(x+ τ0h) = f
((

1 − τ0
τ1

)
x+ τ0

τ1
(x+ τ1h)

)

≤
(
1 − τ0

τ1

)
f(x) + τ0

τ1
f(x+ τ1h)

for 0 < τ0 < τ1 . Transformation leads to

f(x+ τ0h) − f(x)

τ0
≤ f(x+ τ1h) − f(x)

τ1
.

4) This follows directly from 3) (with h = y − x):

f ′(x)h = lim
τ→0+

f(x+ τ h) − f(x)

τ
≤ f(x+ h) − f(x)

1
�

Constraint Qualifications

The condition Cℓ(x0)
∗ = Ct (x0)

∗ is very abstract, extremely general, but not easily
verifiable. Therefore, for practical problems, we will try to find regularity assump-
tions called constraint qualifications (CQ) which are more specific, easily verifiable,
but also somewhat restrictive.

For the moment we will consider the case that we only have inequality con-

straints. Hence,
�

�

�

�E = ∅ and I = {1, . . . ,m} with an m ∈ N0 . Linear con-
straints pose fewer problems than nonlinear constraints. Therefore, we will
assume the partition

I = I1 ⊎ I2.



C
hapter 2

2.2 Local First-Order Optimality Conditions 55

If and only if i ∈ I2 let gi(x) = aT
i x−bi with suitable vectors ai and bi , that

is, gi is ‘linear’, more precisely affinely linear. Corresponding to this partition,
we will also split up the set of active constraints A(x0) for x0 ∈ F into

Aj(x0) := Ij ∩A(x0) for j = 1, 2 .

We will now focus on the following Constraint Qualifications :

(GCQ) Guignard Constraint Qualification: Cℓ(x0)
∗ = Ct (x0)

∗

(ACQ) Abadie Constraint Qualification: Cℓ(x0) = Ct (x0)

(MFCQ) Mangasarian–Fromovitz Constraint Qualification:

∃ d ∈ Rn

{
g ′

i (x0)d < 0 for i ∈ A1(x0)

g ′
i (x0)d ≤ 0 for i ∈ A2(x0)

(SCQ) Slater Constraint Qualification:

The functions gi are convex for all i ∈ I and

∃ x̃ ∈ F gi(x̃) < 0 for i ∈ I1.

The conditions g ′

i (x0)d < 0 and g ′

i (x0)d ≤ 0 each define half spaces. (MFCQ)
means nothing else but that the intersection of all of these half spaces is nonempty.

We will prove (SCQ) =⇒ (MFCQ) =⇒ (ACQ) .

The constraint qualification (GCQ) introduced in theorem 2.2.5 is a trivial
consequence of (ACQ).

Proof: (SCQ) =⇒ (MFCQ): From the properties of convex and affinely linear
functions and the definition of A(x0) we get:

g ′
i (x0)(x̃ − x0) ≤ gi(x̃) − gi(x0) = gi(x̃) < 0 for i ∈ A1(x0)

g ′
i (x0)(x̃ − x0) = gi(x̃) − gi(x0) = gi(x̃) ≤ 0 for i ∈ A2(x0) .

(MFCQ) =⇒ (ACQ): Lemma 2.2.3 gives that Ct (x0) ⊂ Cℓ(x0) and 0 ∈ Ct (x0)
always hold. Therefore it remains to prove that Cℓ(x0) \ {0} ⊂ Ct (x0). So let
d0 ∈ Cℓ(x0) \ {0} . Take d as stated in (MFCQ). Then for a sufficiently small
λ > 0 we have d0 + λd 6= 0. Since d0 is in Cℓ(x0), it follows that

g ′
i (x0)(d0 + λd) < 0 for i ∈ A1(x0) and

g ′
i (x0)(d0 + λd) ≤ 0 for i ∈ A2(x0) .

For the moment take a fixed λ . Setting u := d0+λd
‖d0+λd‖2

produces
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gi(x0 + tu) = gi(x0)︸ ︷︷ ︸
=0

+ t g ′
i (x0)u︸ ︷︷ ︸

<0

+ o(t) for i ∈ A1(x0) and

gi(x0 + tu) = gi(x0)︸ ︷︷ ︸
=0

+ t g ′
i (x0)u︸ ︷︷ ︸
≤0

for i ∈ A2(x0) .

Thus, we have gi(x0 + tu) ≤ 0 for i ∈ A(x0) and t > 0 sufficiently small.
For the indices i ∈ I \ A(x0) this is obviously true. Hence, there exists a
t0 > 0 such that x0 + tu ∈ F for 0 ≤ t ≤ t0 . For the sequence (xk)

defined by xk := x0 + t0
k
u it holds that xk

u−→ x0. Therefore, u ∈ Ct (x0)
and consequently d0 + λd ∈ Ct (x0). Passing to the limit as λ −→ 0 yields
d0 ∈ Ct (x0). Lemma 2.2.3 or respectively exercise 9 gives that Ct (x0)is closed.
Hence, d0 ∈ Ct (x0). �

Now we will consider the general case, where there may also occur equality
constraints. In this context one often finds the following linear independence
constraint qualification in the literature:

(LICQ) The vectors
(
∇gi(x0) | i ∈ A(x0)

)
and

(
∇hj(x0) | j ∈ E

)
are

linearly independent.

(LICQ) greatly reduces the number of active inequality constraints. Instead
of (LICQ) we will now consider the following weaker constraint qualification
which is a variant of (MFCQ), and is often cited as the Arrow–Hurwitz–
Uzawa constraint qualification:

(AHUCQ) There exists a d ∈ Rn such that

{
g ′

i (x0)d < 0 for i ∈ A(x0) ,

h ′
j(x0)d = 0 for j ∈ E ,

and the vectors
(
∇hj(x0) | j ∈ E

)
are linearly independent.

We will show: (LICQ) =⇒ (AHUCQ) =⇒ (ACQ)

Proof: (LICQ) =⇒ (AHUCQ): (AHUCQ) follows, for example, directly from
the solvability of the system of linear equations

g ′
i (x0)d = −1 for i ∈ A(x0),

h ′
j(x0)d = 0 for j ∈ E .

(AHUCQ) =⇒ (ACQ): Lemma 2.2.3 gives that again we only have to show
d0 ∈ Ct (x0) for all d0 ∈ Cℓ(x0) \ {0} . Take d as stated in (AHUCQ). Then
we have d0 + λd =: w 6= 0 for a sufficiently small λ > 0 and thus

g ′
i (x0)w < 0 for i ∈ A(x0) and

h ′
j(x0)w = 0 for j ∈ E .

Denote
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A :=
(
∇h1(x0), . . . ,∇hp(x0)

)
∈ R

n×p .

For that ATA is regular because rank(A) = p . Now consider the following
system of linear equations dependent on u ∈ Rp and t ∈ R :

ϕj(u, t) := hj(x0 +Au + tw) = 0 (j = 1, . . . , p)

For the corresponding vector-valued function ϕ we have ϕ(0, 0) = 0, and
because of

∂ϕj

∂ui
(u, t) = h ′

j(x0 +Au+ tw)∇hi(x0) ,

we are able to solve ϕ(u, t) = 0 locally for u, that is, there exist a nullneigh-
borhood U0 ⊂ R and a continuously differentiable function u : U0 −→ Rp

satisfying

u(0) = 0 ,

hj(x0 +Au(t) + tw︸ ︷︷ ︸
=: x(t)

) = 0 for t ∈ U0 (j = 1, . . . , p) .

Differentiation with respect to t at t = 0 leads to

h ′
j(x0)

(
Au ′(0) + w

)
= 0 (j = 1, . . . , p)

and consequently — considering that h ′
j(x0)w = 0 and ATA is regular —

to u ′(0) = 0. Then for i ∈ A(x0) it holds that

gi(x(t)) = gi(x0) + t g ′
i (x0)x

′(0) + o(t) = t g ′
i (x0)

(
Au ′(0) + w

)
+ o(t) .

With u ′(0) = 0 we obtain

gi(x(t)) = t
(
g ′

i (x0)w +
o(t)

t

)

and the latter is negative for t > 0 sufficiently small .

Hence, there exists a t1 > 0 with x(t) ∈ F for 0 ≤ t ≤ t1 . From

x

(
t1
k

)
= x0 +

t1
k

(
w + A

u(t1/k)

t1/k︸ ︷︷ ︸
−→ 0 (k→∞)

)

for k ∈ N we get x
(

t1
k

) w−→ x0 ; this yields w = d0 + λd ∈ Ct (x0) and also
by passing to the limit as λ→ 0

d0 ∈ Ct (x0) = Ct (x0) . �
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Convex Optimization Problems

Firstly suppose that C ⊂ Rn is nonempty and the functions f, gi : C −→ R

are arbitrary for i ∈ I . We consider the general optimization problem

(P )

{
f(x) −→ min

gi(x) ≤ 0 for i ∈ I := {1, . . . ,m} .

In the following section the Lagrangian L to (P ) defined by

L(x, λ) := f(x) +

m∑

i=1

λi gi(x) = f(x) + 〈λ, g(x)〉 for x ∈ C and λ ∈ R
m
+

will play an important role. As usual we have combined the m functions gi

to a vector-valued function g .

Definition

A pair (x∗, λ∗) ∈ C × Rm
+ is called a saddlepoint of L if and only if

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗)

holds for all x ∈ C and λ ∈ Rm
+ , that is, x∗ minimizes L( · , λ∗) and λ∗

maximizes L(x∗, · ).
Lemma 2.2.6

If (x∗, λ∗) is a saddlepoint of L, then it holds that:

• x∗ is a global minimizer of (P ).

• L(x∗, λ∗) = f(x∗)

• λ∗i gi(x
∗) = 0 for all i ∈ I .

Proof: Let x ∈ C and λ ∈ Rm
+ . From

0 ≥ L(x∗, λ) − L(x∗, λ∗) = 〈λ− λ∗ , g(x∗)〉 (4)

we obtain for λ := 0

〈λ∗ , g(x∗)〉 ≥ 0 . (5)

With λ := λ∗ + ei we get — also from (4) —

gi(x
∗) ≤ 0 for all i ∈ I , that is, g(x∗) ≤ 0 . (6)

Because of (6), it holds that 〈λ∗ , g(x∗)〉 ≤ 0. Together with (5) this produces

〈λ∗ , g(x∗)〉 = 0 and hence, λ∗i gi(x
∗) = 0 for all i ∈ I .
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For x ∈ F it follows that

f(x∗) = L(x∗, λ∗) ≤ L(x, λ∗) = f(x) + 〈λ∗, g(x)︸︷︷︸
≤0

〉 ≤ f(x) .

Therefore x∗ is a global minimizer of (P ). �

We assume now that C is open and convex and the functions f, gi : C −→ R

are continuously differentiable and convex for i ∈ I . In this case we write
more precisely (CP ) instead of (P ).

Theorem 2.2.7

If the Slater constraint qualification holds and x∗ is a minimizer of (CP ),

then there exists a vector λ∗ ∈ Rm
+ such that (x∗, λ∗) is a saddlepoint of L.

Proof: Taking into account our observations from page 55, theorem 2.2.5 gives
that there exists a λ∗ ∈ R

m
+ such that

0 = Lx(x∗, λ∗) and 〈λ∗ , g(x∗)〉 = 0 .

With that we get for x ∈ C 1

L(x, λ∗) − L(x∗, λ∗) ≥ Lx(x∗, λ∗)(x − x∗) = 0

and
L(x∗, λ∗) − L(x∗, λ) = −

〈
λ︸︷︷︸
≥0

, g(x∗)︸ ︷︷ ︸
≤0

〉
≥ 0 .

Hence, (x∗, λ∗) is a saddlepoint of L . �

The following example shows that the Slater constraint qualification is es-
sential in this theorem:

Example 6

With n = 1 and m = 1 we regard the convex problem

(P )

{
f(x) := −x −→ min

g(x) := x2 ≤ 0 .

The only feasible point is x∗ = 0 with value f(0) = 0. So 0 minimizes f(x)
subject to g(x) ≤ 0.

L(x, λ) := −x + λx2 for λ ≥ 0, x ∈ R. There is no λ∗ ∈ [0,∞) such that
(x∗, λ∗) is a saddlepoint of L . ⊳

The following important observation shows that neither constraint qualifica-
tions nor second-order optimality conditions, which we will deal with in the

1 By the convexity of f and gi the function L( · , λ∗) is convex.
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next section, are needed for a sufficient condition for general convex optimiza-
tion problems :

Suppose that f, gi, hj : Rn −→ R are continuously differentiable functions
with f and gi convex and hj (affinely) linear (i ∈ I, j ∈ E), and consider
the following convex optimization problem2

(CP )





f(x) −→ min

gi(x) ≤ 0 for i ∈ I
hj(x) = 0 for j ∈ E .

We will show that for this special kind of problem every KKT point already
gives a (global) minimum:

Theorem 2.2.8

Suppose x0 ∈ F and there exist vectors λ ∈ R
m
+ and µ ∈ R

p such that

∇f(x0) +
m∑

i=1

λi∇gi(x0) +
p∑

j=1

µj ∇hj(x0) = 0 and

λi gi(x0) = 0 for i = 1, . . . ,m,

then (CP ) attains its global minimum at x0 .

The Proof of this theorem is surprisingly simple:

Taking into account 4) on page 53, we get for x ∈ F :

f(x) − f(x0) ≥
f convex

f ′(x0)(x − x0)

= −
m∑

i=1

λi g
′
i (x0)(x − x0) −

p∑
j=1

µj h ′
j(x0)(x− x0)︸ ︷︷ ︸

=hj(x)−hj(x0)=0

≥
gi convex

−
m∑

i=1

λi (gi(x) − gi(x0)) = −
m∑

i=1

λi gi(x) ≥ 0 �

The following example shows that even if we have convex problems the KKT condi-
tions are not necessary for minimal points:

Example 7

With n = 2, m = 2 and x = (x1, x2)
T ∈ D := R2 we consider:

2 Since the functions hj are assumed to be (affinely) linear, exercise 6 gives that
this problem can be written in the form from page 58 by substituting the two
inequalities hj(x) ≤ 0 and −hj(x) ≤ 0 for every equation hj(x) = 0.
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(P )





f(x) := x1 −→ min

g1(x) := x2
1+(x2−1)2−1 ≤ 0

g2(x) := x2
1+(x2+1)2−1 ≤ 0

Obviously, only the point x0 := (0, 0)T is feasible. Hence, x0 is the (global)
minimal point. Since ∇f(x0) = (1, 0)T , ∇g1(x0) = (0,−2)T and ∇g2(x0) =
(0, 2)T , the gradient condition of the KKT conditions is not met. f is linear,
the functions gν are convex. Evidently, however, the Slater condition is not
fulfilled.

1−1

1

2

−1

−2

∇f(x0)

∇
g
1
(x

0
)

∇
g
2
(x

0
)

x0

g1(x)=0

g2(x)=0

x2

x1

Of course, one could also argue from proposition 2.2.1: The cones

Cdd (x0) =
{
d ∈ R

2 | f ′(x0)d < 0
}

=
{
d ∈ R

2 | d1 < 0
}

and

Cℓ(x0) =
{
d ∈ R

2 | ∀ i ∈ A(x0) g
′
i (x0)d ≤ 0

}
=
{
d ∈ R

2 | d2 = 0
}

are clearly not disjoint. ⊳

2.3 Local Second-Order Optimality Conditions

To get a finer characterization, it is natural to examine the effects of second-order
terms near a given point too. The following second-order results take the ‘curvature’
of the feasible region in a neighborhood of a ‘candidate’ for a minimizer into account.
The necessary second-order condition sT Hs ≥ 0 and the sufficient second-order
condition sT Hs > 0 for the Hessian H of the Lagrangian with respect to x regard
only certain subsets of vectors s .

Suppose that the functions f, gi and hj are twice continuously differentiable.
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Theorem 2.3.1 (Necessary second-order condition)

Suppose x0 ∈ F and there exist λ ∈ Rm
+ and µ ∈ Rp such that

∇f(x0) +
m∑

i=1

λi∇gi(x0) +
p∑

j=1

µj∇hj(x0) = 0 and

λi gi(x0) = 0 for all i ∈ I.

If (P ) has a local minimum at x0 , then

sT
(
∇2f(x0) +

m∑

i=1

λi∇2gi(x0) +

p∑

j=1

µj ∇2hj(x0)
)
s ≥ 0

holds for all s ∈ Ct+ (x0) , where

F+ := F+(x0) :=
{
x ∈ F | gi(x) = 0 for all i ∈ A+(x0)

}
with

A+(x0) :=
{
i ∈ A(x0) | λi > 0

}
and

Ct+ (x0) := Ct (F+, x0) =
{
d ∈ Rn | ∃ (xk) ∈ FN

+ xk
d−→ x0

}
.

With the help of the Lagrangian L the second and fifth lines can be written
more clearly

∇x L(x0, λ, µ) = 0 ,

respectively
sT ∇2

xx L(x0, λ, µ) s ≥ 0 .

Proof: It holds that

λi gi(x) = 0 for all x ∈ F+

because we have λi = 0 for i ∈ I \ A+(x0) and gi(x) = 0 for i ∈ A+(x0),
respectively.

With the function ϕ defined by

ϕ(x) := f(x) +
m∑

i=1

λi gi(x) +

p∑

j=1

µj hj(x) = L(x, λ, µ)

for x ∈ D this leads to the following relation:

ϕ(x) = f(x) for x ∈ F+ .

x0 gives a local minimum of f on F , therefore one of ϕ on F+ .

Now let s ∈ Ct+ (x0). Then by definition of the tangent cone there exists a
sequence (x(k)) in F+, such that x(k) = x0 +αk(s+ rk), αk ↓ 0 and rk → 0.
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By assumption ∇ϕ(x0) = 0. With the Taylor theorem we get

ϕ(x0) ≤ ϕ
(
x(k)

)
= ϕ(x0) +αk ϕ

′(x0)︸ ︷︷ ︸
=0

(s+ rk)

+1
2
α2

k (s+ rk)T∇2ϕ
(
x0 + τk(x(k) − x0)

)
(s+ rk)

for all sufficiently large k and a suitable τk ∈ (0, 1) .

Dividing by α2
k/2 and passing to the limit as k → ∞ gives the result

sT ∇2ϕ(x0)s ≥ 0 . �

In the following example we will see that x0 := (0, 0, 0)T is a stationary point.
With the help of theorem 2.3.1 we want to show that the necessary condition for a
minimum is not met.

Example 8 f(x) := x3 − 1
2
x2

1 −→ min

g1(x) := −x2
1 − x2 − x3 ≤ 0

g2(x) := −x2
1 + x2 − x3 ≤ 0

g3(x) := −x3 ≤ 0

For the point x0 := (0, 0, 0)T we have f ′(x0) = (0, 0, 1) , A(x0) = {1, 2, 3}
and g′1(x0) = (0,−1,−1), g′2(x0) = (0, 1,−1), g′3(x0) = (0, 0,−1).

We start with the gradient condition:

∇x L(x0, λ) =




0
0
1


+ λ1




0
−1
−1


+ λ2




0
1

−1


+ λ3




0
0

−1


 =




0
0
0




⇐⇒
{
−λ1 + λ2 = 0

−λ1 − λ2 − λ3 = −1

⇐⇒ λ2 = λ1 , λ3 = 1 − 2λ1

For λ1 := 1/2 we obtain λ = (1/2, 1/2, 0)T ∈ R3
+ and λi gi(x0) = 0 for i ∈ I.

Hence, we get A+(x0) = {1, 2} ,

F+ =
{
x ∈ R

3 | g1(x) = g2(x) = 0 , g3(x) ≤ 0
}

= {(0, 0, 0)T}

and therefore Ct+ (x0) = {(0, 0, 0)T} . In this way no decision can be made!

Setting λ1 := 0 we obtain respectively λ = e3, A+(x0) = {3} ,

F+ = {x ∈ F | x3 = 0} , Ct+ (x0) =
{
α e1 | α ∈ R

}
and

H := ∇2f(x0) + ∇2g3(x0) =




−1 0 0
0 0 0
0 0 0


 .
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H is negative definite on Ct+ (x0). Consequently there is no local minimum
of (P ) at x0 = 0. ⊳

In order to expand the second-order necessary condition to a sufficient condi-
tion, we will now have to make stronger assumptions.

Before we do that, let us recall that there will remain a ‘gap’ between these two
conditions. This fact is well-known (even for real-valued functions of one variable)
and is usually demonstrated by the functions f2 , f3 and f4 defined by

fk(x) := x
k for x ∈ R , k = 2, 3, 4 ,

at the point x0 = 0.

The following Remark can be proven in the same way as 2) in lemma 2.2.3:

Ct+ (x0) ⊂ Cℓ+ (x0) :=




s ∈ R

n

∣∣∣∣∣

g ′
i (x0)s = 0 for i ∈ A+(x0)

g ′
i (x0)s ≤ 0 for i ∈ A(x0) \ A+(x0)

h ′
j(x0)s = 0 for j ∈ E





Theorem 2.3.2 (Sufficient second-order condition)

Suppose x0 ∈ F and there exist vectors λ ∈ Rm
+ and µ ∈ Rp such that

∇x L(x0, λ, µ) = 0 and λT g(x0) = 0 .

Furthermore, suppose that

sT ∇2
xx L(x0, λ, µ) s > 0

for all s ∈ Cℓ+ (x0) \ {0}. Then (P ) attains a strict local minimum at x0 .

Proof (indirect): If f does not have a strict local minimum at x0, then there
exists a sequence (x(k)) in F \ {x0} with x(k) −→ x0 and f(x(k)) ≤ f(x0).

For sk := x(k)−x0

‖x(k)−x0‖2
it holds that ‖sk‖2 = 1. Hence, there exists a convergent

subsequence. wlog suppose sk −→ s for an s ∈ Rn. With αk := ‖x(k) − x0‖2

we have x(k) = x0 + αksk and wlog αk ↓ 0. From

f(x0) ≥ f(x(k)) = f(x0) + αk f
′(x0)sk + o(αk)

it follows that
f ′(x0)s ≤ 0 .

For i ∈ A(x0) and j ∈ E we get in the same way:
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gi(x
(k))︸ ︷︷ ︸

≤0

= gi(x0)︸ ︷︷ ︸
=0

+αk g
′
i (x0)sk + o(αk) =⇒ g ′

i (x0)s ≤ 0

hj(x
(k))︸ ︷︷ ︸

=0

= hj(x0)︸ ︷︷ ︸
=0

+αkh
′
j(x0)sk + o(αk) =⇒ h ′

j(x0)s = 0

With the assumption ∇x L(x0, λ, µ) = 0 it follows that

f ′(x0)s︸ ︷︷ ︸
≤ 0

+

m∑

i=1

λi g
′
i (x0)s

︸ ︷︷ ︸
+

p∑
j=1

µj h
′
j(x0)s︸ ︷︷ ︸
=0

= 0

=
∑

i∈A+(x0)

λi g
′
i (x0)s︸ ︷︷ ︸
≤ 0

and from that g ′
i (x0)s = 0 for all i ∈ A+(x0) .

Since ‖s‖2 = 1, we get s ∈ Cℓ+ (x0) \ {0} . For the function ϕ defined by

ϕ(x) := f(x) +

m∑

i=1

λi gi(x) +

p∑

j=1

µj hj(x) = L(x, λ, µ)

it holds by assumption that ∇ϕ(x0) = 0.

ϕ(x(k)) = f(x(k))︸ ︷︷ ︸
≤ f(x0)

+
m∑

i=1

λi gi(x
(k))︸ ︷︷ ︸

≤ 0

+

p∑

j=1

µj hj(x
(k))︸ ︷︷ ︸

=0

≤ f(x0) = ϕ(x0)

The Taylor theorem yields

ϕ(x(k)) = ϕ(x0) + αk ϕ
′(x0)︸ ︷︷ ︸
=0

sk +
1

2
α2

k s
T
k ∇2ϕ

(
x0 + τk(x(k) − x0)

)
sk

with a suitable τk ∈ (0, 1). From this we deduce, as usual, sT ∇2ϕ(x0)s ≤ 0.

With s ∈ Cℓ+ (x0) \ {0} we get a contradiction to our assumption. �

The following example gives a simple illustration of the necessary and sufficient
second-order conditions of theorems 2.3.1 and 2.3.2:

Example 9 (Fiacco and McCormick (1968))

f(x) := (x1 − 1)2 + x2
2 −→ min

g1(x) := x1 − ̺x2
2 ≤ 0

We are looking for a ̺ > 0 such that x0 := (0, 0)T is a local minimizer
of the problem: With ∇f(x0) = (−2, 0)T ,∇g1(x0) = (1, 0)T the condition
∇xL(x0, λ, µ) = 0 firstly yields λ1 = 2.

In this case (MFCQ) is fulfilled with A1(x0) = A(x0) = {1} = A+(x0). We
have
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Cℓ+ (x0) = {d ∈ R
2 | d1 = 0} = Ct+ (x0) .

The matrix

∇2f(x0) + 2∇2g1(x0) =

(
2 0
0 2

)
+ 2

(
0 0
0 −2̺

)
= 2

(
1 0
0 1 − 2̺

)

is negative definite on Ct+ (x0) for ̺ > 1/2. Thus the second-order necessary
condition of theorem 2.3.1 is violated and so there is no local minimum at
x0. For ̺ < 1/2 the Hessian is positive definite on Cℓ+ (x0). Hence, the
sufficient conditions of theorem 2.3.2 are fulfilled and thus there is a strict
local minimum at x0. When ̺ = 1/2, this result is not determined by the
second-order conditions; but we can confirm it in the following simple way:
f(x) = (x1 − 1)2 + x2

2 = x2
1 + 1 + (x2

2 − 2x1). Because of x2
2 − 2x1 ≥ 0 this

yields f(x) ≥ 1 and f(x) = 1 only for x1 = 0 and x2
2 − 2x1 = 0. Hence,

there is a strict local minimum at x0.

̺ = 1/4 ̺ = 1

–2

2

–1 1 3

–2

0

2

–1 1 3

⊳

2.4 Duality

Duality plays a crucial role in the theory of optimization and in the development of
corresponding computational algorithms. It gives insight from a theoretical point of
view but is also significant for computational purposes and economic interpretations,
for example shadow prices. We shall concentrate on some of the more basic results
and limit ourselves to a particular duality — Lagrange duality — which is the
most popular and useful one for many purposes.

Given an arbitrary optimization problem, called primal problem, we consider a prob-
lem that is closely related to it, called the Lagrange dual problem. Several prop-
erties of this dual problem are demonstrated in this section. They help to provide
strategies for solving the primal and the dual problem. The Lagrange dual problem
of large classes of important nonconvex optimization problems can be formulated as
an easier problem than the original one.
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Lagrange Dual Problem

With n ∈ N , m, p ∈ N0 , ∅ 6= C ⊂ Rn, functions f : C −→ R, g =
(g1, . . . , gm)T : C −→ Rm, h = (h1, . . . , hp)

T : C −→ Rp and the feasible
region

F :=
{
x ∈ C | g(x) ≤ 0, h(x) = 0

}

we regard the primal problem in standard form:

(P )

{
f(x) −→ min

x ∈ F

There is a certain flexibility in defining a given problem: Some of the constraints
gi(x) ≤ 0 or hj(x) = 0 can be included in the definition of the set C .

Substituting the two inequalities hj(x) ≤ 0 and −hj(x) ≤ 0 for every equation
hj(x) = 0 we can assume wlog p = 0. Then we have

F =
{
x ∈ C | g(x) ≤ 0

}
.

The Lagrangian function L is defined as a weighted sum of the objective
function and the constraint functions, defined by

L(x, λ) := f(x) + λT g(x) = f(x) + 〈λ, g(x)〉 = f(x) +

m∑

i=1

λi gi(x)

for x ∈ C and λ = (λ1, . . . , λm)T ∈ Rm
+ .

The vector λ is called the dual variable or multiplier associated with the
problem. For i = 1 , . . . , m we refer to λi as the dual variable or multiplier
associated with the inequality constraint gi(x) ≤ 0.

The Lagrange dual function, or dual function, ϕ is defined by

ϕ(λ) := inf
x∈C

L(x, λ)

on the effective domain of ϕ

FD :=

{
λ ∈ R

m
+ | inf

x∈C
L(x, λ) > −∞

}
.

The Lagrange dual problem, or dual problem, then is defined by

(D)

{
ϕ(λ) −→ max

λ ∈ FD .

In the general case, the dual problem may not have a solution, even if the primal
problem has one; conversely, the primal problem may not have a solution, even if
the dual problem has one:



C
ha

pt
er

 2

68 Optimality Conditions

Example 10

For both examples let C := R,m := 1 and p := 0:

a) (P )

{
f(x) := x+ 2010 −→ min

g(x) := 1
2x

2 ≤ 0

1. x∗ := 0 is the only feasible point. Thus

inf {f(x) | x ∈ F } = f(0) = 2010 .

2. L(x, λ) := f(x) + λg(x) = x+ 2010 + λ
2 x

2 (λ ≥ 0, x ∈ R)

FD = R
++

(for λ > 0: parabola opening upwards; for λ = 0: unbounded
from below) : ϕ(λ) = 2010 − 1

2λ

b) (P )

{
f(x) := exp(−x) −→ min

g(x) := −x ≤ 0

1. We have inf {f(x) | x ∈ F} = inf {exp(−x) | x ≥ 0} = 0, but there exists
no x ∈ F = R+ with f(x) = 0.

2. L(x, λ) := f(x) + λg(x) = exp(−x) − λx (λ ≥ 0) shows FD = {0}
with ϕ(0) = 0. So we have sup{ϕ(λ) | λ ∈ FD} = 0 = ϕ(0). ⊳

The dual objective function ϕ — as the pointwise infimum of a family of
affinely linear functions — is always a concave function, even if the initial
problem is not convex. Hence the dual problem can always be written (ϕ 7→
−ϕ) as a convex minimum problem:

Remark The set FD is convex, and ϕ is a concave function on FD .

Proof: Let x ∈ C , α ∈ [0 , 1] and λ, µ ∈ FD :

L(x, αλ+ (1 − α)µ) = f(x) + 〈αλ+ (1 − α)µ, g(x)〉
= α

(
f(x) + 〈λ, g(x)〉

)
+ (1 − α)

(
f(x) + 〈µ, g(x)〉

)

= αL(x, λ) + (1 − α)L(x, µ)

≥ αϕ(λ) + (1 − α)ϕ(µ)

This inequality has two implications: αλ+ (1 − α)µ ∈ FD , and further,

ϕ(αλ+ (1 − α)µ) ≥ αϕ(λ) + (1 − α)ϕ(µ). �

As we shall see below, the dual function yields lower bounds on the optimal
value

p∗ := v(P ) := inf(P ) := inf {f(x) : x ∈ F}
of the primal problem (P ). The optimal value of the dual problem (D) is
defined by
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d∗ := v(D) := sup(D) := sup {ϕ(λ) : λ ∈ FD} .

We allow v(P ) and v(D) to attain the extended values +∞ and −∞ and follow
the standard convention that the infimum of the empty set is ∞ and the supremum
of the empty set is −∞ . If there are feasible points xk with f(xk) → −∞ (k → ∞),
then v(P ) = −∞ and we say problem (P ) — or the function f on F — is un-
bounded from below. If there are feasible points λk with ϕ(λk) → ∞ (k → ∞), then
v(D) = ∞ and we say problem (D) — or the function ϕ on FD — is unbounded
from above. The problems (P ) and (D) always have optimal values — possibly
∞ or −∞ . The question is whether or not they have optimizers, that is, there ex-
ist feasible points achieving these values. If there exists a feasible point achieving
inf(P ) , we sometimes write min(P ) instead of inf(P ) , accordingly max(D) instead
of sup(D) if there is a feasible point achieving sup(D) . In example 10, a) we had
min(P ) = sup(D), in example 10, b) we got inf(P ) = max(D).

What is the relationship between d∗ and p∗? The following theorem gives a
first answer:

Weak Duality Theorem

If x is feasible to the primal problem (P ) and λ is feasible to the dual problem

(D), then we have ϕ(λ) ≤ f(x) . In particular

d∗ ≤ p∗ .

Proof: Let x ∈ F and λ ∈ FD:

ϕ(λ) ≤ L(x, λ) = f(x) + λT

︸︷︷︸
≥0

g(x)︸︷︷︸
≤0

≤ f(x)

This implies immediately d∗ ≤ p∗. �

Although very easy to show, the weak duality result has useful implications: For
instance, it implies that the primal problem has no feasible points if the optimal
value of (D) is ∞ . Conversely, if the primal problem is unbounded from below,
the dual problem has no feasible points. Any feasible point λ to the dual problem
provides a lower bound ϕ(λ) on the optimal value p∗ of problem (P ), and any
feasible point x to the primal problem (P ) provides an upper bound f(x) on the
optimal value d∗ of problem (D). One aim is to generate good bounds. This can
help to get termination criteria for algorithms: If one has a feasible point x to (P )
and a feasible point λ to (D), whose values are close together, then these values
must be close to the optima in both problems.

Corollary

If f(x∗) = ϕ(λ∗) for some x∗ ∈ F and λ∗ ∈ FD, then x∗ is a minimizer to
the primal problem (P ) and λ∗ is a maximizer to the dual problem (D).
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Proof:

ϕ(λ∗) ≤ sup {ϕ(λ) | λ ∈ FD} ≤ inf {f(x) | x ∈ F} ≤ f(x∗) = ϕ(λ∗)

Hence, equality holds everywhere, in particular

f(x∗) = inf {f(x) | x ∈ F} and ϕ(λ∗) = sup {ϕ(λ) | λ ∈ FD} . �

The difference p∗−d∗ is called the duality gap. If this duality gap is zero, that
is, p∗ = d∗, then we say that strong duality holds. We will see later on: If the
functions f and g are convex (on the convex set C ) and a certain constraint
qualification holds, then one has strong duality. In nonconvex cases, however,
a duality gap

p∗ − d∗ > 0

has to be expected. The following examples illustrate the necessity of making
more demands on f, g and C to get a close relation between the problems
(P ) and (D):

Example 11 With n := 1, m := 1:

a) d∗ = −∞, p∗ = ∞ C := R+ , f(x) := −x, g(x) := π (x ∈ C):

L(x, λ) = −x+ λπ (x ∈ C, λ ∈ R+)

F = ∅, p∗ = ∞; inf
x∈C

L(x, λ) = −∞, FD = ∅, d∗ = −∞

b) d∗ = 0, p∗ = ∞ C := R++ , f(x) := x, g(x) := x (x ∈ C):

L(x, λ) = x+ λx = (1 + λ)x

F = ∅, p∗ = ∞; FD = R+, ϕ(λ) = 0, d∗ = 0

c) −∞ = d∗ < p∗ = 0

C := R , f(x) := x3, g(x) := −x (x ∈ R):

F = R+ , p
∗ = min(P ) = 0

L(x, λ) = x3 − λx
(
x ∈ R, λ ≥ 0

)

FD = ∅ , d∗ = −∞

d) d∗ = max(D) < min(P ) = p∗

C := [0 , 1] , f(x) := −x2, g(x) := 2x− 1 (x ∈ C):

F = [0 , 1/2], p∗ = min(P ) = f(1/2) = −1/4

L(x, λ) = −x2 + λ(2x− 1)
(
x ∈ [0 , 1], λ ≥ 0

)

For λ ∈ FD = R+ we get

ϕ(λ) = min
(
L(0, λ), L(1, λ)

)
= min

(
− λ, λ− 1

)
=

{ −λ , λ ≥ 1/2

λ− 1 , λ < 1/2
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and hence, d∗ = max(D) = ϕ(1/2) = −1/2 . ⊳

With m,n ∈ N , a real (m,n)-matrix A , vectors b ∈ Rm and c ∈ Rn we
consider a linear problem in standard form, that is,

(P )

{
cTx→ min

Ax = b, x ≥ 0 .

The Lagrange dual problem of this linear problem is given by

(D)

{
bTµ→ max

ATµ ≤ c .

Proof: With f(x) := cTx, h(x) := b−Ax (x ∈ Rn
+ =: C) we have

L(x, µ) = 〈c, x〉 + 〈µ, b−Ax〉 = 〈µ, b〉 +
〈
x, c−ATµ

〉
(µ ∈ R

m) .

inf
x∈C

{
〈µ, b〉 +

〈
x, c−ATµ

〉} X
=

{
bTµ , if ATµ ≤ c

−∞ , else �

It is easy to verify that the Lagrange dual problem of (D) — transformed
into standard form — is again the primal problem (cf. exercise 18).

Geometric Interpretation

We give a geometric interpretation of the dual problem that helps to find and
understand examples which illustrate the various possible relations that can
occur between the primal and the dual problem. This visualization can give
insight in theoretical results. For the sake of simplicity, we consider only the
case m = 1, that is, only one inequality constraint:

We look at the image of C under the map (g, f), that is,

B :=
{

(g(x), f(x)) | x ∈ C
}
.

In the primal problem we have to find a pair (v, w) ∈ B with minimal ordinate
w in the (v, w)-plane, that is, the point (v, w) in B which minimizes w
subject to v ≤ 0. It is the point (v∗, w∗) — the image under (g, f) of the
minimizer x∗ to problem (P ) — in the following figure, which illustrates a
typical case for n = 2:
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0 3 6
0

18

36

54 c
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λ

36

(v∗, w∗) ϕ(λ∗)
ϕ(λ)

S

B
slope −λ∗ slope −λ

w (values of f)

v (values of g)

ℓ

To get ϕ(λ) for a fixed λ ≥ 0, we have to minimize L(x, λ) = f(x) + λg(x)
over x ∈ C , that is, w + λv over (v, w) ∈ B .

For any constant c ∈ R, the equation w + λv = c describes a straight line
with slope −λ and intercept c on the w-axis. Hence we have to find the lowest
line with slope −λ which intersects the region B (move the line w + λv = c
parallel to itself as far down as possible while it touches B ). This leads to the
line ℓ tangent to B at the point S in the figure. (The region B has to lie
above the line and to touch it.) Then the intercept on the w-axis gives ϕ(λ).

The geometric description of the dual problem (D) is now clear: Find the
value λ∗ which defines the slope of a tangent to B intersecting the ordinate
at the highest possible point.

Example 12

Let n := 2, m := 1, C := R2
+ and x = (x1, x2)

T ∈ C :

(P )

{
f(x) := x2

1 + x2
2 −→ min

g(x) := 6 − x1 − x2 ≤ 0

g(x) ≤ 0 implies 6 ≤ x1 + x2. The equality 6 = x1 + x2 gives

f(x) = x2
1 + (6 − x1)

2 = 2
(
(x1 − 3)2 + 9

)
.

The minimum is attained at x∗ = (3, 3) with f(x∗) = 18: min(P ) = 18

L(x, λ) = x2
1 + x2

2 + λ(−x1 − x2 + 6)
(
λ ≥ 0, x ∈ C

)
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= (x1 − λ/2)
2

+ (x2 − λ/2)
2

+ 6λ− λ2/2

So we get the minimum for x1 = x2 = λ/2 with value 6λ− λ2/2 .

ϕ(λ) = 6λ − λ2/2 describes a parabola, therefore we get the maximum at

λ = 6 with value ϕ(λ) = 18 : max(D) = 18

To get the region B := {(g(x), f(x)) : x ∈ C }, we proceed as follows:

For x ∈ C we have v := g(x) ≤ 6. The equation −x1 − x2 + 6 = v gives
x2 = −x1 + 6 − v and further

f(x) = x2
1 + x2

2 = x2
1 + (x1 + (v − 6))

2

= 2x2
1 + 2(v − 6)x1 + (v − 6)2

= 2
(
x1 + (v − 6)/2

)2
+ (v − 6)2/2 ≥ (v − 6)2/2

with equality for x1 = −(v − 6)/2 .

f(x) = 2x1 (x1 + v − 6)︸ ︷︷ ︸
≤ 0

+(v − 6)2 ≤ (v − 6)2

with equality for x1 = 0. So we have

B =
{
(v, w) | v ≤ 6 , (v − 6)2/2 ≤ w ≤ (v − 6)2

}
. ⊳

The attentive reader will have noticed that this example corresponds to the
foregoing figure.

Example 13 We look once more at example 11, d):

B := {(g(x), f(x)) | x ∈ C} =
{(

2x− 1, −x2
)
| 0 ≤ x ≤ 1

}

v := g(x) = 2x− 1 ∈ [−1 , 1] gives x = (1 + v)/2, hence,

w := f(x) = −(1 + v)2/4.

Duality Gap

1−1

−1

Bslope −1/2

w (values of f)

v (values of g)

ϕ(λ∗)

(v∗, w∗)

⊳
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Saddlepoints and Duality

For the following characterization of strong duality neither convexity nor dif-
ferentiability is needed:

Theorem 2.4.1

Let x∗ be a point in C and λ∗ ∈ R
m
+ . Then the following statements are

equivalent:

a) (x∗, λ∗) is a saddlepoint of the Lagrange function L .

b) x∗ is a minimizer to problem (P ) and λ∗ is a maximizer to problem

(D) with

f(x∗) = L(x∗, λ∗) = ϕ(λ∗) .

In other words: A saddlepoint of the Lagrangian L exists if and only if the problems
(P ) and (D) have the same value and admit optimizers, that is,

min(P ) = max(D) .

Proof: First, we show that a) implies b):

L(x∗, λ∗) = inf
x∈C

L(x, λ∗) ≤ sup
λ∈Rm

+

inf
x∈C

L(x, λ)

X

≤ inf
x∈C

sup
λ∈Rm

+

L(x, λ) ≤ sup
λ∈Rm

+

L(x∗, λ) = L(x∗, λ∗)

Consequently, ∞ > ϕ(λ∗) = inf
x∈C

L(x, λ∗) = sup
λ∈Rm

+

L(x∗, λ) = L(x∗, λ∗).

By lemma 2.2.6 we know already: x∗ is a minimizer of (P ) with f(x∗) =
L(x∗, λ∗). b) now follows by the corollary to the weak duality theorem.

Conversely, suppose now that b) holds true:

ϕ(λ∗) = inf {L(x, λ∗) | x ∈ C} ≤ L(x∗, λ∗)

= f(x∗) + 〈λ∗ , g(x∗)〉 ≤ f(x∗)
(7)

We have ϕ(λ∗) = f(x∗), by assumption. Therefore, equality holds everywhere
in (7), especially, 〈λ∗ , g(x∗)〉 = 0. This leads to

L(x∗, λ∗) = f(x∗) ≤ L(x, λ∗) for x ∈ C and

L(x∗, λ) = f(x∗) + 〈λ, g(x∗)〉 ≤ f(x∗) = L(x∗, λ∗) for λ ∈ Rm
+ . �

Perturbation and Sensitivity Analysis

In this subsection, we discuss how changes in parameters affect the solution of the
primal problem. This is called sensitivity analysis. How sensitive are the minimizer
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and its value to ‘small’ perturbations in the data of the problem? If parameters
change, sensitivity analysis often helps to avoid having to solve a problem again.

For u ∈ Rm we consider the ‘perturbed’ optimization problem

(Pu)

{
f(x) −→ min

x ∈ Fu

with the feasible region

Fu :=
{
x ∈ C | g(x) ≤ u

}
.

The vector u is called the ‘perturbation vector’. Obviously we have (P0) = (P ).

If a variable ui is positive, this means that we ‘relax’ the i-th constraint gi(x) ≤ 0
to gi(x) ≤ ui; if ui is negative we tighten this constraint.

We define the perturbation or sensitivity function

p : R
m −→ R ∪ {−∞,∞}

associated with the problem (P ) by

p(u) := inf {f(x) | x ∈ Fu} = inf {f(x) | x ∈ C, g(x) ≤ u} for u ∈ R
m

(with inf ∅ := ∞). Obviously we have p(0) = p∗.

The function p gives the minimal value of the problem (Pu) as a function of ‘per-
turbations’ of the right-hand side of the constraint g(x) ≤ 0.

Its effective domain is given by the set

dom(p) := {u ∈ R
m | p(u) <∞} X

= {u ∈ R
m | ∃x ∈ C g(x) ≤ u} .

Obviously the function p is antitone, that is, order-reversing: If the vector u
increases, the feasible region Fu increases and so p decreases (in the weak
sense).

Remark

If the original problem (P ) is convex, then the effective domain dom(p) is
convex and the perturbation function p is convex on it.

Since −∞ is possible as a value for p on dom(p), convexity here means the
convexity of the epigraph3

epi(p) := {(u, z) ∈ R
m × R | u ∈ dom(p) , p(u) ≤ z}

3 The prefix ‘epi’ means ‘above’. A real-valued function p is convex if and only if
the set epi(p) is convex (cf. exercise 8).
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Proof: The convexity of dom(p) and p is given immediately by the convexity
of the set C and the convexity of the function g:

Let u, v ∈ dom(p) and ̺ ∈ (0, 1). For α, β ∈ R with p(u) < α and
p(v) < β there exist vectors x, y ∈ C with g(x) ≤ u, g(y) ≤ v and
f(x) < α, f(y) < β . The vector x̃ := ̺x+ (1 − ̺)y belongs to C with

g(x̃) ≤ ̺g(x) + (1 − ̺)g(y) ≤ ̺u + (1 − ̺)v =: ũ

and
f(x̃) ≤ ̺f(x) + (1 − ̺)f(y) < ̺α+ (1 − ̺)β .

This shows p(ũ) ≤ f(x̃) < ̺α+ (1 − ̺)β, hence, p(ũ) ≤ ̺p(u) + (1 − ̺)p(v).
�

Remark

We assume that strong duality holds and that the dual optimal value is at-
tained. Let λ∗ be a maximizer to the dual problem (D). Then we have

p(u) ≥ p(0) − 〈λ∗ , u〉 for all u ∈ R
m .

Proof: For a given u ∈ Rm and any feasible point x to the problem (Pu),
that is, x ∈ Fu , we have

p(0) = p∗ = d∗ = ϕ(λ∗) ≤ f(x) + 〈λ∗ , g(x)〉 ≤ f(x) + 〈λ∗ , u〉 .

From this follows p(0) ≤ p(u) + 〈λ∗ , u〉 . �

This inequality gives a lower bound on the optimal value of the perturbed problem
(Pu) . The hyperplane given by z = p(0) − 〈λ∗ , u〉 ‘supports’ the epigraph of the
function p at the point (0, p(0)) . For a problem with only one inequality constraint
the inequality shows that the affinely linear function u 7→ p∗ − λ∗u (u ∈ R) lies
below the graph of p and is tangent to it at the point (0, p∗) .

p∗ − λ∗u

p∗ = p(0)

p

u

We get the following rough sensitivity results:



C
hapter 2

2.4 Duality 77

If λ∗

i is ‘small’, relaxing the i-th constraint causes a small decrease of the optimal
value p(u) . Conversely, if λ∗

i is ‘large’, tightening the i-th constraint causes a large
increase of the optimal value p(u) .

Under the assumptions of the foregoing remark we have:

Remark

If the function p is differentiable4 at the point u = 0 , then the maximizer λ∗

of the dual problem (D) is related to the gradient of p at u = 0 :

∇p(0) = −λ∗

Here the Lagrange multipliers λ∗

i are exactly the local sensitivities of the function
p with respect to perturbations of the constraints.

Proof: The differentiability at the point u = 0 gives:

p(u) = p(0) + 〈∇p(0) , u〉 + r(u) ‖u‖ with r(u) → 0 for Rm ∋ u→ 0.

Hence we obtain −〈∇p(0) + λ∗ , u〉 ≤ r(u) ‖u‖. We set u := −t [∇p(0)+λ∗]

for t > 0 and get t ‖∇p(0) + λ∗‖2 ≤ t ‖∇p(0) + λ∗‖ r
(
− t [∇p(0)+λ∗]

)
. This

shows: ‖∇p(0) + λ∗‖ ≤ r
(
− t [∇p(0)+λ∗]

)
. Passage to the limit t→ 0 yields

∇p(0) + λ∗ = 0. �

For the rest of this section we consider only the special case of a convex opti-
mization problem, where the functions f and g are convex and continuously
differentiable and the set C is convex.

Economic Interpretation of Duality

The equation
∇p(0) = −λ∗

or

− ∂p

∂ui

(0) = λ∗i for i = 1 , . . . , m

leads to the following interpretation of dual variables in economics:

The components λ∗i of the Lagrange multiplier λ∗ are often called shadow
prices or attribute costs. They represent the ‘marginal’ rate of change of the
optimal value

p∗ = v(P ) = inf(P )

4 Subgradients generalize the concept of gradient and are helpful if the function p

is not differentiable at the point u = 0. We do not pursue this aspect and its
relation to the concept of stability.
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of the primal problem (P ) with respect to changes in the constraints. They
describe the incremental change in the value p∗ per unit increase in the right-
hand side of the constraint.

If, for example, the variable x ∈ Rn determines how an enterprise ‘operates’,
the objective function f describes the cost for some production process, and
the constraint gi(x) ≤ 0 gives a bound on a special resource, for example
labor, material or space, then p∗(u) shows us how much the costs (and with
it the profit) change when the resource changes. λ∗i determines approximately
how much fewer costs the enterprise would have, for a ‘small’ increase in avail-
ability of the i-th resource. Under these circumstances λ∗i has the dimension
of dollars (or euros) per unit of capacity of the i-th resource and can therefore
be regarded as a value per unit resource. So we get the maximum price we
should pay for an additional unit of ui .

Strong Duality

Below we will see: If the Slater constraint qualification holds and the original
problem is convex, then we have strong duality, that is, p∗ = d∗. We see once more:
The class of convex programs is a class of ‘well-behaved’ optimization problems.
Convex optimization is relatively ‘easy’.

We need a slightly different separation theorem (compared to proposition 2.1.1). We
quote it without proof (for a proof see, for example: [Fra], p. 49f):

Separation Theorem

Given two disjoint nonempty convex sets V and W in R
k, there exist a real

α and a vector p ∈ Rk \ {0} with

〈p, v 〉 ≥ α for all v ∈ V and 〈p, w 〉 ≤ α for all w ∈ W .

In other words: The hyperplane
{
x ∈ Rk | 〈p, x〉 = α

}
separates V and W.

The example

V :=
n

x = (x1, x2)
T ∈ R

2 | x1 ≤ 0
o

and

W :=
n

x = (x1, x2)
T ∈ R

2 | x1 > 0, x1 x2 ≥ 1
o

(with separating ‘line’ x1 = 0) shows that the sets cannot be ‘strictly’ separated.

Strong Duality Theorem

Suppose that the Slater constraint qualification

∃ x̃ ∈ F gi(x̃) < 0 for all i ∈ I1

holds for the convex problem (P ). Then we have strong duality, and the

value of the dual problem (D) is attained if p∗ > −∞ .
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In order to simplify the proof, we verify the theorem under the slightly stronger
condition

∃ x̃ ∈ F gi(x̃) < 0 for all i ∈ I .

For an extension of the proof to the (refined) Slater constraint qualification see for
example [Rock], p. 277.

Proof: There exists a feasible point, hence we have p∗ < ∞ . If p∗ = −∞ ,
then we get d∗ = −∞ by the weak duality theorem. Hence, we can suppose
that p∗ is finite. The two sets

V := {(v, w) ∈ Rm × R | ∃ x ∈ C g(x) ≤ v and f(x) ≤ w}
W := {(0, w) ∈ Rm × R | w < p∗}
are nonempty and convex. By the definition of p∗ they are disjoint: Let (v, w)
be in W∩V : (v, w) ∈ W shows v = 0 and w < p∗. For (v, w) ∈ V there exists
an x ∈ C with g(x) ≤ v = 0 and f(x) ≤ w < p∗, which is a contradiction
to the definition of p∗.

The quoted separation theorem gives the existence of a pair

(λ, µ) ∈ Rm × R \ {(0, 0)} and an α ∈ R such that:

〈λ, v 〉 + µw ≥ α for all (v, w) ∈ V and (8)

〈λ, v 〉 + µw ≤ α for all (v, w) ∈ W (9)

From (8) we get λ ≥ 0 and µ ≥ 0. (9) means that µw ≤ α for all w < p∗,
hence µp∗ ≤ α . (8) and the definition of V give for any x ∈ C:

〈λ, g(x)〉 + µf(x) ≥ α ≥ µp∗ (10)

For
�

�

�

�
µ = 0 we get from (10) that 〈λ, g(x)〉 ≥ 0 for any x ∈ C, especially

〈λ, g(x̃)〉 ≥ 0 for a point x̃ ∈ C with gi(x̃) < 0 for all i ∈ I . This shows

λ = 0 arriving at a contradiction to (λ, µ) 6= (0, 0). So we have
�

�

�

�
µ > 0 : We

divide the inequality (10) by µ and obtain

L
(
x, λ/µ

)
≥ p∗ for any x ∈ C .

From this follows ϕ
(
λ/µ

)
≥ p∗. By the weak duality theorem we have

ϕ
(
λ/µ

)
≤ d∗ ≤ p∗. This shows strong duality and that the dual value is

attained. �

Strong duality can be obtained for some special nonconvex problems too: It holds
for any optimization problem with quadratic objective function and one quadratic
inequality constraint, provided Slater’s constraint qualification holds. See for ex-
ample [Bo/Va], Appendix B.
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Exercises

1. Orthogonal Distance Line Fitting

Consider the following approximation problem arising from quality control
in manufacturing using coordinate measurement techniques [Ga/Hr]. Let

M := {(x1, y1), (x2, y2), . . . , (xm, ym)}

be a set of m ∈ N given points in R2. The task is to find a line L

L(c, n1, n2) :=
{
(x, y) ∈ R

2 | c+ n1x+ n2y = 0
}

in Hessian normal form with n2
1 + n2

2 = 1 which best approximates the
point setM such that the sum of squares of the distances of the points from
the straight line becomes minimal. If we calculate rj := c + n1xj + n2yj

for a point (xj , yj), then |rj | is its distance to L.

a) Formulate the above problem as a constrained optimization problem.

b) Show the existence of a solution and determine the optimal parameters
c, n1 and n2 by means of the Lagrange multiplier rule. Explicate
when and in which sense these parameters are uniquely defined.

c) Find a (minimal) example which consists of three points and has in-
finitely many optimizers.

d) Solve the optimization problem with Matlab
R©

or Maple
R©

and test your
program with the following data (cf. [Ga/Hr]):

xj 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

yj 0.2 1.0 2.6 3.6 4.9 5.3 6.5 7.8 8.0 9.0

2. a) Solve the optimization problem

f(x1, x2) := 2x1 + 3x2 −→ max
√
x1 +

√
x2 = 5

using Lagrange multipliers (cf. [Br/Ti]).

b) Visualize the contour lines of f as well as the set of feasible points,
and mark the solution. Explain the result!

3. Let n ∈ N and A = (aν,µ) be a real symmetric (n, n)-matrix with the
submatrices Ak

Ak :=




a11 a12 . . . a1k

a21 a22 . . . a2k

...
...

...
...

ak1 ak2 . . . akk


 for k ∈ {1, . . . , n}.

Then the following statements are equivalent:
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a) A is positive definite.

b) ∃ δ > 0 ∀ x ∈ Rn xTAx ≥ δ‖x‖2

c) ∀ k ∈ {1, ..., n} detAk > 0

4. Consider a function f : Rn −→ R.

a) If f is differentiable, then the following holds:

f convex ⇐⇒ ∀x, y ∈ Rn f(y) − f(x) ≥ f ′(x)(y − x)

b) If f is twice continuously differentiable, then:

f convex ⇐⇒ ∀x ∈ R
n ∇2f(x) positive semidefinite

c) What do the corresponding characterizations of strictly convex func-
tions look like?

5. In the “colloquial speech” of mathematicians one can sometimes hear the
following statement: “Strictly convex functions always have exactly one
minimizer.”

However, is it really right to use this term so carelessly? Consider two
typical representatives fi : R2 −→ R, i ∈ {1, 2}:

f1(x, y) = x2 + y2

f2(x, y) = x2 − y2

Visualize these functions and plot their contour lines. Which function is
convex? Show this analytically as well. Is the above statement correct?

Let Dj ⊂ R2 for j ∈ {1, 2, 3, 4, 5} be a region in R2 with

D1 := {(x, y) ∈ R
2 : x2

1 + x2
2 ≤ 0.04}

D2 := {(x, y) ∈ R
2 : (x1 − 0.55)2 + (x2 − 0.7)2 ≤ 0.04}

D3 := {(x, y) ∈ R
2 : (x1 − 0.55)2 + x2

2 ≤ 0.04}.

The outer boundary of the regions D4 and D5 is defined by

x = 0.5(0.5 + 0.2 cos(6ϑ)) cosϑ+ xc

y = 0.5(0.5 + 0.2 cos(6ϑ)) sinϑ+ yc

, ϑ ∈ [0, 2π) ,

where (xc, yc) = (0, 0) for D4 and (xc, yc) = (0,−0.7) for D5.

If we now restrict the above functions fi to Dj (i ∈ {1, 2}, j ∈
{1, 2, 3, 4, 5}), does the statement about the uniqueness of the minimizers
still hold? Find all the minimal points, where possible! Where do they lie?
Which role does the convexity of the region and the function play?

6. Show that a function f : Rn −→ R is affinely linear if and only if it is
convex as well as concave.



C
ha

pt
er

 2

82 Optimality Conditions

7. Let X be a real vector space. For m ∈ N and x1, . . . , xm ∈ X let

conv(x1, . . . , xm) :=

{
m∑

i=1

λi xi | λ1, . . . , λm > 0,

m∑

i=1

λi = 1

}
.

Verify that the following assertions hold for a nonempty subset A ⊂ X :

a) A convex ⇐⇒ ∀ m ∈ N ∀ a1, . . . , am ∈ A conv(a1, . . . , am) ⊂ A

b) LetA be convex and f : A −→ R a convex function. For x1, x2, . . . , xm ∈
A and x ∈ conv(x1, . . . , xm) in a representation as given above, it then
holds that

f

(
m∑

i=1

λixi

)
≤

m∑

i=1

λif(xi) .

c) The intersection of an arbitrary number of convex sets is convex.
Consequently there exists the smallest convex superset conv(A) of
A, called the convex hull of A.

d) It holds that conv(A) =
⋃

m∈N

a1,...,am∈A

conv(a1, . . . , am).

e) Carathéodory’s lemma:

For X = Rn it holds that conv(A) =
⋃

m≤n+1
a1,...,am∈A

conv(a1, . . . , am) .

f) In which way does this lemma have to be modified for X = Cn?

g) For X ∈ {Rn,Cn} and A compact the convex hull conv(A) is also
compact.

8. For a nonempty subset D ⊂ Rn and a function f : D −→ R let

epi(f) := {(x, y) ∈ D × R : f(x) ≤ y}

be the epigraph of f . Show that for a convex set D we have

f convex ⇐⇒ epi(f) convex.

9. Prove part 1) of lemma 2.2.3 and additionally show the following asser-
tions for F convex and x0 ∈ F :

a) Cfd (x0) = {µ(x− x0) |µ > 0, x ∈ F}

b) Ct (x0) = Cfd (x0)

c) Ct (x0) is convex.

10. Prove for the tangent cones of the following sets

F1 := {x ∈ R
n | ‖x‖2 = 1},

F2 := {x ∈ R
n | ‖x‖2 ≤ 1},

F3 := {x ∈ R
2 | − x3

1 + x2 ≤ 0,−x2 ≤ 0} :



C
hapter 2

Exercises to Chapter 2 83

a) For x0 ∈ F1 it holds that Ct (x0) = {d ∈ Rn | 〈d, x0〉 = 0}.

b) For x0 ∈ F2 we have Ct (x0) =

{
R

n , ‖x0‖2 < 1 ,

{d ∈ Rn | 〈d, x0〉 ≤ 0} , ‖x0‖2 = 1 .

c) For x0 :=(0, 0)T ∈ F3 it holds that Ct (x0) = {d ∈ R2 | d1 ≥ 0, d2 = 0}.
11. With f(x) := x2

1 + x2
2 for x ∈ R2 consider

(P )





f(x) −→ min

−x2 ≤ 0

x3
1 − x2 ≤ 0

x3
1(x2 − x3

1) ≤ 0

and determine the linearizing cone, the tangent cone and the respective
dual cones at the (strict global) minimal point x0 := (0, 0)T .

12. Let x0 be a feasible point of the optimization problem (P ). According to
page 56 it holds that (LICQ) =⇒ (AHUCQ) =⇒ (ACQ).

Show by means of the following examples (with n = m = 2 and p = 0)
that these two implications do not hold in the other direction:

a) f(x) := x2
1+(x2+1)2 , g1(x) := −x3

1−x2 , g2(x) := −x2 , x0 := (0, 0)T

b) f(x) := x2
1 +(x2 +1)2 , g1(x) := x2−x2

1 , g2(x) := −x2 , x0 := (0, 0)T

13. Let the following optimization problem be given:

f(x) −→ min , x ∈ R2

g1(x1, x2) := 3(x1 − 1)3 − 2x2 + 2 ≤ 0
g2(x1, x2) := (x1 − 1)3 + 2x2 − 2 ≤ 0
g3(x1, x2) := −x1 ≤ 0
g4(x1, x2) := −x2 ≤ 0

a) Plot the feasible region.

b) Solve the optimization problem for the following objective functions:

(i) f(x1, x2) := (x1 − 1)2 + (x2 − 3
2 )2

(ii) f(x1, x2) := (x1 − 1)2 + (x2 − 4)2

Regard the objective function on the ‘upper boundary’ of F .

(iii) f(x1, x2) := (x1 − 5
4 )2 + (x2 − 5

4 )2

Do the KKT conditions hold at the optimal point?

Hint: In addition illustrate these problems graphically.

14. Optimal Location of a Rescue Helicopter (see example 4 of chapter 1)
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a) Formulate the minimax problem

dmax(x, y) := max
1≤j≤m

√
(x− xj)2 + (y − yj)2

as a quadratic optimization problem
{
f(x, y, ̺) → min

gj(x, y, ̺) ≤ 0 (j = 1, . . . ,m)

(with f quadratic, gj linear). You can find some hints on page 13.

b) Visualize the function dmax by plotting its contour lines for the points
(0, 0), (5,−1), (4, 6), (1, 3).

c) Give the corresponding Lagrangian. Solve the problem by means of
the Karush–Kuhn–Tucker conditions.

15. Determine a triangle with minimal area containing two disjoint disks with
radius 1. wlog let (0, 0), (x1, 0) and (x2, x3) with x1, x3 ≥ 0 be the ver-
tices of the triangle; (x4, x5) and (x6, x7) denote the centers of the disks.

0

1

2

3

0 2 4 6

a) Formulate this problem as a minimization problem in terms of seven
variables and nine constraints (see [Pow1]).

b) x∗ =
(
4 + 2

√
2, 2 +

√
2, 2 +

√
2, 1 +

√
2, 1, 3 +

√
2, 1
)T

is a solution of
this problem; calculate the corresponding Lagrange multipliers λ∗,
such that the Karush–Kuhn–Tucker conditions are fulfilled.

c) Check the sufficient second-order optimality conditions for (x∗, λ∗).

16. Find the point x ∈ R2 that lies closest to the point p := (2, 3) under the
constraints g1(x) := x1 + x2 ≤ 0 and g2(x) := x2

1 − 4 ≤ 0.

a) Illustrate the problem graphically.

b) Verify that the problem is convex and fulfills (SCQ).

c) Determine the KKT points by differentiating between three cases:
none is active, exactly the first one is active, exactly the second one
is active.

d) Now conclude with theorem 2.2.8.
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The problem can of course be solved elementarily. We, however, want to practice

the theory with simple examples.

17. In a small power network the power r runs through two different channels.
Let xi be the power running through channel i for i = 1, 2. The total
loss is given by the function f : R2 −→ R with

f(x1, x2) := x1 +
1

2

(
x2

1 + x2
2

)
.

Determine the current flow such that the total loss stays minimal. The
constraints are given by x1 + x2 = r , x1 ≥ 0 , x2 ≥ 0 .

18. Verify in the linear case that the Lagrange dual problem of (D) (cf. p.
71) — transformed into standard form — is again the primal problem.

19. Consider the optimization problem (cf. [Erik]):


f(x) :=

n∑
i=1

xi log(xi

pi
) −→ min , x ∈ R

n

ATx = b , x ≥ 0

where A ∈ Rn×m, b ∈ Rm and p1, p2, . . . , pn ∈ R++ are given. Let further
0 ln 0 be defined as 0. Prove:

a) The dual problem is given by

ϕ(λ) := bTλ−
n∑

i=1

pi exp(eT
i Aλ− 1) −→ max , λ ∈ R

m .

b) ∇ϕ(λ) = b− ATx with xi = pi exp(eT
i Aλ − 1).

c) ∇2ϕ(λ) = −ATXA , where X = Diag(x) with x from b) .

20. Support Vector Machines
(
cf. [Cr/Sh]

)

Support vector machines have been extensively used in machine learning
and data mining applications such as classification and regression, text
categorization as well as medical applications, for example breast cancer
diagnosis. Let two classes of patterns be given, i. e., samples of observable
characteristics which are represented by points xi in Rn. The patterns are
given in the form (xi, yi), i = 1, . . . ,m, with yi ∈ {1,−1}. yi = 1 means
that xi belongs to class 1; otherwise xi belongs to class 2. In the simplest
case we are looking for a separating hyperplane described by 〈w, x〉+β = 0
with 〈w, xi 〉 + β ≥ 1 if yi = 1 and 〈w, xi 〉 + β ≤ −1 if yi = −1. These
conditions can be written as yi

(
〈w, xi 〉 + β

)
≥ 1 (i = 1, . . . ,m). We

aim to maximize the ‘margin’ (distance) 2/
√
〈w,w 〉 between the two

hyperplanes 〈w, x〉 + β = 1 and 〈w, x〉 + β = −1. This gives a linearly
constrained convex quadratic minimization problem{

1
2 〈w,w 〉 −→ min

yi

(
〈w, xi 〉 + β

)
≥ 1 (i = 1, . . . ,m) .

(11)
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Separable Case Non-Separable Case

0

2

4

6

2 4 6 0

2

4

6

2 4 6

In the case that the two classes are not linearly separable (by a hyper-
plane), we introduce nonnegative penalties ξi for the ‘misclassification’
of xi and minimize both 〈w,w 〉 and

∑m
i=1 ξi . We solve this optimization

problem in the following way with soft margins

(P )

{
1
2 〈w,w 〉 + C

∑m
i=1 ξi → min

yi

(
〈w, xi 〉 + β

)
≥ 1 − ξi, ξi ≥ 0 (i = 1, . . . ,m) .

(12)

Here, C is a weight parameter of the penalty term.

a) Introducing the dual variables λ ∈ Rm
+ , derive the Lagrange dual

problem to (P ):

(D)

{
− 1

2

∑m
i,j=1 yiyj 〈xi , xj 〉λiλj +

∑m
i=1 λi −→ max

∑m
i=1 yiλi = 0, 0 ≤ λi ≤ C (i = 1, . . . ,m)

(13)

Compute the coefficients w ∈ Rn and β ∈ R of the separating hyper-
plane by means of the dual solution λ and show

w =
∑m

j=1 yj λj xj , β = yj − 〈w, xj 〉 if 0 < λj < C .

Vectors xj with λj > 0 are called support vectors.

b) Calculate a support vector ‘machine’ for breast cancer diagnosis using
the file wisconsin-breast-cancer.data from the Breast Cancer Wiscon-
sin Data Set

(
cf. http://archive.ics.uci.edu/ml/

)
. The file wisconsin-

breast-cancer.names gives information on the data set: It contains
699 instances consisting of 11 attributes. The first attribute gives the
sample code number. Attributes 2 through 10 describe the medical
status and give a 9-dimensional vector xi. The last attribute is the
class attribute (“2” for benign, “4” for malignant). Sixteen samples
have a missing attribute, denoted by “?”. Remove these samples from
the data set. Now split the data into two portions: The first 120 in-
stances are used as training data. Take software of your choice to solve
the quadratic problem (P ), using the penalty parameter C = 1000.
The remaining instances are used to evaluate the ‘performance’ of the
classifier or decision function given by f(x) := sgn

{
〈w, x〉 + β

}
.


