Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Lineare Algebra 2014 Dr. D.K. Huynh

Blatt 5

Aufgabe 21

Bestimmen Sie jeweils den Rang der folgenden Matrizen

$$A = \begin{pmatrix} 1 & 4 & 5 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 3 \end{pmatrix}.$$

Aufgabe 22

Es sei $V = \mathbb{F}_2^3$ der dreidimensionale Standardvektorraum über dem endlichen Körper \mathbb{F}_2 . Eine lineare Abbildung

$$\varphi: V \to V$$

sei gegeben durch

$$\varphi((1,0,0)) = (1,1,1), \quad \varphi((0,1,0)) = (0,1,1), \quad \varphi((0,0,1)) = (1,0,0).$$

(a) Geben Sie Basen von $\operatorname{Kern}(\varphi)$ und $\operatorname{Im}(\varphi)$ an. Verifizieren Sie die Dimensionsformel

$$\dim \ker \varphi + \dim \operatorname{Im} \varphi = \dim V.$$

(b) Berechnen Sie die Verkettung $\psi = \varphi^2 = \varphi \circ \varphi$. Welche Dimension haben Kern und Bild von ψ ? Wie sieht φ^3 aus?

Aufgabe 23

Die Menge $\{(1,3),(2,1),(4,7)\}\subset\mathbb{R}^2$ bildet ein Erzeugendensystem des \mathbb{R}^2 .

(a) Finden Sie eine lineare Abbildung $\varphi:\mathbb{R}^2\to\mathbb{R}^2$ mit

$$\varphi((1,3)) = (-2,-1), \quad \varphi((2,1)) = (-6,-3), \quad \varphi((4,7)) = (-10,-5).$$

indem Sie $\varphi((x,y))$ für ein beliebiges $(x,y) \in \mathbb{R}^2$ angeben.

(b) Bestimmen Sie Bild und Kern von φ , indem Sie für beide Unterräume Basen angeben. Was ist $\ker \varphi \cap \operatorname{Im} \varphi$?

Aufgabe 24

Gegeben seien

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Finden Sie jeweils Formeln für A^n und $B^n, n \in \mathbb{N}$, und beweisen Sie sie mittels vollständiger Induktion.