
Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 2015 D. Huynh

Blatt 1

Aufgabe 1

Zeigen Sie: Es gibt unendlich viele Primzahlen.

Aufgabe 2

Es seien A und B Mengen. Zeigen Sie

(a)
$$A \cap B = A - (A - B)$$

(b)
$$A \cup B = A - (A \cap B) \cup B$$
.

Aufgabe 3

Es seien A und B endliche Mengen. Ferner bezeichne $\operatorname{card}(A)$ die Kardinalität von A. Zeigen Sie

$$\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) - \operatorname{card}(A \cap B).$$

Aufgabe 4

Bei seinen Ermittlungen konnte Sherlock Holmes folgende Aussagen eruieren:

- (i) Falls Moriarty betrunken war, dann ist entweder Doyle der Mörder oder Moriarty lügt.
- (ii) Entweder ist Doyle der Mörder oder Moriarty war nicht betrunken und der Mord geschah nach Mitternacht.
- (iii) Falls der Mord nach Mitternacht geschah, so ist entweder Doyle der Mörder oder Moriarty lügt.
- (iv) Moriarty lügt nicht, wenn er nüchtern ist.

Aufgrund dessen konnte Sherlock Holmes logisch schließen, wer der Mörder war. Wer war es? Beweisen Sie Ihre Aussage.

Aufgabe 5

Es sei $f: X \to Y$ eine Funktion. Verneinen Sie folgende Aussagen

(a)
$$\forall x, y \in X : f(x) = f(y) \Rightarrow x = y$$

(b)
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in X : |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$
.

Aufgabe 6

Es sei $f: A \to B$ eine Funktion. Zeigen Sie

(a) Es gilt
$$f^{-1}(M) \cap f^{-1}(N) \subseteq f^{-1}(M \cap N)$$
, wobei $M, N \subseteq B$.

(b) f ist genau dann surjektiv, wenn $f(f^{-1}(M)) = M$ für $M \subseteq B$ gilt.

Analysis Repetitorium

Beginn: Montag, 23. Februar 2015, 10.00 Uhr Ende: Donnerstag, 5. März 2014, 14.00 Uhr

Es sind insgesamt 8 Einheiten. Diese finden montags bis donnerstags in der Regel von 9.00 bis 14.00 Uhr (am 23. Februar Beginn um 10.00 Uhr) statt. Freitags sind keine Veranstaltungen.

Tag	Hörsaal
Montag, 23. Februar	P603
Dienstag, 24. Februar	P603
Mittwoch, 25. Februar	P603
Donnerstag, 26. Februar	P603
Montag, 2. März	A702
Dienstag, 3. März	A702
Mittwoch, 4. März	A704
Donnerstag, 5. März	A704