Aufgabe 32

Gegeben sei die Matrix

$$A = \left(\begin{array}{rrr} 3 & 4 & 3 \\ -1 & 0 & -1 \\ 1 & 2 & 3 \end{array} \right).$$

- (a) Bestimmen Sie das Minimalpolynom $q_A(t)$. Zur Erinnerung: Das Minimalpolynom $q_A(t)$ ist das (eindeutig bestimmte) normierte Polynom kleinsten Grades mit der Eigenschaft $q_A(A) = 0 \in M_{n \times n}(K)$.
- (b) Zeigen Sie, dass A nicht diagonalisierbar ist, aber trigonalisierbar.
- (c) Trigonalisieren Sie die Matrix A.

Lösung.

(a) Wir bestimmen zunächst das charakteristische Polynom und erhalten

$$\chi_A(\lambda) = -\lambda^3 + 6\lambda^2 - 12\lambda + 8 = -(\lambda - 2)^3$$

Aus dem Satz von Cayley Hamilton folgt, dass das Minimalpolynom das charakteristische Polynom teilt. Wegen

$$A - 2I_3 = \begin{pmatrix} 1 & 4 & 3 \\ -1 & -2 & -1 \\ 1 & 2 & 1 \end{pmatrix} \neq 0$$

und

$$(A - 2I_3)^2 = \begin{pmatrix} 0 & 2 & 2 \\ 0 & -2 & -2 \\ 0 & 2 & 2 \end{pmatrix} \neq 0$$

ist das Minimalpolynom gegeben durch $q_A(t) = (t-2)^3$ und entspricht (bis auf Vorzeichen) dem charakteristischen Polynom.

(b) Nach (a) zerfällt das charakteristische Polynom vollständig in Linearfaktoren, somit ist A trigonalisierbar (vgl. Skript Satz 10.3.9). Zum Eigenwert $\lambda=2$ bestimmen wir den Eigenraum, indem wir das homogene LGS

$$(A - 2I_3)x = 0$$

lösen. Wir erhalten

$$\operatorname{Eig}(A,2) = \operatorname{Span}(v_1) \text{ mit } v_1 := \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

Also gilt

$$\dim \text{Eig}(A, 2) = 1 \neq 2 = \mu(A, 2)$$

Da die geometrische nicht mit der algebraischen Vielfachheit übereinstimmt, ist A nicht diagonalisierbar.

(c) A ist die Darstellungsmatrix bezüglich einer Basis \mathcal{B}_1 des \mathbb{R}^3 . Wir ergänzen v_1 zu einer Basis $\mathcal{B}_2 = (v_1, e_2, e_3)$ des \mathbb{R}^3 und bestimmen die Darstellungsmatrix A_2 bezüglich \mathcal{B}_2 . Diese ist durch

$$A_2 = S_1 \cdot A \cdot S_1^{-1}$$

mit

$$S_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ und } S_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

gegeben. Wir erhalten sodann

$$A_2 = \left(\begin{array}{ccc} 2 & 4 & 3 \\ 0 & 4 & 2 \\ 0 & -2 & 0 \end{array}\right).$$

Es gilt nun, die Teilmatrix

$$\left(\begin{array}{cc} 4 & 2 \\ -2 & 0 \end{array}\right)$$

zu trigonalisieren. Hierzu suchen wir einen Eigenvektor zu $\lambda = 2$, d.h. wir lösen

$$\left(\begin{array}{cc} 2 & 2 \\ -2 & -2 \end{array}\right) \cdot \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

und finden

$$x_1 = -x_2,$$

d.h. mit

$$v_2 = \left(\begin{array}{c} 0\\1\\-1 \end{array}\right)$$

ist ein Eigenvektor gegeben. In einem nächsten Schritt ergänzen wir v_1 und v_2 durch Hinzunahme von e_3 zu einer Basis $\mathcal{B}_3 = (v_1, v_2, e_3)$ des \mathbb{R}^3 . Wir haben

$$A_3 = S_2 \cdot A \cdot S_2^{-1}$$

mit

$$S_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \text{ und } S_2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

(beachte S_2^{-1} hat die Vektoren aus \mathcal{B}_3 als Spaltenvektoren, wir erhalten S_2 durch Invertieren von S_2^{-1}). Wir erhalten

$$A_3 = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & \boxed{|2|} \end{pmatrix}$$

und haben mit A_3 die trigonalisierte Form von A gefunden.

Vorgehen beim Trigonalisieren einer $(n \times n)$ -Matrix A:

- (1) Überprüfe, ob A trigonalisierbar ist. Dies ist genau dann der Fall, wenn das charakteristische Polynom in Linearfaktoren zerfällt. Wenn dies nicht der Fall ist, dann breche ab. Falls A sogar diagonalisierbar ist, dann führe die Diagonalisierungsschritte durch. Andernfalls gehe zu Schritt (2).
- (2) Bestimme zum ersten Eigenwert λ_1 einen Eigenvektor v_1 durch das Lösen eines homogenen Gleichungssystems. Ergänze v_1 durch Hinzunahme der kanonischen Basisvektoren e_2, \ldots, e_n zu einer Basis $\mathcal{B}_2 = (v_1, e_2, \ldots, e_n)$. Fasse die Basisvektoren als Spaltenvektoren der Matrix S_1^{-1} auf. Invertiere S_1 und berechne

$$A_2 = S_1 \cdot A \cdot S_1^{-1}.$$

- (3) Streiche die erste Zeile und erste Spalte von A_2 und gelange so zu einer $(n-1) \times (n-1)$ Matrix. Bestimme nun zum zweiten Eigenwert λ_2 einen Eigenvektor \tilde{v}_2 durch das Lösen eines homogenen Gleichungssystems. \tilde{v}_2 ist ein Vektor aus dem K^{n-1} . Ersetze \tilde{v}_2 durch v_2 , indem wir den ersten Eintrag von v_2 auf 0 setzen, alle anderen Einträge werden von \tilde{v}_2 übernommen: Der (j+1)-te Eintrag von v_2 entspricht dem j-ten Eintrag von \tilde{v}_2 . Der Vektor v_2 ist nun aus K^n . Ergänze nun v_1 und v_2 zu einer Basis $\mathcal{B}_3 = (v_1, v_2, e_3, \ldots, e_n)$ des K^n .
- (4) Fahre nun sukzessive fort. Spätestens im (n-1)-ten Schritt erhalten wir eine obere Dreiecksmatrix

$$D := A_n = S_{n-1} \cdot A \cdot S_{n-1}^{-1}.$$