Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Lineare Algebra 2018 Dr. D. Huynh

Blatt 4

Aufgabe 15

Es sei
$$(v_1, v_2, v_3)$$
 mit $v_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ eine Basis des \mathbb{R}^3 .

Ferner sei $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ eine lineare Abbildung mit

$$\varphi(v_1) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \varphi(v_2) = 0, \varphi(v_3) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

und

$$w = \begin{pmatrix} 5\\1\\-1 \end{pmatrix}$$

Bestimmen Sie $\varphi(w)$. (Vgl. mit Aufgabe 13.)

Aufgabe 16

Sei V ein endlich dimensionaler Vektorraum und $\alpha \in \operatorname{End}(V)$ bezüglich der Basis $\mathcal{A} = (v_1, v_2)$ beschrieben durch die Matrix $M(\alpha, \mathcal{A}) = \begin{pmatrix} 3 & 1 \\ 1 & 4 \end{pmatrix}$. Es sei $\mathcal{B} = (w_1, w_2)$ eine Basis von V mit $w_1 = 3v_1 + 2v_2$ und $w_2 = 4v_1 + 3v_2$. Geben Sie die Darstellungsmatrix $M(\alpha, \mathcal{B})$ an.

Aufgabe 17

Sei $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ definiert durch $\varphi(x, y, z) := (y, 2x - z, x)$. Was ist die Matrix von φ bezüglich der Basis

$$b_1 = (1, -1, 0), b_2 = (0, -1, 1), b_3 = (0, 0, 1)$$
?

Aufgabe 18

Beweisen Sie die Dimensionsformel: Sei $\varphi:V\to W$ eine lineare Abbildung zwischen K-Vektorräumen und dim $V<\infty$. Dann gilt

$$\dim \operatorname{im} \varphi + \dim \ker \varphi = \dim V.$$