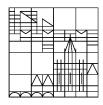
Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Lineare Algebra 2020



Blatt 3

Aufgabe 10

Es seien

$$\mathcal{A} = \left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix} \right\} \text{ und } \mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 3 \\ 3 \end{pmatrix}, \begin{pmatrix} -2 \\ 7 \\ 6 \end{pmatrix} \right\}$$

Basen des \mathbb{R}^3 .

(a) Es sei $v \in \mathbb{R}^3$ mit Koordinatenvektor

$$[v]_{\mathcal{A}} = \begin{pmatrix} 2\\9\\-8 \end{pmatrix}$$

bezüglich der Basis \mathcal{A} . Welche Koordinaten hat v bezüglich der Basis \mathcal{B} ?

(b) Es sei $\varphi:\mathbb{R}^3\to\mathbb{R}^3$ eine lineare Abbildung mit darstellender Matrix

$$M = \left(\begin{array}{ccc} 1 & 4 & 3 \\ 2 & 2 & 0 \\ 3 & 2 & 1 \end{array}\right)$$

bezüglich der Standardbasen. Wie lautet die darstellende Matrix $M_{\mathcal{B}}^{\mathcal{A}}(\varphi)$ bezüglich der Basen \mathcal{A} und \mathcal{B} ?

Aufgabe 11

Es sei $V = \mathbb{F}_2^3$ der dreidimensionale Standardvektorraum über dem endlichen Körper \mathbb{F}_2 . Eine lineare Abbildung

$$\varphi:V\to V$$

sei gegeben durch

$$\varphi((1,0,0)) = (1,1,1), \quad \varphi((0,1,0)) = (0,1,1), \quad \varphi((0,0,1)) = (1,0,0).$$

- (a) Geben Sie Basen von $\ker(\varphi)$ und R_{φ} an. Verifizieren Sie die Dimensionsformel $\dim \ker \varphi + \dim R_{\varphi} = \dim V$.
- (b) Berechnen Sie die Verkettung $\psi = \varphi^2 = \varphi \circ \varphi$. Welche Dimension haben Kern und Bild von ψ ? Wie sieht φ^3 aus?

Aufgabe 12

Die Menge $\{(1,3),(2,1),(4,7)\}\subset\mathbb{R}^2$ bildet ein Erzeugendensystem des \mathbb{R}^2 .

(a) Finden Sie eine lineare Abbildung $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$\varphi((1,3)) = (-2,-1), \quad \varphi((2,1)) = (-6,-3), \quad \varphi((4,7)) = (-10,-5).$$

indem Sie $\varphi((x,y))$ für ein beliebiges $(x,y) \in \mathbb{R}^2$ angeben.

(b) Bestimmen Sie Bild und Kern von φ , indem Sie für beide Unterräume Basen angeben. Was ist ker $\varphi \cap R_{\varphi}$?