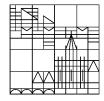
Universität Konstanz Fachbereich Mathematik und Statistik Lineare Algebra Übungsaufgaben



Aufgabe 1

Wir entwickeln A nach der zweiten Zeile und erhalten

$$|A| = \begin{vmatrix} 1 & 4 & 2 \\ 0 & 3 & 5 \\ 4 & 2 & 3 \end{vmatrix} = 3 \begin{vmatrix} 1 & 2 \\ 4 & 3 \end{vmatrix} - 5 \begin{vmatrix} 1 & 4 \\ 4 & 2 \end{vmatrix}$$
$$= 3(1 \cdot 3 - 2 \cdot 4) - 5(1 \cdot 2 - 4 \cdot 4)$$
$$= 3 \cdot (-5) - 5 \cdot (-14) = -15 + 70 = 55.$$

Es gilt

$$|B| = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 5 & 3 \\ 5 & 1 & 7 & 3 \\ 1 & 2 & 3 & 4 \end{vmatrix} = 0,$$

denn die erste und letzte Zeile von B stimmen überein. (Rechnung nicht notwendig!) Bei C handelt es sich um eine obere Dreiecksmatrix. Ihre Determinante ergibt sich als Produkt der Einträge auf der Hauptdiagonalen. Also ergibt sich

$$|C| = \begin{vmatrix} 1 & 0 & -3 & 0 & 9 \\ 0 & 7 & 10 & 3 & 17 \\ 0 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 3 \end{vmatrix} = 1 \cdot 7 \cdot 2 \cdot 1 \cdot 3 = 42.$$

Wir entwickeln D nach der ersten Spalte und erhalten

$$|D| = \begin{vmatrix} \alpha & 1 & -1 \\ 1 & \alpha & 0 \\ 0 & 1 & \alpha \end{vmatrix} = \alpha \cdot \begin{vmatrix} \alpha & 0 \\ 1 & \alpha \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & -1 \\ 1 & \alpha \end{vmatrix} = \alpha^3 - (\alpha + 1) = \alpha^3 - \alpha - 1. \quad \Box$$

Aufgabe 2

Sei V ein \mathbb{Q} -Vektorraum mit Basis $\mathcal{B} = \{b_1, \ldots, b_n\}, n > 2$. Sei $\varphi : V \to V$ die lineare Abbildung mit

$$\varphi(b_i) = 2b_i + b_{i+1}, i = 1, \dots, n-1$$

$$\varphi(b_n) = b_n.$$

Welchen Wert hat $\det[\varphi]_{\mathcal{B}}$?

Lösung:

Aus den Bedingungen $\varphi(b_i) = 2b_i + b_{i+1}, i = 1, \dots, n-1$ und $\varphi(b_n) = b_n$ folgt, dass die Darstellungsmatrix eine **untere Dreiecksmatrix** ist: Alle Einträge auf der Hauptdiagonalen sind 2 bis auf den letzten Eintrag unten rechts – dieser ist 1. (Direkt unterhalb der Hauptdiagonalen sind alle Einträge 1, alle anderen Einträge sind 0.) Demnach gilt $\det[\varphi]_{\mathcal{B}} = 2^{n-1}$.

Aufgabe 3

Sei V ein endlichdimensionaler \mathbb{R} -Vektorraum, $V \neq \{0\}$, und sei $\varphi: V \to V$. Definiere $\psi: V \to V$ durch

$$\psi := \varphi^9 + \varphi^4.$$

Welche der folgenden Implikationen sind richtig?

- (a) φ injektiv $\Rightarrow \psi$ injektiv
- (b) φ surjektiv $\Rightarrow \psi$ surjektiv
- (c) φ bijektiv $\Rightarrow \psi$ bijektiv
- (d) ψ injektiv $\Rightarrow \varphi$ injektiv
- (e) ψ surjektiv $\Rightarrow \varphi$ surjektiv
- (f) ψ bijektiv $\Rightarrow \varphi$ bijektiv

Lösungen. Wir weisen zunächst auf mehrdeutige Notation hin. Sei $\varphi : V \to V$ eine lineare Abbildung mit V endlicher \mathbb{R} -Vektorraum und $V \neq \{0\}$. Wir setzen

$$\varphi^2 := \varphi \circ \varphi.$$

Also bedeutet φ^2 die zweifache Ausführung der Abbildung φ . Für $\varphi(x) = x$ gilt nun $\varphi^2(x) = x$ und damit $\varphi^2(x) \neq x^2$.

Wir betrachten nun $\psi: \mathbb{R} \to \mathbb{R}$ definiert durch

$$\psi := \varphi^9 + \varphi^4.$$

Zu (a): Dann ist die Implikation

$$\varphi$$
 injektiv $\Rightarrow \psi$ injektiv

falsch. Wir betrachten hierzu $\varphi: \mathbb{R} \to \mathbb{R}, x \mapsto -x$. Diese Abbildung ist offenbar injektiv. Nun gilt

$$\psi(x) = \varphi^{9}(x) + \varphi^{4}(x) = -x + x = 0.$$

Die Nullabbildung ist nur für den Nullraum (welcher aber nach Voraussetzung hier ausgeschlossen ist) injektiv.

Zu (b): Mit dem gleichen Beispiel $\varphi: \mathbb{R} \to \mathbb{R}, x \mapsto -x$ zeigen wir auch, dass die Implikation

$$\varphi$$
 surjektiv $\Rightarrow \psi$ surjektiv

falsch ist. φ ist surjektiv, aber ψ nicht.

Zu (c): Damit ist auch klar, dass die Implikation

$$\varphi$$
 bijektiv $\Rightarrow \psi$ bijektiv

falsch ist.

Zu (d): Die Aussage

$$\psi$$
 injektiv $\Rightarrow \varphi$ injektiv

ist wahr: Für den Beweis zeigen wir die äquivalente Aussage

$$\varphi$$
 nicht injektiv $\Rightarrow \psi$ nicht injektiv.

Sei also φ nicht injektiv. Dann gibt es ein $a \neq 0$ mit $\varphi(a) = 0$. Aufgrund der Definition von ψ folgt für dasselbe $a \neq 0$, dass $\psi(a) = \varphi^8(\varphi(a)) + \varphi(a) = \varphi^7(\varphi(0)) + 0 = \dots = 0$. Somit ist auch ψ nicht injektiv.

Zu (e): Die Aussage

$$\psi$$
 surjektiv $\Rightarrow \varphi$ surjektiv

ist wahr. Injektivität für eine $\varphi: V \to V$ lineare Abbildung ist äquivalent zu ihrer Surjektivität. Mit (d) folgt daher sofort (e).

Zu (f): Die Aussage

$$\psi$$
 bijektiv $\Rightarrow \varphi$ bijektiv

ist wahr. Dies folgern wir sofort aus (d) und (e).

Aufgabe 4

Es seien V, W endlich dimensionale Vektorräume über den Körper $K, \varphi : V \to W$ eine lineare Abbildung und ferner $\{v_1, \ldots, v_n\}$ eine Basis von V. Beweisen oder widerlegen Sie

- (a) $\{\varphi(v_1), \ldots, \varphi(v_n)\}$ ist ein Erzeugendensystem von W.
- (b) $\{\varphi(v_1), \ldots, \varphi(v_n)\}$ ist linear unabhängig in W.

Lösungen.

(a) Die Aussage ist falsch. Wir geben ein Gegenbeispiel an. Es seien $V=\mathbb{R}^2$ und $W=\mathbb{R}^3$. Sei $\varphi:V\to W$ mit

$$\varphi(v_1) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \text{ und } \varphi(v_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Offenbar erzeugen $\varphi(v_1)$ und $\varphi(v_2)$ nicht $W = \mathbb{R}^3$.

(b) Die Aussage ist falsch. Wir geben ein Gegenbeispiel an. Es seien $V=\mathbb{R}^3$ und $W=\mathbb{R}^2$. Sei $\varphi:V\to W$ mit

$$\varphi(v_1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \varphi(v_2) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ und } \varphi(v_3) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Offenbar ist $\varphi(v_3) = \varphi(v_1) + \varphi(v_2)$, d.h. $\{\varphi(v_1), \varphi(v_2), \varphi(v_3)\}$ ist linear abhängig.

Aufgabe 5

Sei V ein \mathbb{Q} -Vektorraum und $x_1, \ldots, x_r, y \in V$. Ferner gelte $y \notin \langle x_1, \ldots, x_r \rangle$. Zeigen Sie: Ist $\{x_1, \ldots, x_r\}$ linear unabhängig, so auch $\{x_1 + y, \ldots, x_r + y\}$.

Lösung. Wir betrachten

$$\sum_{j=1}^{r} \mu_j(x_j + y) = 0 \tag{1}$$

mit $\mu_j \in \mathbb{Q}, j = 1, \dots, r$. Zu zeigen ist

$$\forall j = 1, \ldots, r : \mu_i = 0.$$

Aus (1) folgt

$$\sum_{j=1}^r \mu_j x_j = \left(-\sum_{j=1}^r \mu_j\right) y = m \cdot y \text{ mit } m := \left(-\sum_{j=1}^r \mu_j\right).$$

Für m=0 erhalten wir

$$\sum_{j=1}^{r} \mu_j x_j = 0.$$

Daraus folgt $\mu_j = 0, j = 1 \dots, r$.

Für $m \neq 0$ erhalten wir

$$\frac{1}{m} \sum_{j=1}^{r} \mu_j x_j = y$$

im Widerspruch zu $y \notin \langle x_1, \ldots, x_r \rangle$.

Aufgabe 6

Sei $V=\{f\in\mathbb{R}[t]:\deg f\leq 2\}$ ein Untervektorraum von $\mathbb{R}[t]$. Zeigen Sie, dass es für jedes $\begin{pmatrix} a\\b\\c \end{pmatrix}\in\mathbb{R}^3$ genau ein $f\in V$ gibt mit

$$f(1) = a$$
 $f'(0) = b$ $f(0) = c$

und geben Sie dieses f explizit an. Mit f' ist die Ableitung von f bezeichnet.

Lösung. Zu gegebenem $(a,b,c)\in\mathbb{R}^3$ müssen wir zeigen, dass es genau ein $f\in V$ gibt mit

$$f(1) = a$$
 $f'(0) = b$ $f(0) = c$.

Jedes $f \in V$ ist von der Gestalt

$$f = a_2 t^2 + a_1 t + a_0 \text{ mit } (a_0, a_1, a_2) \in \mathbb{R}^3.$$

Die Bedingungen liefern folgendes lineares Gleichungssystem

$$f(1) = a_2 + a_1 + a_0 = a$$

$$f'(0) = a_1 = b$$

$$f(0) = a_0 = c.$$

Die erweiterte Koeffizientenmatrix ist also

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \end{array}\right).$$

Die Matrix hat vollen Rang, d.h. es gibt genau eine Lösung. Aus dem LGS lesen wir sofort ab

$$a_2 = a - b - c,$$
 $a_1 = b,$ $a_0 = c,$

also gibt es zu $(a,b,c)\in\mathbb{R}^3$ genau ein $f\in V$ mit den geforderten Eigenschaften, nämlich

$$f = (a - b - c)t^2 + bt + c.$$

Aufgabe 7

Wahr oder falsch?

(i) Es gibt einen endlichen Körper mit genau 8 Elementen.

 \square wahr \square falsch

Bemerkung: Die Aussage ist richtig. Tatsächlich ist die Anzahl jedes endlichen Körpers eine Primzahlpotenz. Andererseits gibt es zu jeder Primzahlpotenz p^q einen endlichen Körper mit genau dieser Anzahl von p^q Elementen. Die konkrete Angabe eines endlichen Körpers zu einer Primzahlpotenz übersteigt aber die Möglichkeiten der Kenntnisse aus der Linearen Algebra 1.

(11)	Jeder endlich-dimensionale K -Vektorraum V ist isomorph zu seinem Dualraum $V^st.$
	\square wahr \square falsch
(iii)	Sei V ein K -Vektorraum. Dann gibt eine Teilmenge $S \subset V$, so dass der Annullator S^0 kein Vektorraum ist. \square wahr \square falsch
(iv)	Die Determinante ist für jede $(m \times n)$ -Matrix mit $m, n \in \mathbb{N}$ erklärt. \square wahr \square falsch
(v)	Es seien $A, B \in K^{n \times n}$ mit K Körper und $n \in \mathbb{N}_{>0}$. Falls B aus A durch eine Leilenvertauschung hervorgeht, so gilt $\det(A) = -\det(B)$.
	\square wahr \square falsch