
Universität Konstanz Fachbereich Mathematik und Statistik Vorkurs Mathematik 2013 Dr. D.K. Huynh

Blatt 15

Aufgabe 71

Untersuchen Sie, ob für die folgenden Mengen das Supremum und das Infimum existiert und geben Sie sie gegebenenfalls an:

(a)
$$M = \mathbb{N}$$

(b)
$$M = \mathbb{R}$$

(a)
$$M = \mathbb{N}$$
 (b) $M = \mathbb{R}$ (c) $M = \left\{ \frac{n}{n+1} \text{ mit } n \in \mathbb{N} \right\}$ (d) $M = \left\{ \sin(x) \text{ mit } x \in \mathbb{R} \right\}$ (e) $M = \left\{ x \in \mathbb{R} : x^2 - x = 1 \right\}$

(d)
$$M = \{\sin(x) \text{ mit } x \in \mathbb{R}\}$$

(e)
$$M = \{x \in \mathbb{R} : x^2 - x = 1\}$$

(f)
$$M = \left\{ \sum_{k=0}^{n} \frac{1}{2^k} \text{ mit } n \in \mathbb{N} \right\}.$$

Aufgabe 72

Es sei entier : $\mathbb{R} \to \mathbb{R}$ die Ganzzahlfunktion. Bestimmen Sie

$$\int_0^{100} \text{entier}(x) dx.$$

Aufgabe 73

Es sei $f:[0,1]\to\mathbb{R}$ mit $f(x)=x^3$.

(a) Wählen Sie eine äquidistante Partition P des Intervalls I = [0, 1] und bestimmen Sie sowohl die Untersumme U(P) und die Obersumme O(P) von f(x) in I. Verwenden Sie hierzu die Summenformel (vgl. Blatt 8, Aufgabe 35) für die ersten n Kubikzahlen

$$\sum_{k=1}^{n} k^3 = \frac{n^4 + 2n^3 + n^2}{4}.$$

(b) Benutzen Sie Ihre Resultate aus (a), um das Unterintegral und Oberintegral von f(x) zu bestimmen. Geben Sie damit

$$\int_0^1 f(x)dx$$

an.

Aufgabe 74

Es seien f(x) die Dirichletsche Sprungfunktion (vgl. Blatt 13, Aufgabe 61) und P eine Partition des Intervalls $I \subset \mathbb{R}$. Bestimmen Sie die Untersumme und Obersumme von P. Begründen Sie, warum f(x) auf I nicht Riemann-integrierbar ist.

Aufgabe 75

Bestimmen Sie

$$\int_{-2}^{2} \sin^3(x) dx.$$